ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Сикан А.В., Винокуров И.О., Дрегваль М.С.

УЧЕБНОЕ ПОСОБИЕ по дисциплине

«ГИДРОЛОГИЧЕСКИЕ РАСЧЕТЫ» Часть II

для студентов заочного обучения

Направление: 05.03.05 Прикладная гидрометеорология Профиль: Прикладная гидрология

> Санкт-Петербург 2023

УДК 556.048(075.8) ББК 26 222я73

Сикан А.В., Винокуров И.О., Дрегваль М.С.

Учебное пособие по дисциплине «Гидрологические расчеты». Часть II. – Санкт-Петербург : РГГМУ, 2023. - 36 с.

Методические указания составлены в соответствии с программой дисциплины «Гидрологические расчеты». Даются рекомендации по освоению теоретической части курса и выполнению контрольных работ.

УДК 556.048(075.8) ББК 26.222я73

 $^{\ \ \, \}mathbb{C}\ \,$ Сикан А.В., Винокуров И.О., Дрегваль М.С., 2023.

[©] Российский государственный гидрометеорологический университет (РГГМУ), 2023.

ПРЕДИСЛОВИЕ

Дисциплина «Гидрологические расчеты» изучается в течение двух семестров и состоит из двух частей. Настоящие Указания разработаны по второй части дисциплины, включающей разделы: «Расчет характеристик максимального стока при наличии данных гидрометрических наблюдений», «Расчет максимальных расходов весеннего половодья и дождевых паводков при отсутствии данных гидрометрических наблюдений», «Построение гидрографов половодий и паводков», «Определение расчетных наивысших уровней рек и озер», «Расчет стока наносов».

Цель изучения дисциплины: 1) обеспечить освоение студентами теории формирования максимального стока и основанных на ней расчетных методов; 2) научить студентов выполнять расчеты в соответствии с действующими нормативными документами и самостоятельно разрабатывать региональные методы определения расчетных гидрологических характеристик.

ОБЩИЕ УКАЗАНИЯ

Студенты-заочники самостоятельно прорабатывают теоретическую часть курса согласно программе дисциплины и выполняют две контрольные работы.

В период экзаменационной сессии студенты слушают лекции по ключевым вопросам теории и практики гидрологических расчетов.

К экзамену по дисциплине студенты допускаются только после получения зачета по всем контрольным работам.

ЛИТЕРАТУРА

Учебники и учебные пособия

- 1. Владимиров А.М. Гидрологические расчеты. Л.: Гидрометеоиздат, 1990. 365 с.
- 2. Владимиров А.М., Дружинин В.С. Сборник задач и упражнений по гидрологическим расчетам. СПб.: Гидрометеоиздат, 1992. 208 с.
- 3. *Сикан А.В.* Методы статистической обработки гидрометеорологической информации. СПб.: изд. РГГМУ, 2007.–279 с.

Нормативная и методическая литература

- 4. Свод правил СП 33-101-2003. Определение основных расчетных гидрологических характеристик. М.: Стройиздат, 2004. 72 с.
- Методические рекомендации по определению расчетных гидрологических характеристик при наличии данных гидрометрических наблюдений. Нижний Новгород: Вектор-ТиС. 2007. 134 с.
- 6. Методические рекомендации по определению расчетных гидрологических характеристик при недостаточности данных гидрометрических наблюдений. СПб.: Ротапринт ГНЦ ААНИИ, 2007. 67 с.
- Методические рекомендации по определению расчетных гидрологических характеристик при отсутствии данных гидрометрических наблюдений. – СПб «Нестор-История», 2009. – 193 с.
- 8. Пособие по определению расчетных гидрологических характеристик. Л.: Гидрометеоиздат, 1984. 444 с.

Электронные версии Методических рекомендаций [5-7] доступны на сайте ГГИ по адресу http://www.hydrology.ru/ru/izdaniya ggi New

УКАЗАНИЯ ПО РАЗДЕЛАМ ТЕОРЕТИЧЕСКОГО КУРСА

Дисциплина «Гидрологические расчеты» относится к категории инженерных дисциплин. Поэтому при ее освоении необходимо не только чтение учебной литературы, но и изучение действующих нормативных документов. В настоящее время основным нормативным документом в области гидрологических расчетов является Свод правил СП 33-101-2003 «Определение основных расчетных гидрологических характеристик». В дополнение к своду правил выпущены Методические рекомендации [5,6,7]. Поэтому в списке рекомендуемой литературы по каждому разделу приводятся ссылки на эти источники.

Ввеление

В результате изучения вводной части курса студенты должны знать основные характеристика максимального стока рек. Понимать с какой целью рассчитываются максимальные расходы и уровни воды, в каких отраслях хозяйства они востребованы. Иметь четкое представление о том, какие факторы влияют на формирование половодий и паводков. Знать нормативные документы, регламентирующие расчет основных характеристик максимального стока рек и уровней озер.

Рекомендуемые материалы для изучения: [1] — вводные части к разделам $9,11,12; \pi.11.1; \pi.12.1.$

Вопросы для самопроверки

- 1. Раскройте гидрологический смысл терминов «половодье» и «паводок».
- 2. Перечислите основные характеристики половодий и паводков.
- 3. Как можно классифицировать максимальные расходы воды по характеру их происхождения?
- 4. Какие факторы влияют на формирование половодий и паводков?

Расчет характеристик максимального стока при наличии данных гидрометрических наблюдений

Требования СП 33-101-2003 к расчету характеристик максимального стока при наличии данных гидрометрических наблюдений. Деление гидротехнических сооружений на классы капитальности и принципы назначения расчетных обеспеченностей. Введение гарантийной поправки. Расчет максимальных расходов с учетом выдающихся максимумов. Схемы расчета максимального стока в случае неоднородности гидрологических рядов. Использование усеченных кривых обеспеченностей при расчете максимального стока. Расчет максимального стока при недостаточности данных гидрометрических наблюдений.

Рекомендуемые материалы для изучения: [1] — раздел 9; [3] — раздел 7; [4] — раздел 4; п. 5.1-5.17; п.5.26-5.31; [6].

Вопросы для самопроверки

- Какие статистические критерии рекомендуются Сводом правил [4] для проверки рядов максимального стока на однородность?
- 2. Как рассчитать максимальный расход заданной обеспеченности при наличии данных гидрометрических наблюдений в пункте проектирования?
- 3. Как учитываются выдающиеся максимумы при расчетах максимальных уровней и расходов воды?
- 4. Как и с какой целью производится расчет гарантийной поправки?

- 5. Что такое усеченные кривые обеспеченностей и для чего они используются?
- 6. Какова допустимая погрешность определения среднего значения и коэффициента вариации при расчетах максимального стока?
- 7. Как производится расчет максимального стока при недостаточности данных гидрометрических наблюдений?

Расчет максимальных расходов весеннего половодья и дождевых паводков при отсутствии данных гидрометрических наблюдений

Генетическая теория формирования максимального стока. Основные типы формул, используемые для расчета максимального стока. Редукционные формулы. Формула предельной интенсивности стока, ее структура и параметры. Формулы, рекомендуемые Сводом правил [4] для расчета максимальных расходов весеннего половодья и дождевых паводков при отсутствии данных гидрометрических наблюдений.

Рекомендуемые материалы для изучения: [1] — раздел 10; [7] — 8.1-8.2; [4] — $\pi.7.1-7.10$; 7.25-7.49.

Вопросы для самопроверки

- 1. Что такое изохроны?
- 2. Как влияет время добегания и продолжительность осадков (или водоотдачи из снега) на форму гидрографов половодий и паводков?
- Перечислите основные типы формул, используемые для расчета максимальных расходов воды.
- 4. Какая формула рекомендуется Сводом правил [4] для расчета максимальных расходов весеннего половодья малых и средних рек?
- 5. Какие формулы рекомендуются Сводом правил [4] для расчета максимальных расходов дождевых паводков средних рек?
- 6. Какая формула рекомендуется Сводом правил [4] для расчета максимальных расходов дождевых паводков малых рек?

Построение гидрографов половодий и паводков

Основные характеристики гидрографов половодий и паводков. Построение гидрографов по наблюденным гидрографам-моделям. Построение гидрографов на основе аппроксимации их формы с помощью геометрических фигур и уравнений; метод Г.А. Алексеева. Генетический метод построения гидрографа. Расчет гидрографа с использованием математических моделей. Методы, рекомендуемые Сводом правил [4] для расчета гидрографов половодий и паводков при различном объеме гидрометрической информации.

Рекомендуемые материалы для изучения: [1] — раздел 13; [4] — $\pi.5.32-5.40$; 7.50-7.54; [5] — $\pi.10$; [7] — 8.3.

Вопросы для самопроверки

- 1. Перечислите основные элементы гидрографа?
- 2. Как производится расчет гидрографа по гидрографам-моделям при наличии и отсутствии данных гидрометрических наблюдений?
- 3. Что такое коэффициент несимметричности гидрографа?
- 4. Как построить гидрограф по методу Г.А. Алексеева?
- 5. Как построить гидрограф на основе генетической формулы?

Определение расчетных наивысших уровней рек и озер

Практическое значение данных о наивысших уровнях воды. Особенности расчета максимальных уровней рек и озер при наличии данных гидрометрических наблюдений. Перенос расчетных уровней вниз или вверх по течению реки. Особенности расчета уровней на устьевых и приустьевых участках рек. Влияние на формирование максимальных уровней рек заторных и зажорных явлений. Влияние на максимальные уровни крупных озер ветровых нагонов. Методы, рекомендуемые Сводом правил [4] для расчета максимальных уровней рек и озер при отсутствии данных гидрометрических наблюдений.

Рекомендуемые материалы для изучения: [1] — раздел 14; [4] — $\pi.5.44-5.46$; 6.30; 7.68-7.74; [7] — $\pi.10$.

Вопросы для самопроверки

- 1. В чем состоит особенность расчета максимальных уровней воды при наличии данных гидрометрических наблюдений?
- 2. Какие факторы влияют на формирование максимальных уровней рек?
- Как производится расчет максимальных уровней воды рек при отсутствии данных гидрометрических наблюдений?

Расчет стока наносов

Практическое значение данных о стоке наносов. Факторы, определяющие сток наносов. Методы расчета взвешенных наносов при различном объеме гидрометрической информации. Расчет влекомых наносов. Определение характеристик селевых паводков.

Рекомендуемые материалы для изучения: [1] – раздел 15.

Вопросы для самопроверки

- . Какие факторы влияют на сток наносов?
- 2. Что такое карты мутности?

- 3. Как производится расчет взвешенных наносов при отсутствии данных наблюдений?
- 4. Что такое селевые паводки и чем они опасны?

КОНТРОЛЬНЫЕ РАБОТЫ

В процессе изучения второй части дисциплины «Гидрологические расчеты» студенты выполняют две контрольные работы.

Для выполнения контрольных работ требуется выписать ряды максимальных срочных расходов и слоев весеннего половодья для одного гидрологического поста.

Выбранная река должны иметь площадь водосбора не менее 200 км^2 и не более $50~000 \text{ км}^2$. Предполагается также, что на исследуемой реке не происходило существенных изменений условий формирования стока, вызванных антропогенными факторами (отсутствует межбассейновая переброска стока, сток не подвергся искусственному регулированию и т. п.).

Исходные данные за период с начала наблюдений и до 1980 г. выписываются из справочников «Основные гидрологические характеристики» (ОГХ) и «Многолетние данные о режиме и ресурсах поверхностных вод» (МДС); за более поздние годы — рассчитываются по данным гидрологических ежегодников и Автоматизированной информационной системы государственного мониторинга водных объектов (АИС ГМВО). Продолжительность рядов должна быть не менее 30 лет.

Помимо максимальных расходов и слоев половодья из справочника ОГХ необходимо выписать основные гидрографические характеристики исследуемой реки. Ряды максимальных расходов и слоев весеннего половодья можно оформить в виде приложения (прил.1).

Если контрольные работы №1 и №2 сдаются не одновременно, то таблицу гидрографических характеристик следует приложить к каждой работе.

В настоящих Указаниях для иллюстрации излагаемого материала в качестве примера использованы данные по реке Северо-Запада России: р. Оять — д. Акулова гора. Основные гидрографические характеристики реки и ее водосбора приводятся в таблице 1. Расположение поста показано на рисунке 1.

Основные гидрографические характеристики исследуемой реки

№	Река – створ	<i>F</i> , км ²	<i>l</i> , км	L, KM	$H_{ m cp}$ M	I _{cp} %0	f ₀₃ %	$f_{\scriptscriptstyle \Pi}$ %	f ₆ %
64	Оять - д. Акулова гора	4830	224	234	148	0,97	3	84	8

В таблице использованы следующие обозначения:

F – площадь водосбора реки до пункта наблюдений, км 2 ;

l – длина реки от истока, км;

L — расстояние от наиболее удаленной точки речной системы, км;

 H_{cp} — средняя высота водосбора, м;

 $I_{\rm cp}$ – средний уклон реки, ‰;

 f_{03} — относительная озерность водосбора, %;

 f_{π} – относительная лесистость водосбора, %;

 f_6 — относительная заболоченность водосбора, %;

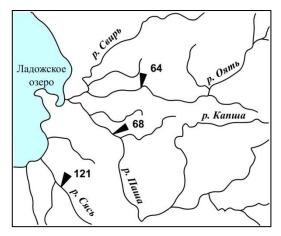


Рис.1. Схема расположения гидрометрических постов.

Контрольная работа № 1

Расчет максимальных расходов и слоев весеннего половодья при наличии данных гидрометрических наблюдений

Требуется: для выбранной реки рассчитать максимальные расходы и слои половодья обеспеченностью 0,01; 0,1; 1; 5; 10; 25; 50; 75; 90; 95; 97; 99; 99,9 %.

1. ПРЕДВАРИТЕЛЬНЫЙ АНАЛИЗ ИСХОДНЫХ ДАННЫХ

Цель проверки – оценить надежность исходной информации, выявить грубые ошибки и опечатки. Следует построить хронологические графики исследуемых рядов (рис.2) и выполнить их визуальный анализ.

Рис.2. Хронологические графики максимальных расходов и слоев весеннего половодья; р. Оять – д. Акулова гора (1935-1980).

2. ПРОВЕРКА РЯДОВ НА ОДНОРОДНОСТЬ

Гидрологический ряд считается однородным, если в течение всего рассматриваемого периода условия формирования стока оставались неизменными. Антропогенное воздействие и природные катаклизмы могут привести к изменению условий формирования стока и нарушить однородность ряда. В этом случае без предварительной корректировки ряда нельзя применять стандартные методы статистической обработки.

Свод правил [4] для проверки гидрологических рядов на однородность по дисперсии и среднему значению рекомендует статистиче-

ские критерии Фишера и Стьюдента, а для проверки точек, резко отклоняющихся от аналитической кривой обеспеченностей — критерии Диксона и Смирнова-Граббса (см. раздел 7 в [3]).

Схемы определения расчетных гидрологических характеристик для неоднородных рядов описаны в п.4.6 Свода правил.

Приведение ряда к однородным условиям является самостоятельной и довольно трудоемкой задачей и в настоящей работе не рассматривается.

В контрольной работе требуется выполнить проверку рядов на однородность с использованием критериев Фишера и Стьюдента при уровне значимости $2\alpha = 5\%$ (см. п.4.6.1-4.6.2 в [3]). Результаты проверки представить в табличном виде (табл.2-3).

Таблица 2 Результаты проверки на однородность ряда максимальных расходов весеннего половодья по критериям Фишера и Стьюдента при уровне значимости $2\alpha = 5\%$.

Река – створ	F^*	$F_{2\alpha}$	$H_0: D_1 = D_2$	t*	$t_{2\alpha}$	$H_0: \bar{Q}_1 = \bar{Q}_2$
Оять - д. Акулова гора	1,82	2,36	не опр.	-1,29	2,02	не опр.

Таблица 3 Результаты проверки на однородность ряда слоев стока весеннего половодья по критериям Фишера и Стьюдента при уровне значимости $2\alpha = 5\%$.

Река – створ	F^*	$F_{2\alpha}$	H_0 : $D_1 = D_2$	<i>t</i> *	$t_{2\alpha}$	$H_0: \bar{h}_1 = \bar{h}_2$
Оять - д. Акулова гора	1,35	2,36	не опр.	-1,57	2,02	не опр.

В таблицах 2 и 3 используются следующие обозначения: F^* – эмпирическое значение статистики Фишера; $F_{2\alpha}$ – теоретическое (табличное) значение статистики Фишера; (H_0 : $D_1 = D_2$) – в рамках нулевой гипотезы предполагается, что дисперсии по первой и второй части ряда равны; t^* – эмпирическое значение статистики Стьюдента; $t_{2\alpha}$ – теоретическое (табличное) значение статистики Стьюдента; (H_0 : $\bar{X}_1 = \bar{X}_2$) – в рамках нулевой гипотезы предполагается, что средние значения по первой и второй части ряда равны. Гипотеза об однородности ряда не опровергается если: $F^* < F_{2\alpha}$ и $|t^*| < t_{2\alpha}$. Таблицы Стьюдента и Фишера представлены в приложениях 2-3.

3. РАСЧЕТ МАКСИМАЛЬНЫХ РАСХОДОВ И СЛОЕВ ВЕСЕННЕГО ПОЛОВОДЬЯ РАСЧЕТНОЙ ОБЕСПЕЧЕННОСТИ

3.1. Рассчитать параметры распределения исследуемых рядов методом моментов по формулам:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad C_v = \sqrt{\frac{\sum_{i=1}^{n} (k_i - 1)^2}{n - 1}}, \quad C_s = \frac{n \sum_{i=1}^{n} (k_i - 1)^3}{(n - 1)(n - 2)C_v^3}, \quad (1-3)$$

где \overline{X} — среднее значение; C_v — коэффициент вариации; C_s — коэффициент асимметрии; $k_i = X_i/\bar{X}$ — модульный коэффициент; n — длина ряда.

3.2. Оценить погрешности расчета полученных параметров по формулам:

$$\varepsilon_{\bar{X}} = \frac{C_v}{\sqrt{n}} \ 100\%, \tag{4}$$

$$\varepsilon_{Cv} = \frac{1}{n+4C_v^2} \sqrt{\frac{n(1+C_v^2)}{2}} 100\%, \tag{5}$$

$$\varepsilon_{CS,\%} = \frac{1}{c_S} \sqrt{\frac{6}{n} (1 + 6C_v^2 + 5C_v^4)} 100\%, \tag{6}$$

- 3.3.В качестве расчетного значения отношения (C_s/C_v) принять его эмпирическое значение (C_s/C_v)* с округлением до 0,5 в большую сторону.
- 3.4. Результаты расчета параметров распределения и их погрешностей представить в табличном виде (табл.4-5). Расчет считается надежным, если погрешность среднего значения и коэффициента вариации не превышают 20%.
- 3.5.С использованием полученных параметров по соответствующим таблицам определить ординаты аналитических кривых обеспеченностей Крицкого-Менкеля. Результаты записать в таблицу 6.

13

¹ Ординаты кривой обеспеченностей Крицкого-Менкеля опубликованы в [2,3,5,8].

Таблица 4

Основные статистические характеристики максимальных расходов весеннего половодья

Река – створ	<i>n</i> лет	$\bar{Q}_{\text{M}^3/\text{c}}$	C_{v}	C_s	$(C_s/C_v)^*$	C_s/C_v	$rac{arepsilon_{ar{Q}}}{\%}$	$\frac{\varepsilon_{Cv}}{\%}$	ε _{Cs} %
Оять - д. Акулова гора	46	395	0,32	0,61	1,91	2	4,7	10,8	76

Таблица 5

Основные статистические характеристики слоев весеннего половодья

Река – створ	<i>n</i> лет	\overline{h}	C_{v}	C_s	$(C_s/C_v)^*$	C_s/C_v	$rac{arepsilon_{\overline{h}}}{\%}$	$rac{arepsilon_{Cv}}{\%}$	$rac{arepsilon_{CS}}{\%}$
Оять - д. Акулова гора	46	160	0,28	0,74	2,65	3	4,1	10,8	60

Таблица 6

Ординаты аналитических кривых обеспеченностей Крицкого-Менкеля для максимальных расходов и слоев весеннего половодья

P %	Расход	ы воды	Слои по	ловодья
P 70	k_p	Q_p м 3 /с	k_p	h_p мм
0,01	2,66	1050	2,67	429
0,1	2,29	906	2,24	360
1	1,89	746	1,83	294
5	1,58	624	1,51	243
10	1,43	564	1,37	220
25	1,19	470	1,16	186
50	0,97	382	0,96	155
75	0,77	304	0,80	128
90	0,62	244	0,68	109
95	0,54	214	0,61	98
97	0,49	194	0,57	92
99	0,41	162	0,51	82
99,9	0,29	116	0,41	66

3.6. На клетчатке вероятностей построить эмпирические и аналитические кривые обеспеченностей (рис.3-4).

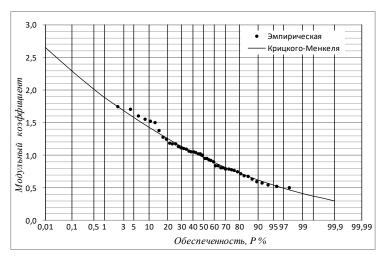


Рис. 3. Эмпирическая и аналитическая кривые обеспеченностей максимальных расходов весеннего половодья в модульных коэффициентах, р. Оять – д. Акулова гора; $Q_{\rm cp}=395;~Cv=0,32;~C_{\rm s}/C_{\rm v}=2.$

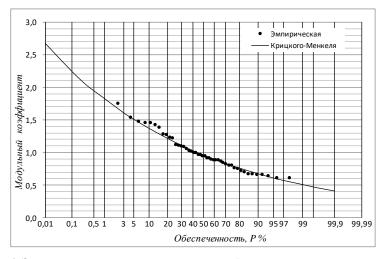


Рис. 4. Эмпирическая и аналитическая кривые обеспеченностей слоев весеннего половодья в модульных коэффициентах, р. Оять – д. Акулова гора; $Q_{\rm cp}=160;\ C\nu=0,28;\ C_{\rm s}/C_{\nu}=3.$

3.7. Если аналитические кривые обеспеченностей хорошо согласуются с эмпирическими точками, то максимальные расходы и слои половодья, представленные в таблице 6 можно рекомендовать в качестве расчетных.

4. РАСЧЕТ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ С УЧЕТОМ ИСТОРИЧЕСКОГО МАКСИМУМА

При определении расчетных максимальных расходов воды кроме материалов систематических гидрометрических наблюдений должны использоваться данные о наивысших исторических уровнях и расходах изучаемой реки. Сведения об исторических уровнях могут быть получены путем изучения меток высоких вод, опроса населения и сбора архивных материалов.

Определение исторического максимального расхода по установленному уровню осуществляется путем экстраполяции кривой Q = f(H), выполняемой обычными гидравлическими приемами.

На основании проведенных исследований получают сам исторический максимум — Q_N и продолжительность периода, в течение которого он не превышался — N.

Возможна и другая ситуация, когда в состав ограниченного ряда наблюдений за *п* лет входит выдающийся максимум. На кривой обеспеченности такой максимум отклоняется вправо относительно кривой, соответствующей основной массе расходов. В этом случае исторический максимум известен, а период его непревышения устанавливается путем опроса населения и сбора архивных материалов.

В Своде правил [4] даны формулы, позволяющие уточнить значения параметров распределения с учетом исторического максимума (см. п.5.16 в [4]). Ниже приводятся формулы для случая, когда расчет параметров выполняется методом моментов.

При учете выдающегося максимума, не входящего в ряд наблюдений:

$$\overline{Q} = \frac{1}{N} \left(Q_N + \frac{N-1}{n} \sum_{i=1}^n Q_i \right), \tag{7}$$

$$C_v = \sqrt{\frac{1}{N} \left[\left(\frac{Q_N}{Q} - 1 \right)^2 + \frac{N-1}{n-1} \sum_{i=1}^n \left(\frac{Q_i}{\overline{Q}} - 1 \right)^2 \right]}, \tag{8}$$

При учете выдающегося максимума, входящего в ряд наблюдений:

$$\overline{Q} = \frac{1}{N} \left(Q_N + \frac{N-1}{n} \sum_{i=1}^{n-1} Q_i \right), \tag{9}$$

$$C_{v} = \sqrt{\frac{1}{N} \left[\left(\frac{Q_{N}}{\overline{Q}} - 1 \right)^{2} + \frac{N-1}{n-2} \sum_{i=1}^{n-1} \left(\frac{Q_{i}}{\overline{Q}} - 1 \right)^{2} \right]}, \tag{10}$$

где, \overline{Q} — среднее значение, рассчитанное с учетом исторического максимума; n — число лет наблюдений в расчетном створе; N — период непревышения исторического максимума.

Учитывая, что настоящая работа носит учебный характер, будем считать, что исторический максимум не входит в ряд наблюдений, а в качестве условного исторического максимума примем $Q_N=1,3Q_{\rm max}$, где $Q_{\rm max}$ — наибольший расход анализируемого ряда. В примере $Q_{\rm max}=690$ м $^3/{\rm c}$ и, следовательно $Q_N=897$ м $^3/{\rm c}$.

Период непревышения назначим N = 150 лет. Расчет в этом случае выполняется по формулам 7-8 (табл. 7-8).

Таблица 7
Вспомогательная таблица для расчета среднего значения с учетом исторического максимума по формуле (7)

n	N	1/ <i>N</i>	Q_N	(N-1)/n	$\sum_{i=1}^{i=n} Q_i$	$ar{Q}$
46	150	0,006667	897	3,239	18177	398

Таблица 8

Вспомогательная таблица для расчета коэффициента вариации с учетом исторического максимума по формуле (8)

n	N	1/ <i>N</i>	$\left(\frac{Q_N}{\bar{Q}}-1\right)^2$	$\frac{N-1}{n-1}$	$\sum_{i=1}^{i=n} \left(\frac{Q_i}{\bar{Q}} - 1\right)^2$	C_{v}
46	150	0,00667	1,613	3,311	4,53	0,33

Примечание: в этой таблице \bar{Q} — это среднее значение с учетом исторического максимума, т. е. $\bar{Q}=398\,\mathrm{m}^3/\mathrm{c}$.

Как видно из таблицы 9, в данном случае учет исторического максимума не привел к существенному изменению параметров распределения.

Таблица 9

Расчетные значения параметров распределения для ряда максимальных расходов весеннего половодья без учета и с учетом исторического максимума;

р. Оять – д. Акулова гора

0	Ov	N	Без учета ист	г. максимума	С учетом ист	г. максимума
Q max	ΩN	1 4	$ar{Q}$	C_{v}	$ar{Q}$	C_{v}
690	897	150	395	0,32	398	0,33

5 РАСЧЕТ ГАРАНТИЙНОЙ ПОПРАВКИ

Речные гидротехнические сооружения первого класса проектируются на расчетный максимальный расход обеспеченностью P=0,1% и поверочный расход P=0,01%. Примерами таких сооружений являются плотины крупных ГЭС с высоким напором и большим объемом водохранилищ. Техногенные катастрофы на таких сооружениях влекут за собой человеческие жертвы и большой экономический ущерб.

Для снижения рисков к максимальным расходам обеспеченностью P = 0.01% прибавляется гарантийная поправка (см. п.5.31 в [4]):

$$\Delta Q_{0,01\%} = \frac{\alpha E_{0,01\%}}{\sqrt{N}} Q_{0,01\%}, \tag{11}$$

где α – коэффициент, который принимают равным 1,0 для изученных рек (т. е. когда погрешности расчета среднего значения и C_{ν} не превышают 20%), во всех остальных случаях – 1,5;

N — число лет наблюдений;

 $E_{0,01\%}$ — величина, характеризующая случайную среднеквадратическую ошибку расчетного расхода воды ежегодной вероятности превышения P=0,01%, определяемая по прил.4.

Гарантийная поправка не должна превышать 20% от расчетного максимального расхода $Q_{0.01\%}$

Исходные данные для расчета взять из таблицы 4. В рассматриваемом примере расчет выполнен для пункта р. Оять – д. Акулова гора (табл.10).

Таблица 10 Расчет гарантийной поправки для максимального расхода (${\rm M}^3/{\rm c}$) весеннего половодья обеспеченностью P=0,01%; р. Оять – д. Акулова гора

N	Q	C_{v}	$\frac{C_s}{C_v}$	$\mathcal{E}_{ar{Q}}$ %	$rac{arepsilon_{Cv}}{\%}$	α	$E_{0,01\%}$	$\frac{\alpha \ E_{0,01\%}}{\sqrt{N}}$	$Q_{0,01\%}$	$\Delta Q_{0,01\%}$
46	395	0,32	2	4,7	10,8	1	0,63	0,093	1050	97,5

Значение гарантийной поправки $\Delta Q_{0,01\%}$ равно 97,5 м3/с, что составляет 9,28% от значения расчетного максимального расхода $Q_{0,01\%}$ и не превышает 20%.

Таким образом, $Q_{0,01\%}$ с учетом гарантийной поправки = 1148 м³/с.

Контрольная работа № 2

Расчет максимальных расходов весеннего половодья при отсутствии данных гидрометрических наблюдений

В соответствии с требованиями СП 33-101-2003 расчет максимальных расходов весеннего половодья малых и средних рек производится по редукционной формуле:

$$Q_{P\%} = \frac{\kappa_0 h_{P\%} \mu_{P\%} F}{(F + F_1)^n} \delta \delta_1 \delta_2, \tag{1}$$

где K_0 – коэффициент, характеризующий дружность весеннего половодья;

 $h_{P\%}$ — расчетный слой стока весеннего половодья (без срезки грунтового питания) обеспеченностью P % в мм;

 $\mu_{\rm P\%}$ — коэффициент, учитывающий неравенство статистических параметров кривых распределения слоев стока и максимальных расходов воды;

F — площадь водосбора исследуемой реки до расчетного створа, км 2 ;

 F_1 дополнительная площадь, учитывающая снижение интенсивности редукции модуля максимального стока с уменьшением площади водосбора, км 2 ;

n — районный показатель редукции;

 $\delta,\,\delta_1,\,\delta_2$ — коэффициенты, учитывающие снижение максимальных расходов воды соответственно под влиянием озерности, залесенности и заболоченности.

Требуется: для расчетной реки определить по формуле (1) максимальные расходы весеннего половодья обеспеченностью P=0,1;1;5;10;25 и 50%.

При выполнении контрольной работы №2 предполагается, что на расчетной реке данные гидрометрических наблюдений отсутствуют.

В примере в качестве расчетной реки рассматривается р. Оять – д. Акулова гора.

1. Определение расчетных слоев весеннего половодья

1.1. Определить параметры распределения слоя стока весеннего половодья $(\bar{h}, C_v, C_s/C_v)$. Затем — с использованием полученных параметров рассчитать слои половодья обеспеченностью P% = 0,1; 1; 5; 10; 25; 50.

В соответствии с СП 33-101-2003 для определения \overline{h} и C_{ν} следует применять метод пространственной интерполяции, а в качестве расчетного значения отношения $C_{\rm s}/C_{\nu}$ использовать его среднее районное значение.

В настоящей работе значения параметров допустимо определить по картам (приложения 9, 10, 11).

Результаты расчета для реки Оять – Акулова Гора даны в таблице 1. В качестве аналитической кривой обеспеченностей использована кривая Крицкого-Менкеля.

Таблица 1 Расчетные значения слоя половодья (мм) р. Оять – Акулова гора $\overline{h}=160~{\rm MM},~~C_{v}=0.35,~~C_{s}/C_{v}=3$

P%	0,1	1	5	10	25	50
k_p	2,68	2,08	1,65	1,46	1,19	0,94
h_p	429	333	264	234	190	151

2. Определение районного показателя редукции и параметра F_1

В соответствии с [7] показатель степени редукции n и параметр F_1 в формуле (1) следует определять по редукционной зависимости $\lg(q_{1\%}/h_{1\%}) = f[\lg(F+1)]$, которая строится с использованием данных наблюдений на изученных реках исследуемого района; где $q_{1\%}$ – модуль максимального стока 1%-ной обеспеченности.

При отсутствии уменьшения редукции в зоне малых площадей водосборов – параметр F_1 принимается равным единице.

В данной контрольной работе эти параметры определяются по таблице, представленной в приложении 5.

Для рассматриваемого примера n = 0,17; $F_1 = 1$.

3. Определение коэффициентов $\mu_{P\%}$

В соответствии с [7] коэффициенты $\mu_{P\%}$, учитывающие неравенство статистических параметров кривых распределения слоев стока и максимальных расходов воды, следует рассчитывать по группе рек с наиболее продолжительными рядами наблюдений по формуле $\mu_{P\%} = (q_{P\%}h_{1\%})/(q_{1\%}h_{P\%})$; где $q_{P\%}$ и $q_{1\%}$ – модули максимального весеннего стока л/с км² соответственно обеспеченностью P% и 1%. Полученные значения для каждой обеспеченности осредняют в пределах однородного гидрологического района.

В данной контрольной работе эти параметры определяются по таблице, представленной в приложении 6.

Для рассматриваемого примера коэффициенты $\mu_{P\%}$ приводятся в таблице 3.

Таблица 3 Переходные коэффициенты $\mu_{P\%}$, учитывающие неравенство статистических параметров максимальных расходов и слоев весеннего половодья для реки Оять – д. Акулова гора

P%	0,1	1	5	10	25	50
$\mu_{P\%}$	1,02	1,0	0,96	0,93	0,90	0,86

4. Определение коэффициентов δ , δ_1 , δ_2

Коэффициент δ , учитывает снижение максимального расхода воды весеннего половодья под влиянием озер.

При наличии в бассейне озер, расположенных вне главного русла и основных притоков, значение коэффициента δ следует принимать: $\delta=1$ если $f_{03}<2\%$; $\delta=0.8$ если $f_{03}\geq2\%$; где f_{03} – относительная озерность водосбора.

Если река зарегулирована проточными озерами, то δ рассчитывается по формуле

$$\delta = 1/(1 + cA_{o3}) \tag{2}$$

где A_{03} — средневзвешенная озерность водосбора; c — коэффициент, принимаемый равным 0,2 для лесной и лесостепной зон и 0,4 — для степной зоны.

Коэффициент δ_1 , учитывающий снижение максимальных расходов воды под влиянием залесенности бассейна, определяют по формуле

$$\delta_1 = \alpha / (f_{\pi} + 1)^{n_1}, \tag{3}$$

где n_1 и α – коэффициенты, определяемые по таблице, представленной в прил.7.

Коэффициент δ_2 , учитывающий снижение максимальных расходов воды с заболоченных водосборов, определяют по формуле

$$\delta_2 = 1 - \beta \lg(0.1 f_6 + 1),$$
 (4)

где $f_{\rm 0}$ — относительная заболоченность водосбора; β — коэффициент, определяемый по таблице, представленной в прил.8.

Расчет коэффициентов δ , δ_1 , δ_2 представить в табличном виде (табл.4).

 $\begin{tabular}{l} \it Tаблица 4 \\ \it Pacчет коэффициентов δ, δ_1, δ_2 для расчетной реки и рек-аналогов \\ \end{tabular}$

Река – створ	f_{o3}	$f_{\scriptscriptstyle m II}$	f_{6}	С	α	n_1	β	δ	δ_1	δ_2
Оять – д. Акулова гора	3	84	8	0,2	1	0,22	0,7	0,8	0,38	0,82

 $\overline{\it Примечание}$: так как в данном примере озера непроточные, а $f_{\rm os}$ > 2% — коэффициент δ принят равным 0,8; формула (2) не использовалась.

5. Определение коэффициента K_0

Коэффициент K_0 , характеризующий дружность весеннего половодья, рассчитывают как среднее из значений, определенных по данным рек-аналогов обратным путем из формулы (1):

$$K_{0} = \frac{Q_{1\%} (F + F_{1})^{n}}{h_{1\%} F \delta \delta_{1} \delta_{2}}.$$
 (5)

В настоящей работе коэффициент K_0 допустимо определить по карте (прил. 12). Для реки Оять – Акулова Гора $K_0 = 0{,}008$.

6. ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНЫХ РАСХОДОВ РАСЧЕТНОЙ ОБЕСПЕЧЕННОСТИ

С использованием полученных параметров по редукционной формуле (1) рассчитать максимальные расходы весеннего половодья обеспеченностью P = 0.1; 1; 5; 10; 25 и 50%. Результаты представить в табличном виде (табл.6-7).

Таблица 6 Расчетные параметры редукционной формулы для р. Оять – д. Акулова гора

F	K_0	δ	δ_1	δ_2	n	F_1	
4830	0,008	0,8	0,38	0,82	0,17	1	

Таблица 7 Результаты расчета максимальных расходов весеннего половодья по редукционной формуле, р. Оять – д. Акулова гора

P%	0,1	1	5	10	25	50
h_p	429	333	264	234	190	151
$\mu_{P\%}$	1,02	1,0	0,96	0,93	0,90	0,86
$Q_{ m P\%}$	997	758	577	496	389	296

7. Выводы

Сравнить максимальные расходы, рассчитанные при наличии данных наблюдений (из контрольной работы \mathbb{N}^{1}) с расходами, полученными по редукционной формуле (1). Оценить ошибку расчета по формуле:

$$\varepsilon = \frac{\left|Q^* - Q\right|}{O} 100 \% , \qquad (6)$$

где Q^* и Q – расчетные максимальные расходы воды, полученные соответственно по редукционной формуле и по ряду наблюдений.

Результаты расчета представить в табличном виде (табл.8).

 $\begin{tabular}{ll} $\it Taблица~8$ \\ \begin{tabular}{ll} Maксимальные расходы весеннего половодья, рассчитанные разными методами; \\ \begin{tabular}{ll} p. Oять — д. Акулова гора \end{tabular}$

Расчетные характеристики весеннего		Обес	печені	ность,	P%	
половодья	0,1	1	5	10	25	50
Расчетные максимальные расходы воды, полученные по ряду наблюдений, $Q \text{м}^3/\text{c}$	906	746	624	564	470	382
Расчетные максимальные расходы воды, полученные по редукционной формуле, Q^* м 3 /с	997	758	577	496	389	296
Относительная ошибка расчета по редукционной формуле, ε %	10	1,7	-7,5	-12	-17	-23

Расчет можно считать удовлетворительным, если ошибка определения максимальных расходов по редукционной формуле в диапазоне обеспеченностей P = 0.1%-25% не превышает 30%.

 $\label{eq:2.2} \begin{picture}(200,0) \put(0,0){I} \put($

год	Q , M^3/c	h,	год	Q , M^3/c	h,	год	<i>Q</i> , м ³ /с	h,	год	Q , M^3/c	h,	год	Q,	h, mm
1935	226	177	1945	272	109	1955	591	248	1965	404	106	1975	332	136
1936	304	109	1946	673	205	1956	440	143	1966	633	281	1976	615	234
1937	214	98	1947	418	165	1957	505	176	1967	251	160	1977	395	170
1938	294	155	1948	463	164	1958	468	222	1968	313	198	1978	283	122
1939	267	117	1949	312	145	1959	376	155	1969	367	206	1979	354	123
1940	208	98	1950	235	106	1960	319	130	1970	466	147	1980	416	104
1941	197	143	1951	330	143	1961	600	197	1971	491	230			
1942	433	139	1952	414	179	1962	544	237	1972	404	152			
1943	690	234	1953	374	129	1963	412	148	1973	306	133			
1944	365	160	1954	321	113	1964	436	152	1974	446	181			

 $\label{eq:pullback} \ensuremath{\textit{Приложение 2}}$ Распределение Стьюдента, 2 α = 5 %

Число степе-		Число степе-		Число степе-	
ней свободы,	t_p	ней свободы,	t_p	ней свободы,	t_p
ν		ν		ν	
1	12,71	14	2,145	32	2,036
2	4,302	15	2,131	34	2,032
3	3,182	16	2,119	36	2,028
4	2,776	17	2,110	38	2,024
5	2,571	18	2,101	40	2,021
6	2,446	19	2,093	50	2,009
7	2,365	20	2,086	60	2,000
8	2,306	21	2,079	80	1,990
9	2,262	22	2,074	100	1,984
10	2,228	24	2,064	200	1,972
11	2,201	26	2,055	300	1,968
12	2,179	28	2,048	400	1,966
13	2,160	30	2,042	500	1,964

Приложение 3

F – распределение (Фишера), $2\alpha = 5$ %

			Числ	о степене	ей свобод	цы ν ₁		
v_2	8	10	15	20	30	60	120	∞
8	4,43	4,30	4,10	4,00	3,89	3,78	3,73	3,67
9	4,10	3,96	3,77	3,67	3,56	3,45	3,39	3,33
10	3,85	3,72	3,52	3,42	3,31	3,20	3,14	3,08
11	3,66	3,53	3,33	3,23	3,12	3,00	2,94	2,88
12	3,51	3,37	3,18	3,07	2,96	2,85	2,79	2,72
13	3,39	3,25	3,05	2,95	2,84	2,72	2,66	2,60
14	3,29	3,15	2,95	2,84	2,73	2,61	2,55	2,49
15	3,20	3,05	2,86	2,76	2,64	2,52	2,46	2,40
16	3,12	2,99	2,79	2,68	2,57	2,45	2,38	2,32
17	3,06	2,92	2,72	2,62	2,50	2,38	2,32	2,25
18	3,01	2,87	2,67	2,56	2,44	2,32	2,26	2,19
19	2,96	2,82	2,62	2,51	2,38	2,27	2,20	2,13
20	2,91	2,77	2,57	2,46	2,35	2,22	2,16	2,09
21	2,87	2,73	2,53	2,42	2,31	2,18	2,11	2,04
22	2,84	2,70	2,50	2,39	2,27	2,14	2,08	2,03
23	2,81	2,67	2,47	2,36	2,24	2,11	2,04	1,97
24	2,78	2,64	2,44	2,33	2,21	2,08	2,01	1,94
25	2,75	2,61	2,41	2,30	2,18	2,05	1,98	1,91
26	2,72	2,59	2,39	2,28	2,16	2,03	1,95	1,88
27	2,71	2,57	2,34	2,25	2,13	2,00	1,93	1,85
28	2,69	2,55	2,34	2,23	2,11	1,98	1,91	1,83
29	2,67	2,53	2,32	2,21	2,09	1,96	1,89	1,81
30	2,65	2,51	2,31	2,20	2,07	1,94	1,87	1,77
40	2,53	2,39	2,18	2,07	1,94	1,80	1,72	1,74
60	2,41	2,27	2,06	1,94	1,82	1,67	1,58	1,48
120	2,30	2,16	1,95	1,82	1,69	1,53	1,43	1,31
∞	2,19	2,05	1,83	1,71	1,57	1,39	1,27	1,00

Приложение 4 $E_{P\%}$ для трехпараметрического гамма-распределения* в зависимости от Cv и Cs/Cv

C	Метод наи	большего прав	доподобия	N	Летод моменто	В
C_{v}	$C_s/C_v=2$	$C_s/C_v=3$	$C_s/C_v = 4$	$C_s/C_v=2$	$C_s/C_v=3$	$C_s/C_v = 4$
0,1	0,25	0,30	0,40	0,25	0,30	0,40
0,2	0,45	0,50	0,70	0,45	0,57	0,77
0,3	0,60	0,75	1,00	0,60	0,84	1,11
0,4	0,75	1,00	1,30	0,75	1,10	1,43
0,5	0,88	1,18	1,48	0,88	1,34	1,73
0,6	0,96	1,30	1,60	0,96	1,55	2,00
0,7	1,05	1,43	1,74	1,05	1,74	2,22
0,8	1,14	1,55	1,88	1,14	1,93	2,42
0,9	1,22	1,68	2,00	1,22	2,11	2,60
1,0	1,30	1,78	2,15	1,30	2,28	2,77
1,1	1,38	1,90	2,27	1,38	2,42	2,94
1,2	1,46	2,00	2,40	1,46	2,56	3,10
1,3	1,54	2,10	2,58	1,54	2,68	3,26
1,4	1,60	2,24	2,65	1,60	2,80	3,41
1,5	1,67	2,33	2,77	1,67	2,92	3,57
* Источник:	Приложение Б	5.6 в [4].				

Приложение 5 Значения районного показателя редукции n и параметра F_1 , учитывающего уменьшение редукции в зоне малых площадей водосборов (для территории $P\Phi$)*

• •	` •	-
Природная зона	n	F_1
Зона тундры и лесная зона	0,17	1
Лесостепная зона	0,25	2
Степная зона, зона засушливых степей и полупустынь	0,35	10
Примечание: Значения параметров n и F_1 на границах природных з интерполяции.	он определян	отся по

* Источник: Таблица 10 в [8].

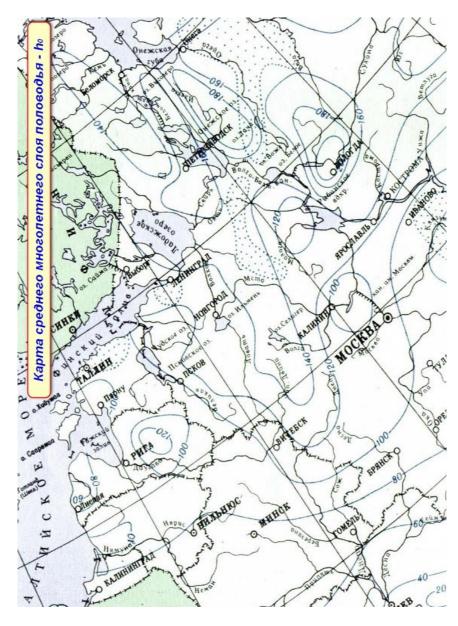
Переходные коэффициенты µ, учитывающие неравенство статистических параметров максимальных расходов и слоев половодья*

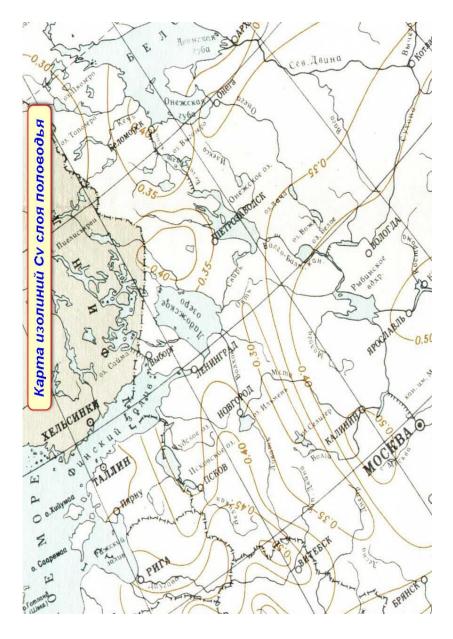
Природноя зоно		Обеспеченность, Р %									
Природная зона	0,1	1	3	5	10	25	50	75	95		
Тундра и лесная зона	1,02	1,0	0,97	0,96	0,93	0,90	0,86	0,82	0,82		
Лесостепная	1,04	1,0	0,96	0,93	0,89	0,80	0,72	0,64	0,58		
Степная	1,04	1,0	0,97	0,96	0,93	0,88	0,79	0,64	0,42		
Зона засушливых степей	1,02	1,0	0.98	0.97	0,96	0.92	(0,80)	(0.70)	(0.50)		
и полупустынь	1,02	1,,0	0,20	0,57	0,50	0,72	(0,00)	(0,70)	(0,00)		
* Источник: Таблица 9 в [8].											

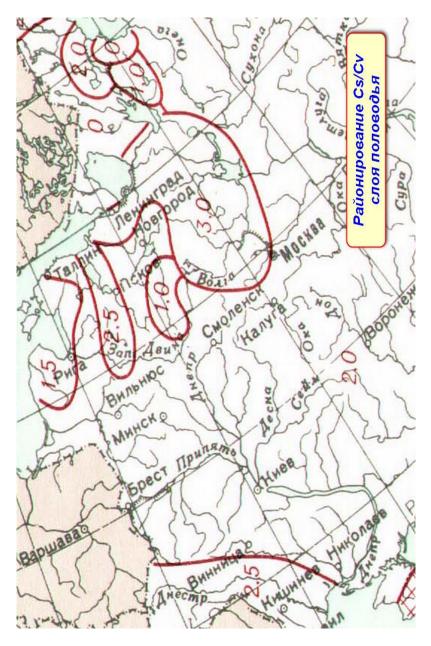
Приложение 7

Значения параметров α_1 и n_1 в формуле для расчета коэффициента δ_1 , учитывающего влияние на максимальный сток лесистости водосбора*

Природиза зона	Расположение		ия парамопри f_{π} , %		Коэффициент n_1 для почвогрунтов под лесом			
Природная зона	леса на водосборе	3-9	10-19	20-30	различного мех. состава	супесча- ных	суглини- стых	
	A	1,00	1,00	1,00	0,22	-	-	
Лесная	В	0,85	0,80	1,75	0,22	-	-	
	C	1,20	1,25	1,30	0,22	-	-	
Лесостепная	A, C	1,00	1,00	1,00	0,16	0,20	0,10	
	В	1,25	1,30	1,40	0,16	0,20	0,10	


Расположение леса на водосборе: A – равномерное; B – в верхней части водосбора; C – в нижней и прирусловой части водосбора.


* Источник: Приложение Б.5 в [7].


Приложение 8 ля расчета коэффициента б₂, учитывающего

Значение параметра $m{\beta}$ в формуле для расчета коэффициента δ_2 , учитывающего влияние на максимальный сток заболоченности водосбора*

Типы болот	Коэффициент β
Низинные болота и заболоченные леса и луга на водосборах, сложенных супесчаными и легкосуглинистыми почвами (грунтами)	0,8
Водосборы, включающие болота разных типов	0,7
Верховые болота на водосборах, сложенных супесчаными и легкосуглинистыми почвами (грунтами)	0,5
Верховые болота на водосборах, сложенных среднесуглинистыми и глинистыми почвами (грунтами)	0,3
* Источник: Приложение Б.6 в [7].	

СОДЕРЖАНИЕ

Предисловие	3
Общие указания	3
Литература	3
Указания по разделам теоретического курса	4
Контрольные работы	8
Контрольная работа № 1— «Расчет максимальных расходов и слоев весеннего половодья при наличии данных гидрометрических наблюдений»	10
Контрольная работа № 2 — «Расчет максимальных расходов весеннего половодья при отсутствии данных гидрометрических наблюдений»	19
Приложения	25

Учебное издание

Сикан Александр Владимирович, к.г.н., доцент Винокуров Игорь Олегович, ст. преподаватель Дрегваль Мария Станиславовна, ст. преподаватель

УЧЕБНОЕ ПОСОБИЕ по дисциплине

«Гидрологические расчеты» Часть II

Печатается в авторской редакции

Подписано в печать 04.05.2023. Формат 60×90 ¹/16. Гарнитура Times New Roman. Печать цифровая. Усл. печ. л. 2,25. Тираж 10 экз. Заказ № 1389. РГГМУ, 192007, Санкт-Петербург, Воронежская ул., 79.