

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

#### «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра водно-технических изысканий

## ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

## Особенности построения кривых расходов воды на

## примере взаимодействия руслового и пойменного потоков

| Исполнитель    | Пиманов Александр Владимирович  |
|----------------|---------------------------------|
|                | (фамилия, имя, отчество)        |
| Руководитель   | Исаев Дмитрий Игоревич          |
| ,              | (ученая степень, ученое звание) |
|                | Доцент, к.г.н.                  |
|                | (фамилия, имя, отчество)        |
|                |                                 |
|                |                                 |
| «К защите допу |                                 |
| Заведующий ка  | федрой                          |
|                | (подпись)                       |
|                | Доцент, к.г.н.                  |
|                | (ученая степень, ученое звание) |
|                | Исаев Дмитрий Игоревич          |
|                | (фамилия, имя, отчество)        |
| «15» OB        | _20 <i>23</i> r.                |

Санкт-Петербург 2023

### Содержание

| Введение                                                          | 2     |
|-------------------------------------------------------------------|-------|
| 1. Построение кривой Q=f(H) при наличии регулярных наблюдений     | 4     |
| 2. Построение кривой Q=f(H) при гидрометеорологических изыскания: | x 6   |
| 3. Физико-географическая характеристика реки Мокша                | 9     |
| 3.1 Общие сведения о реке Мокша                                   | 9     |
| 3.2 Почвы и растительный покров                                   | 13    |
| 3.3 Климат                                                        | 15    |
| 3.4 Водный режим реки                                             | 16    |
| 3.5 Хозяйственное использование реки                              | 18    |
| 3.6. Гидрологический режим Ошибка! Закладка не определ            | тена. |
| 3.7 Описание гидрологического поста                               | 20    |
| 4. Построение кривой Q=f(H) по данным наблюдений за 1963г         | 21    |
| 4.1 Исходные данные и анализ                                      | 21    |
| 4.2 Построение кривых зависимостей                                | 23    |
| 5. Построение кривых зависимостей с помощью программы Profiles    | 27    |
| 5.1 О программе Profiles                                          | 27    |
| 5.2. Построение профиля морфоствора                               | 29    |
| 5.3 Построение кривых площадей                                    | 31    |
| 5.4 Построение кривых расходов                                    | 34    |
| 5.5. Коэффициент шероховатости                                    | 36    |
| 5.6 Обработка и анализ полученных данных                          | 37    |
| Заключение                                                        | 46    |
| Список используемых источников                                    | 48    |

#### Введение

Часто в стандартную программу гидрометеорологических работ входит построение кривых Q=f(H) по формуле Шези. Для этого русло реки разбивается на отсеки с одинаковым показателем шероховатости русла и поймы, а также одинаковым уклоном, и по каждому отсеку строится кривая Q=f(H). Затем эти кривые суммируются для получения общей кривой.

Коэффициент шероховатости n, как правило, соответствии с таблицами, а уклон І берется по данным изысканий или как В значительной средний УКЛОН лога. части случаев коэффициент шероховатости и уклон остаются постоянными во всем диапазоне изменений уровня воды Н.

Обычно коэффициент шероховатости п определяется согласно таблицам, а уклон I берется из изысканий или считается средним уклоном лога. Чаще всего коэффициент шероховатости и уклон остаются неизменными при изменении уровня воды Н.

Кривые расходов в гидрометеорологической службе строятся на основе ежедневных измерений уровней воды H и расходов воды Q. Определение зависимости между расходом и уровнем происходит на основе материалов наблюдений, что дает коррелятивную зависимость. Анализ зависимости проводится в соответствии со стандартами гидрометрии, которые определяют зависимость Q = f(H), хотя физически переменные несвязаны. Это объясняется тем, что измерения уровней производятся более часто и регулярно, чем измерения расходов, которые требуют больших затрат труда и времени.

Частота измерения расходов различна для разных сезонов года и неодинакова для рек с различными режимами. Наиболее часто измеряют расходы в периоды наибольших их изменений — в половодья и паводки. В весеннее половодье делают 4—5 измерений на подъеме и 5—8 на спаде; в межень— одно измерение через 7—10 суток; при прохождении дождевых

паводков — 1—2 измерения на подъеме и 2—3 на спаде. При устойчивом ледоставе и плавном изменении уровня расходы измеряют через 10—20 суток.

Кривая расходов строится в прямоугольной системе координат, на том же чертеже проводятся кривые площадей живого сечения W=f(H) и средних скоростей v=f(H).

Целью данной выпускной квалификационной работы является построение графических зависимостей расходов от уровней.

Задачи данной работы следующие:

- 1) Построить кривые Q=f(H);
- 2) Рассчитать коэффициенты шероховатости n по формуле Маннинга для всего диапазона уровней.
  - 3) Построить кривую зависимости n=f(H).
  - 4) Построение Q=f(H) с помощью программы Profiles.

Объектом исследования был выбран участок реки Мокша. В качестве исходных материалов использовались данные реки Мокша за 1963 год.

#### 1. Построение кривой Q=f(H) при наличии регулярных наблюдений.

Выраженная графически связь между уровнем и расходом воды для данного сечения водотока называется кривой расходов. Кривые расходов применяются при расчетах стока воды, построении кривых подпора и в расчетах сопряжения бъефов гидротехнических сооружений. Метод расчета расходов в береговых отсеках зависит от их формы.

Расход - одна из главных количественных характеристик потока воды, определяющая другие его параметры: уровни воды, скорости течения, уклон свободной поверхности, движение воды, движения наносов и т. д.

Расходом воды называется объем воды, протекающей через живое сечение потока в единицу времени. Выражается в кубических метрах в секунду (м3 /с) или в литрах в секунду (л/с) и обозначается Q. Измерение расходов воды дело весьма трудоемкое, поэтому проводят его сравнительно редко. Систематические измерения расходов воды используются при проектировании и эксплуатации гидротехнических сооружений и гидромелиоративных систем.

Значительно чаще и проще ведутся наблюдения за уровнем воды. Между расходом воды и уровнем существует гидравлическая связь. Имея ряд расходов воды, измеренных при различных уровнях, можно установить эту связь для соответствующего сечения водотока. Обычно она выражается графически в виде кривой Q = f(H) и называется кривой расходов воды. Имея кривую расходов, можно по наблюденным уровням H определить расходы воды, не измеряя их.

Продолжительность периода, в течение которого сохраняется связь между Н и Q, может быть равна году или нескольким годам.

Кривая расходов строится в прямоугольной системе координат.

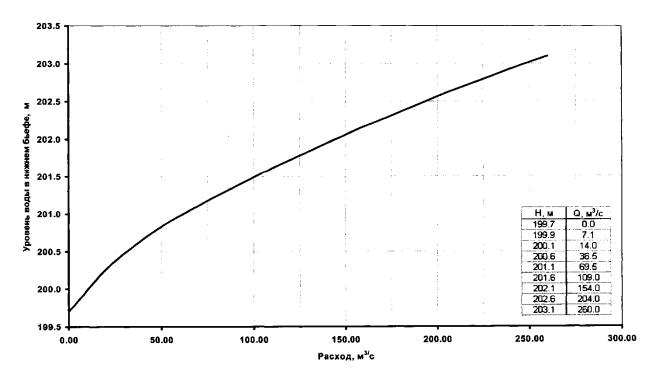



Рисунок 1.1 - Кривая зависимости расхода от уровня воды

По оси абсцисс откладывают расходы, по оси ординат уровни.

Масштаб для Q, выбирают таким, чтобы хорда кривой составляла с осью около  $45^{\circ}$ .

Однозначная зависимость  $Q = \int (H)$  нарушается при неустановившемся движении воды, при ледяных образованиях в русле, размывах русла и отложениях наносов, зарастаниях русла и переменном подпоре и становится неоднозначной.

Согласно теории неустановившегося движения жидкости, уклоны поверхности воды на подъеме паводочной волны больше, чем на ее спаде. Исходя из этого расходы во время половодья  $Q_n$  больше  $Q_c$  — расхода на спаде при одних и тех же уровнях. Поэтому неоднозначная кривая расходов (см. рис. 1) имеет петлеобразный вид с ветвями подъема и спада (на рисунке нанесена пунктиром) и называется паводочной петлей. Наиболее четко паводочные петли выражены на больших равнинных реках.

#### 2. Построение кривой Q=f(H) при гидрометеорологических изысканиях

Необходимыми данными для построения кривой расходов при гидрометеорологических изысканиях являются:

- 1) морфоствор и предельный профиль размыва;
- 2) продольный уклон;
- 3) коэффициент шероховатости.

Поперечные профили разбиваются в ходе топографической съемки участка гидрологического поста и располагаются примерно перпендикулярно направлению речной долины. Съемка поперечного профиля производится путем нивелирования через всю долину реки. Положение и направление створа выбирают заранее и закрепляют вехами. При этом необходимо, чтобы участок реки, где располагается створ, был прямолинейным и, если это возможно, имел ровную и неширокую пойму.

Так же при съемке профиля необходимо произвести осмотр поймы, а именно выявить и описать характер ее поверхности, для того, чтобы дать оценку шероховатости.

Створ, который был выбран выше указанным способом, называется морфоствором, так как в состав работ, кроме промерных и геодезических, входят еще и морфологические исследования.

Поперечный профиль, полученный по данным съемки, позволяет определить общую площадь живого сечения потока при уровне высоких вод. Предельный профиль размыва (ППР) строится в следующем порядке:

- на одном чертеже совмещаются поперечные профили русла на выбранном участке реки Lсовм;
- по самым низким отметкам совмещенных профилей проводится огибающая линия глубинных деформаций, которые обусловлены

предполагаемым смещением плесовых лощин со створа выше по течению в заданный створ ниже по течению за многолетний период;

 строится прогнозируемый профиль суммарных, многолетних и сезонных, размывов дна.

Если на реке шириной менее 50 м проводятся изыскания сокращенным объемом, то совмещения поперечных профилей русла и построения огибающей линии глубинных деформаций не нужно. Вместо этого определяют наибольшую глубину по продольному профилю русла в пределах данной макроформы. Плановые деформации определяются совмещением планов разных лет съемки, в соответствии с пунктом 9.3 ВСН 163-83.

При ленточногрядовом и побочневом типах руслового процесса поперечные профили совмещают по осевой или средней геометрической линии русла. При ограниченном меандрировании поперечники включают русло и пойму и совмещаются по средней линии пояса меандрирования.

Длина (в метрах) участка русла с ленточногрядовым, побочневым или осередковым типами, в пределах которого выполняется совмещение поперечников, принимается по зависимости

$$L_{\text{\tiny COBM}} = k_3 C_{\pi p} T_{\pi p},$$

где

 $C_{np}$  — прогнозируемая скорость смещения характерных точек русловых мезоформ или других фрагментов руслового рельефа (гребень переката, подвалье плеса и др.), которая определяется на основании совмещения разновременных русловых съемок или по реке-аналогу, м/год;

 $T_{np}$  — расчетный срок прогнозирования, который включает время проектирования и строительства, год;

 $k_3$  – коэффициент запаса, который зависит от достоверности определения  $C_{np}$ , для интервала совмещения более 10 лет принимается равным 1,2, а для интервала менее 10 лет, и для значений  $C_{np}$ , полученных расчетным путем

или по объекту-аналогу, принимается равным 2.

Продольный уклон водной поверхности — это падение напора в направлении динамической оси потока, отнесенное к расстоянию между пунктами измерений высоты уровня.

Измеряется уклон геодезическими методами по разности отметок уровня на верхнем по течению уклонном посту и нижнем при известном между ними расстоянии.

Коэффициент шероховатости определяется по таблице Б.12 СП 33-101-2003 [СП 33-101-2003 Определение основных расчетных гидрологических характеристик].

#### 3. Физико-географическая характеристика реки Мокша

#### 3.1 Общие сведения о реке Мокша

Река Мокша является главной рекой республики и имеет длину 656 км, берущую начало южнее п. Мокшан в Пензенской области и впадающую в реку Оку в Рязанской области. Большая часть реки Мокша, а именно в пределах Мордовии, имеет длину 320 км. На рисунке 3.1.1. изображен Водосбор реки и ее положение в субъекте Российской Федерации.



Рисунок 3.1.1 – Водосбор реки Мокша

Предполагается, что река Мокша была названа в честь этнической группы мордвы, населяющей западную Мордовию в бассейне этой реки.

В Таблице 1 собраны основные сведения о водном объекте.

Таблица 1. Общие сведения о водном объекте

| Код водного объекта                | 09010200112110000026769           |
|------------------------------------|-----------------------------------|
| Тип водного объекта                | Река                              |
| Название                           | МОКША                             |
| Местоположение                     | КАС/ВОЛГА/2231/350                |
| Бассейновый округ                  | Окский бассейновый округ          |
| Речной бассейн                     | Ока                               |
| Речной подбассейн                  | Мокша                             |
| Водохозяйственный участок          | Мокша от истока до в/п г.Темников |
| Длина водотока                     | 656 км                            |
| Водосборная площадь                | 51000 км²                         |
| Код по гидрологической изученности | 110002676                         |
| Номер тома по ГИ                   | 10                                |
| Выпуск по ГИ                       | 0                                 |

Река Мокша имеет длину в 656 километров и наибольшую ширину до 280 метров в Парижском пруду. Ее бассейн занимает площадь 51 000 квадратных километров, а глубина достигает до 6 метров. Русло реки проходит через Рязанскую и Нижегородскую области, Мордовскую республику и Пензенский регион, однакосильно меандрирует.



Рисунок 3.1.2- Река Мокша в период ледостава

Река получает свое питание от различных источников, таких как снег 60-80%, грунтовые воды 15-30% и дождь 10%. В городе Темников годовой средний расход воды составляет 55,2 м<sup>3</sup>/с, а общая минерализация в пределах 330-680 мг/л. Наибольшая глубина реки достигает 11 метров в районе впадения реки Сивинь в Сивинской яме. Период подъема весеннего половодья начинается в конце марта, а иногда в начале апреля, и длится около 10-15 дней, вызывая уровень подъема воды в среднем на 5,1-5,7 метров. Продолжительность спада воды составляет в среднем 50-70 дней. Летне-осенний меженный период на реке начинается в начале июня. На реке каждый год происходят 1-3 дождевых паводков, а самые низкие уровни во время летней межени наблюдаются в августе-октябре. Река покрывается 20-30 ноября период И вскрывается В первой льдом декаде апреля. Крупнейшие притоки: левые — Цна, Вад, Атмис, правые — Исса, Сивинь.

Русло реки Мокши окончательно сформировалось при финальном формировании Русской Равнины и Приволжской возвышенности после отступления ледника.

Исток реки Мокша — находится недалеко от деревни Елизаветино Мокшанского района 58-го края. Речь о балке на слегка приподнятом участке сильно всхолмленной степи, идущей до околицы Выглядовка.



Рисунок 3.1.3 устье реки Мокша



Рисунок 3.1.4 – осередок на реке Мокша

Устье реки Мокша — место впадение в рекуОку между территориями Ермишинского и Пителинского района Рязанской области, в 35 километрах от Касимова. Имеет ширину 128 метров. Окружена сочно-травным займищем (слева) и кусочком смешанного леса с ериками (справа). Оба водных уреза низкие, с небольшими песчаными отмелями.

Мокша является типичной равнинной рекой, с медленным И спокойным течением. Русло реки имеет извилистую форму И многочисленные старицы, при этом левый берег на большом протяжении обрывистый и крутой, в то время как правый берег является пологим с песчаными отмелями. Исключением является район города Темникова, где наблюдается крутой правый берег. Дно реки в основном песчаное с иловыми отложениями на плесах и каменистыми преградами на порогах. Ширина Мокши в верховье достигает 5 местами, в районе села Кочелаево увеличивается до 30 м, а у города Краснослободска до 85 м, а в низовье может достигать 150 метров.

#### 3.2 Почвы и растительный покров

Почвы на территории бассейна реки Мокша разнообразны. Для исследуемой территории характерно сочетание выщелоченных и оподзоленных черноземов и комплексы серых лесных почв с небольшим распространением дерново-подзолистых почв. На рисунке 3.2.1 представлена структура почвы в исследуемом районе.



Рисунок 3.2.1 – структура почвы на территории бассейна реки Мокша

Выщелоченные и оподзоленные черноземы, занимают более 44 процентов пашни. Комплекс серых лесных почв охватывает 44,4% пахотных угодий, причем лучше освоены темно-серые лесные почвы. 6,1% пашни приходится на наименее качественные на территории дерновосреднеподзолистые почвы, главным образом в пределах подзоны хвойношироколиственных лесов и на северо-западе подзоны северной лесостепи. В долинах крупных рек и их притоков под пашни используются пойменные почвы, доля которых составляет 3,2%.

Растительность бассейна реки Мокша в основном составляют смешанные леса и лесостепи.

Растительный покров республики в настоящее время представляет собой чередование лесных массивов с пашней и небольшими участками

остепненных лугов или луговых степей. Леса занимают большую часть площади, залесенность территории — 27%. Леса — смешанные с преобладанием мелколиственных пород: березы, ольхи, липы. Значительны площади твердолиственных пород: дуб, ясень, клен. Четвертая часть покрытой лесом площади занята хвойными лесами, в основном из сосны и ели. Особенно много хвойных лесов в самом крупном лесном массиве на западе.

Степи на территории бассейна сохранились лишь в неудобных для распашки местах: по склонам оврагов и балок, на речных террасах и вдоль лесных окраин. Господствующими видами степной растительности являются корневищные злаки и разнотравье. Своеобразными растительными ассоциациями являются заливные луга в поймах рек, на которые приходится около половины всех луговых угодий. Здесь растут злаковые и бобовые культуры. Встречается также множество лекарственных растений.

#### 3.3 Климат

Климат - умеренно-континентальный. Сумма активных температур составляет 2200-2400°С. Только на северо-востоке уменьшается до 2100-22000 °С. Продолжительность теплого периода года, с температурой выше 0°С, от 209 до 214 дней, число безморозных дней составляет 130-135.



Рисунок 3.3.1- участок реки Мокша

Наименее устойчивый элемент климата — осадки. В среднем за год выпадает 450-500 мм. В связи с небольшой протяженностью с запада на восток различия в их количестве по территории незначительны. Большая часть осадков приходится на летне-осенний период.

К неблагоприятным климатическим условиям относятся суховеи, (от 37 до 44 дней в году), засухи, повторяющиеся в зависимости от интенсивности 1 раз в 50 лет (сильные, охватывающие весну, лето и осень), 1 раз в 10 лет (средней интенсивности) и 1 раз в 2-3 года (слабые).

#### 3.4 Гидрологический режим реки

Русло часто петляет, большое количество стариц. Река Мокша является судоходной от поселка Кадом (Рязанская область). На формирование гидрологической сети большей части Республики Мордовия оказало влияние Донское оледенение, после которого реки стали врезаться в водноледниковые отложения.

Для реки Мокши характерно небольшое падение и сравнительно медленное течение (0,1-0,4 м/с). Ширина русла и речной долины увеличивается вниз по течению, но эта закономерность на отдельных участках нарушается местными особенностями (тектоническими структурами, литологическими образованиями и др.).

По характеру внутригодового распределения стока река Мокша относятся к восточно-европейскому типу, который отличается высоким весенним половодьем, низкой летней и зимней меженью, повышенным стоком в осенний период. Половодье начинается в конце марта начале апреля, максимума достигает в середине апреля, спадает к середине мая. Подъём длится 10-12 дней, спад – 20-25 дней.



Рисунок.3.4.1. Половодье на реке Мокша, 2012 год

В годы ранней или поздней весны фазы половодья смещаются на 1-2 декады. В среднем за многолетний период снеговой сток составляет 87-99%, дождевой - до 3%, подземный - 1-10 %.

Ледовые явления начинаются с образованием заберегов и наступают в среднем в первой половине ноября. Замерзание реки происходит в конце

ноября и первой декаде декабря. Устойчивый ледяной покров держится 4-5 месяцев. Толщина льда достигает 85 см, а в суровые зимы -115 см.

#### 3.5 Хозяйственное использование реки

Местные жители используют воду как для бытовых нужд, так и для орошения сельскохозяйственных угодий. Река имеет большое значение как рыбохозяйственный объект.

Луговая растительность на берегу реки Мокша служит кормовой базой для скота. В настоящее время отдельные участки прибрежной полосы реки Мокша распаханы, что может вызвать эрозию и дальнейшее разрушение берегов. Местные жители выращивают на пойме реки картофель.

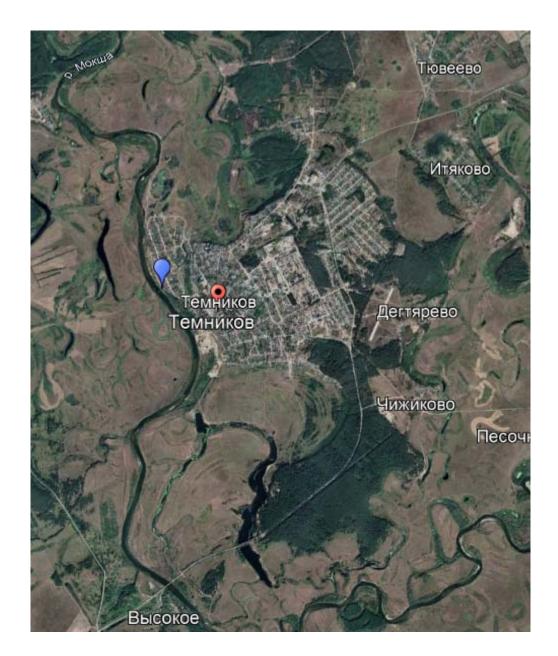



Рисунок 3.5.1. Снимок участка реки Мокша, город Темников

По генетической классификации озерных котловин преобладают водно-эрозионнные – старицы реки Мокша, имеющие связь с рекой во время весенних половодий. Для озер характерен весенний подъем уровня, сменяющийся постепенным его снижением в течение летнего и зимнего сезонов. В отдельные дождливые годы наблюдается летнее или осеннее повышение уровня. Весенний подъем обычно начинается во второй половине апреля, на 5 – 10 дней позже начала половодья на реках. Его высота в среднем от 0,6 до 1,2 м, что зависит как от водности весеннего периода, так и от морфологии котловины озера, размеров бассейна. Максимальный уровень

весеннего подъема наблюдается обычно в последней декаде апреля. В зимний период изменение уровня по преимуществу незначительно. Годовая амплитуда колебаний уровня 1,0-1,5 м.

#### 3.7 Описание гидрологического поста

Гидрологический пост Темников открылся в 1933 году. Площадь водосбора составляет 15800 км<sup>2</sup>. Расстояние от истока реки составляет 432 км, от устья 224 км. Озерность — менее 1%. Заболоченности менее 1%. Лесистость — 18%. Средняя высота водосбора 189 м. Период наблюдений с 1935 года по настоящий момент. отметка нуля водомерного поста (высота над уровнем моря) **100.25 м.**Пост изображен на рисунке 3.7.1.



Рисунок 3.7.1 – положение гидрологического поста р. Мокша – г. Темников

#### 4. Построение кривой Q=f(H) по данным наблюдений за 1963г.

#### 4.1 Исходные данные и анализ

Для изучения был выбран участок реки Мокша на гидрологическом посту г. Темников. Использовались данные за 1963 и 1974 года. Исходные данные представлены в таблице 2.

Таблица 2 - исходные данные за 1963 год.

| №<br>расхода | Дата   | Состояние реки на участке гидроствора | Уровень<br>над<br>нулем<br>графика,<br>см | Расход<br>воды Q,<br>м3 /с | Площадь живого сечения, $\omega$ , м2 | Средняя скорость течения, v, м/с | Ширина<br>реки, b,<br>м | Средняя<br>глубина,<br>h, м |
|--------------|--------|---------------------------------------|-------------------------------------------|----------------------------|---------------------------------------|----------------------------------|-------------------------|-----------------------------|
| 1            | 04.янв | лдст                                  | 168                                       | 15,3                       | 70,1/45,3                             | 0,34                             | 77,3                    | 0,91                        |
| 2            | 17.янв | лдст                                  | 170                                       | 13,4                       | 69,4/40,9                             | 0,33                             | 77,5                    | 0,9                         |
| 3            | 24.янв | лдст                                  | 174                                       | 14                         | 75,4/41,4                             | 0,34                             | 82,5                    | 0,91                        |
| 4            | 06.фев | лдст                                  | 175                                       | 12,9                       | 75,6/40,4                             | 0,32                             | 82,5                    | 0,92                        |
| 5            | 15.фев | лдст                                  | 174                                       | 10,2                       | 74,8/41,2                             | 0,25                             | 82,5                    | 0,91                        |
| 6            | 25.фев | лдст                                  | 181                                       | 11                         | 79,7/36,3                             | 0,3                              | 83,2                    | 0,96                        |
| 7            | 06.мар | лдст                                  | 188                                       | 11,9                       | 84,8/40,5                             | 0,29                             | 85,5                    | 0,99                        |
| 8            | 15.мар | лдст                                  | 194                                       | 12,1                       | 89,0/40,1                             | 0,3                              | 87,1                    | 1,02                        |
| 9            | 25.мар | лдст                                  | 196                                       | 12,3                       | 89,6/39,9                             | 0,31                             | 86,6                    | 0,46                        |
| 10           | 05.апр | лдст                                  | 196                                       | 12,5                       | 89,1/39,3                             | 0,32                             | 87,4                    | 1,02                        |
| 11           | 15.апр | лдст                                  | 211                                       | 21,1                       | 104/53,3                              | 0,4                              | 93,4                    | 1,11                        |
| 12           | 06.май | СВ                                    | 473                                       | 246                        | 462                                   | 0,53                             | 150                     | 3,08                        |
| 13           | 08.май | СВ                                    | 393                                       | 169                        | 344                                   | 0,49                             | 140                     | 2,46                        |
| 14           | 09.май | СВ                                    | 342                                       | 135                        | 272                                   | 0,5                              | 137                     | 1,99                        |
| 15           | 10.май | СВ                                    | 299                                       | 114                        | 213                                   | 0,54                             | 136                     | 1,57                        |
| 16           | 11.май | СВ                                    | 268                                       | 96                         | 174                                   | 0,55                             | 109                     | 1,6                         |
| 17           | 13.май | СВ                                    | 231                                       | 74                         | 134                                   | 0,55                             | 91                      | 1,47                        |
| 18           | 17.май | СВ                                    | 192                                       | 54,7                       | 103                                   | 0,53                             | 89                      | 1,16                        |
| 19           | 22.май | СВ                                    | 166                                       | 40,6                       | 82                                    | 0,5                              | 78                      | 1,05                        |
| 20           | 29.май | СВ                                    | 149                                       | 29,2                       | 58,8                                  | 0,5                              | 73                      | 0,81                        |
| 21           | 03.июн | СВ                                    | 110                                       | 10,5                       | 29,2                                  | 0,36                             | 58,7                    | 0,5                         |
| 22           | 07.июн | СВ                                    | 130                                       | 18,8                       | 33,1                                  | 0,57                             | 88,8                    | 0,37                        |
| 23           | 15.июн | СВ                                    | 135                                       | 21,7                       | 40,4                                  | 0,54                             | 87,7                    | 0,46                        |
| 24           | 24.июн | СВ                                    | 118                                       | 14,3                       | 27,6                                  | 0,52                             | 51,5                    | 0,54                        |
| 25           | 04.июл | СВ                                    | 132                                       | 20,1                       | 42,7                                  | 0,48                             | 89,5                    | 0,48                        |
| 26           | 19.июл | СВ                                    | 146                                       | 28,2                       | 49,1                                  | 0,57                             | 90,7                    | 0,54                        |
| 27           | 26.июл | СВ                                    | 157                                       | 35,4                       | 61,1                                  | 0,58                             | 94,7                    | 0,65                        |
| 28           | 05.авг | СВ                                    | 132                                       | 20,2                       | 36,7                                  | 0,55                             | 74,4                    | 0,49                        |
| 29           | 16.авг | СВ                                    | 118                                       | 13,4                       | 33                                    | 0,41                             | 77,4                    | 0,43                        |

## Продолжение таблицы таблицы 2 - исходные данные за 1963 год.

| 34 | 14.окт | СВ   | 134 | 21,7 | 45,8      | 0,47 | 79,2 | 0,58 |
|----|--------|------|-----|------|-----------|------|------|------|
| 35 | 24.окт | СВ   | 124 | 17,2 | 42,1      | 0,41 | 78,5 | 0,54 |
| 36 | 04.ноя | СВ   | 128 | 18,8 | 44,7      | 0,42 | 79   | 0,57 |
| 37 | 12.ноя | СВ   | 124 | 16,6 | 41,8      | 0,46 | 78,4 | 0,53 |
| 38 | 26.ноя | лдст | 172 | 39,7 | 97,5/85,7 | 0,31 | 95,1 | 0,9  |
| 39 | 02.дек | лдст | 196 | 17,4 | 108/96,3  | 0,18 | 101  | 1,07 |
| 40 | 16.дек | лдст | 186 | 20,9 | 90,7/72,7 | 0,29 | 91,2 | 0,99 |
| 41 | 25.дек | лдст | 168 | 16,3 | 74/54,5   | 0,3  | 83,2 | 0,89 |

Таблица 3 – исходные данные за 1974 год.

| №<br>расхода | Дата    | Состояние реки на участке гидроствора | Уровень<br>над<br>нулем<br>графика,<br>см | Расход<br>воды Q,<br>м3 /с | Площадь живого сечения, $\omega$ , м2 | Средняя скорость течения, v, м/с | Ширина<br>реки, b,<br>м | Средняя<br>глубина,<br>h, м |
|--------------|---------|---------------------------------------|-------------------------------------------|----------------------------|---------------------------------------|----------------------------------|-------------------------|-----------------------------|
| 1            | 0.6 янв | лдст                                  | 180                                       | 15,66                      | 72,7                                  | 0,42                             | 77,6                    | 1,21                        |
| 2            | 16.янв  | лдст                                  | 182                                       | 13,76                      | 72                                    | 0,41                             | 77,8                    | 1,2                         |
| 3            | 23.янв  | лдст                                  | 186                                       | 14,36                      | 78                                    | 0,42                             | 82,8                    | 1,21                        |
| 4            | 05.фев  | лдст                                  | 187                                       | 13,26                      | 78,2                                  | 0,4                              | 82,8                    | 1,22                        |
| 5            | 14.фев  | лдст                                  | 186                                       | 10,56                      | 77,4                                  | 0,33                             | 82,8                    | 1,21                        |
| 6            | 24.фев  | лдст                                  | 193                                       | 11,36                      | 82,3                                  | 0,38                             | 83,5                    | 1,26                        |
| 7            | 10.мар  | лдст                                  | 200                                       | 12,26                      | 87,4                                  | 0,37                             | 85,8                    | 1,29                        |
| 8            | 19.мар  | лдст                                  | 206                                       | 12,46                      | 91,6                                  | 0,38                             | 87,4                    | 1,32                        |
| 9            | 29.мар  | лдст                                  | 208                                       | 12,66                      | 92,2                                  | 0,39                             | 86,9                    | 0,76                        |
| 10           | 09.апр  | СВ                                    | 185                                       | 12,25                      | 91,7                                  | 0,23                             | 87,4                    | 1,32                        |
| 11           | 19.апр  | СВ                                    | 200                                       | 20,85                      | 101,4                                 | 0,24                             | 93,4                    | 0,99                        |
| 12           | 11.май  | СВ                                    | 462                                       | 245,75                     | 459,4                                 | 0,32                             | 150                     | 2,96                        |
| 13           | 13.май  | СВ                                    | 382                                       | 168,75                     | 341,4                                 | 0,45                             | 140                     | 2,34                        |
| 14           | 14.май  | СВ                                    | 331                                       | 134,75                     | 269,4                                 | 0,41                             | 137                     | 1,87                        |
| 15           | 15.май  | СВ                                    | 288                                       | 113,75                     | 210,4                                 | 0,42                             | 136                     | 1,45                        |
| 16           | 16.май  | СВ                                    | 257                                       | 95,75                      | 171,4                                 | 0,46                             | 109                     | 1,48                        |
| 17           | 18.май  | СВ                                    | 220                                       | 73,75                      | 131,4                                 | 0,47                             | 91                      | 1,35                        |
| 18           | 20.май  | СВ                                    | 181                                       | 54,45                      | 100,4                                 | 0,47                             | 89                      | 1,04                        |
| 19           | 25.май  | СВ                                    | 155                                       | 40,35                      | 79,4                                  | 0,45                             | 78                      | 0,93                        |
| 20           | 01.июн  | СВ                                    | 138                                       | 28,95                      | 56,2                                  | 0,42                             | 73                      | 0,69                        |
| 21           | 06.июн  | СВ                                    | 99                                        | 10,25                      | 26,6                                  | 0,42                             | 58,7                    | 0,38                        |
| 22           | 10.июн  | СВ                                    | 119                                       | 18,55                      | 30,5                                  | 0,28                             | 88,8                    | 0,25                        |
| 23           | 18.июн  | СВ                                    | 124                                       | 21,45                      | 37,8                                  | 0,49                             | 87,7                    | 0,34                        |
| 24           | 27.июн  | СВ                                    | 107                                       | 14,05                      | 25                                    | 0,46                             | 51,5                    | 0,42                        |
| 25           | 07.июл  | СВ                                    | 121                                       | 19,85                      | 40,1                                  | 0,44                             | 89,5                    | 0,36                        |
| 26           | 22.июл  | СВ                                    | 135                                       | 27,95                      | 46,5                                  | 0,4                              | 90,7                    | 0,42                        |
| 27           | 29.июл  | СВ                                    | 146                                       | 35,15                      | 58,5                                  | 0,49                             | 94,7                    | 0,53                        |
| 28           | 08.авг  | СВ                                    | 121                                       | 19,95                      | 34,1                                  | 0,5                              | 74,4                    | 0,37                        |
| 29           | 19.авг  | СВ                                    | 107                                       | 13,15                      | 30,4                                  | 0,47                             | 77,4                    | 0,31                        |

#### 4.2 Построение кривых зависимостей

Кривую расходов Q = f(H) строим в прямоугольной системе координат совместно с кривой площадей живых сечений  $\omega = f(H)$  и средних скоростей  $\upsilon = f(H)$ , так как расход при равномерном движении равен произведению площади живого сечения на среднюю скорость. Кривые площадей и средних скоростей нужны для анализа надежности измеренных расходов.

Масштаб для построения кривых выбираем таким образом, чтобы хорда, соединяющая концы кривой Q = f(H), была расположена примерно под углом 45° к оси абсцисс, а для кривых  $\omega = f(H)$  и  $\upsilon = f(H)$  – под углом 60°.

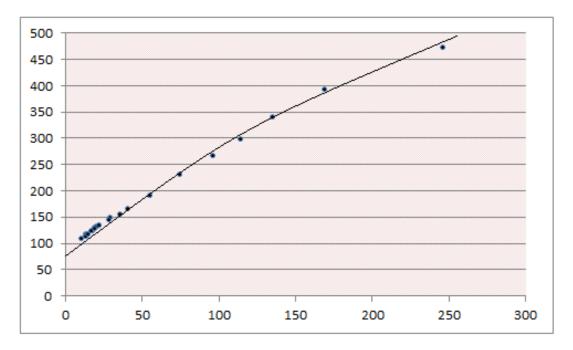



Рисунок 4.2.1- Кривая зависимости расхода от уровня воды Q = f(H) реки Мокши за 1963 год.

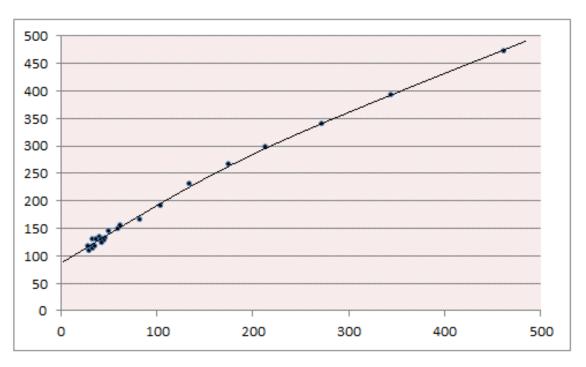



Рисунок 4.2.2 - Кривая зависимости площади от уровня  $\omega = f(H)$  реки Мокши за 1963 год.

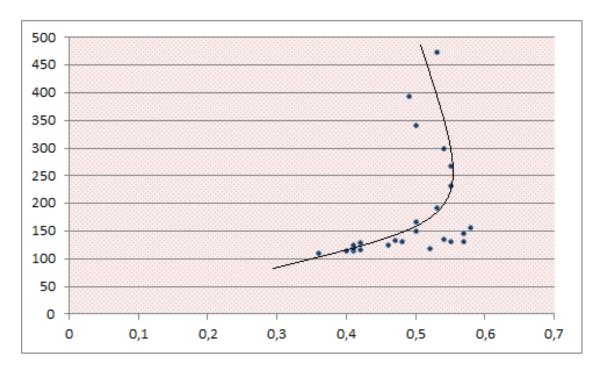



Рисунок 4.2.3- Кривая зависимости скоростей от уровня  $\upsilon = f(H)$ реки Мокши за 1963 год.

Следующим шагом в работе будет определение коэффициентов шероховатости п по формуле Маннинга для всего диапазона уровней.

Речные русла отличаются от инженерных сооружений тем, что они деформируются. При этом наблюдаются не только деформации русел, особенно в периоды паводков и половодий, но иногда и обрушение берегов. К тому же потоки в таких руслах перемещают наносы как во взвешенной, так и в донной фазе. Особые сложности при разработке расчетных методов создают донные наносы, так как режимы их перемещения могут существенно изменяться. Это зависит от мощности паводков и половодий, соотношения расходов донных наносов и транспортирующей способности потоков, крупности наносов и других факторов.

Как известно величина гидравлических сопротивлений при изменении фазы перемещения наносов от их влечения к донным грядам может изменяться в несколько раз (от 2 до 7). Помимо этого, донные наносы могут перемещаться в виде различных русловых образований.

Все это, а также большое количество факторов, определяющих гидравлических сопротивлений, привело К необходимости введения некоторой интегральной характеристики, учитывающей различные составляющие гидравлических сопротивлений. Как уже указывалось, в середине XIX в. был предложен качестве таковой коэффициент величина которого определялась по шероховатости описательной Π, одной многочисленных таблиц. Коэффициент характеристике И ИЗ пор негативно воспринимается шероховатости ДО сих некоторыми исследователями, например, К.В. Гришаниным, и для этого имеются довольно веские основания. Действительно, для его расчетов имеется количество эмпирических формул. В большое настоящее значительно больше 200.

При расчетах по некоторым из них, как это указывалось, размерность коэффициента шероховатости изменяется, что недопустимо для любой физической величины. Несмотря на этот и другие недостатки, в настоящее время лучшего аналога коэффициенту шероховатости не предложено.

Как указывалось, для определения коэффициентов шероховатости созданы специальные таблицы, в которых приведены описания русел и пойм и соответствующие им значения коэффициентов шероховатости (одного или двух-трех). Таких таблиц в настоящее время насчитывается свыше 20. Однако широкое распространение в СССР, а затем и в России, получила таблица М.Ф. Срибного.

Таблица 3. Рекомендуемые значения коэффициента шероховатости n в формуле Маннинга для естественных русел и пойм, таблица по Срибному (ТУ-24-02)

#### По Срибному (ТУ-24-02):

| Категория | Описание водотока                                                                                                                                                                                                                                                                                                                                                                                             | n     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1         | Естественные русла в весьма благоприятных условиях (чистое, прямое в плане, совершенно незасоренное земляное русло со свободным течением)                                                                                                                                                                                                                                                                     | 0,025 |
| 2         | Русло постоянных водотоков равнинного типа преимущественно больших и средних рек в благоприятных условиях состояния ложа и течения воды                                                                                                                                                                                                                                                                       | 0,033 |
| 3         | Сравнительно чистые русла постоянных равнинных водотоков в обычных условиях, извилистые, с некоторыми неправильностями в<br>направлении струй, или же прямые, но с неправильностями в рельефе дна (отмели, промоины, местами камни)                                                                                                                                                                           | 0,040 |
| 4         | Русла (больших и средних рек) значительно засоренные, извилистые и частично заросшие, каменистые с неспокойным течением Периодические (ливневые и весенние) водотоки, несущие во время паводка значительное количество наносов с крупногалечным или покрытым растительностью, травой и прочим ложем. Поймы больших и средних лет, сравнительно разработанные, покрытые растительностью (травой, кустарниками) | 0,050 |
| 5         | Русла периодических водотоков, сильно заросшие и извилистые.<br>Значительно заросшие, неровные, плохо разработанные поймы рек (промоины, кустарники, деревья) с наличием заводей.<br>Порожистые участки рек. Галечно-валунные русла горного типа с неправильной поверхностью водного зеркала                                                                                                                  | 0,067 |
| 6         | Реки и поймы, весьма значительно заросшие (со слабым течением), с большими глубокими промоинами. Валунные, горного типа русла с<br>бурным пенистым течением с изрытой поверхностью водного зеркала (с летящими вверх брызгами воды)                                                                                                                                                                           | 0,080 |
| 7         | Поймы такие же, как и предыдущей категории, но с сильно неправильным косоструйным течением, заводями и пр.<br>Горно-водорезного типа русла с крупновалунным извилистым строением ложа, перепады ярко выражены, пенистость настолько сильна, что<br>вода, потеряв прозрачность, имеет белый цвет, шум потока доминирует над всеми остальными звуками, делает разговор затруднительным                          | 0,100 |
| 8         | Реки болотного типа (заросли, кочки, во многих местах почти стоячая вода и пр.). Поймы лесистые, с очень большими мертвыми пространствами, с местными углублениями, озерами и пр.                                                                                                                                                                                                                             | 0,133 |
| 9         | Потоки типа селевых, состоящие из грязи, камней и пр. Глухие поймы, сплошь лесные, таежного типа. Склоны бассейнов в естественном состоянии                                                                                                                                                                                                                                                                   | 0,200 |

Коэффициент шероховатости n реки Мокша по таблице равен 0,025. Коэффициент Шези определяется по формуле Маннинга

$$C = \frac{1}{n}H^{0.167}$$

где n – коэффициент шероховатости, h – глубина потока.

По полученным данным была построена кривая зависимости n=f(H).

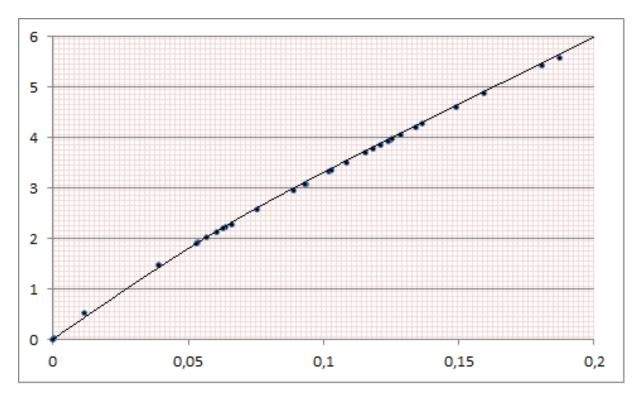



Рис 15. Кривая зависимости n=f(H) реки Мокши за 1963 год.

Глава 5. Построение кривых зависимостей с помощью программы «Profiles»

#### 5.1 О программе «Profiles2010»

Программа «Profiles2010» обеспечивает первичную обработку материалов геодезической съемки морфопрофилей русла и затопляемой части долины реки (канала, малого водотока) и выполнение гидравлических расчетов по данным одного морфоствора. Расчет кривых свободной

поверхности для случаев неравномерного или неустановившегося течения данной версией программы не предусмотрен.

Программа может применяться для решения как задач инженерногидрологической практики, так и задач текущей работы сетевых гидрологических подразделений Росгидромета: гидравлическая экстраполяция кривых Q(H) постов, определение максимальных расходов по меткам УВВ и т. п.

Программа действует со всеми применяемыми в настоящее время операционными системами Windows. Методика расчетов, выполняемых программой, полностью соответствует требованиям действующего СП 33-101-2003, но содержит и некоторые дополнительные возможности использования методов традиционной гидравлики открытых потоков.

Предварительная обработка данных морфопрофиля выполняется программой в три этапа. На первом этапе она заключается в расчете координат кривых зависимостей площади сечения ю́ и ширины В от уровня воды Ндля всего водного сечения или выделенных пользователем его отсеков: руслового и пойменных. На втором этапе производится расчет построение кривых расхода воды Q(H) для всех выделенных отсеков морфопрофиля и для их суммарного расхода.

На заключительной стадии собственно гидравлических расчетов программа предоставляет возможность решения следующих задач:

- расчет шероховатости русла реки по данным измеренного расхода воды:
- расчет расхода воды Q по зафиксированным меткам УВВ;
- расчет расхода воды Q при заданном уровне Н;
- расчет уровня воды H при заданном расходе Q:
- расчет обеспеченных уровней воды Hp% при задаваемых обеспеченных расходах Qp%.

Результаты всех выполняемых расчетов иллюстрируются графиками, любой из которых может быть сохранен пользователем в формате ВМР для последующего преобразования в JPG и включения в отчетную документацию.

Программа снабжена развитым интерфейсом управления. Перед выполнением каждого последующего этапа расчетов пользователю автоматически предлагается выбор параметров выполнения расчетов, оформления графиков и таблиц записи результатов. Исключение составляют способы выполнения расчетов, редко используемые в современной практике. К ним относятся:

- использование гидравлического радиуса R вместо средней глубины отсека  $h_{\rm cp}$ .;
- использование формул расчета коэффициента Шези: Форхгеймера,
  Павловского и Гангилье-Куттера, взамен обычно применяемой формулы Маннинга;
- применение различных значений уклона водной поверхности для руслового и пойменных отсеков потока.

#### 5.2. Построение профиля морфоствора

Построению графика морфопрофиля предшествует запрос по нескольким параметрам исходных данных и управляющим ключам, организованный на возникающей специальной панели. Вид этой панели представлен на рисунке 1.

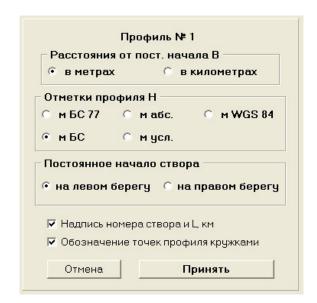



Рисунок 5.2.1- Панель программы, организующая ввод дополнительных сведений о морфопрофиле и ключей управления построением его графика.

По исходным данным за 1963 и 1974 годабыли построены профили русла реки.

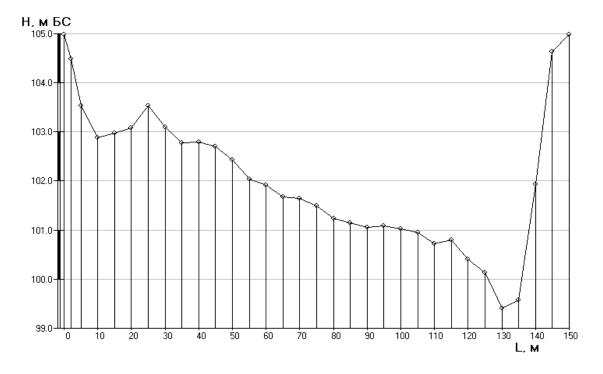



Рисунок 5.2.2- профиль реки Мокша по данным за 1963 год.

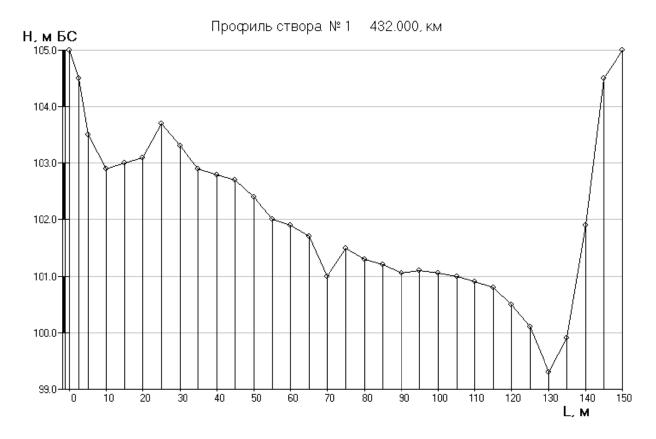



Рисунок 5.2.2- профиль реки Мокша по данным за 1974 год.

#### 5.3 Построение кривых площадей

При обращении к заданию меню программы «Кривые площадей» возникает панель, позволяющая устанавливать ряд ключевых параметров выполнения этого задания. Ее вид изображен на рисунке.

|     | Параметры процедур и графиков      |
|-----|------------------------------------|
| P   | асчет координат кривых             |
| •   | для русла, левой и правой поймы    |
| G   | отдельно для русла и всей поймы    |
| c   | объединенную для всего профиля     |
|     | На графике показывать:             |
| 7 ( | )бозначение опорных точек кружками |
| 7 H | łадпись номера профиля и L, км     |
|     | Отмена Принять                     |

Рисунок 5.3.1 - Панель управления операциями расчета и построения кривых площадей  $\omega(\mathbf{H})$ .

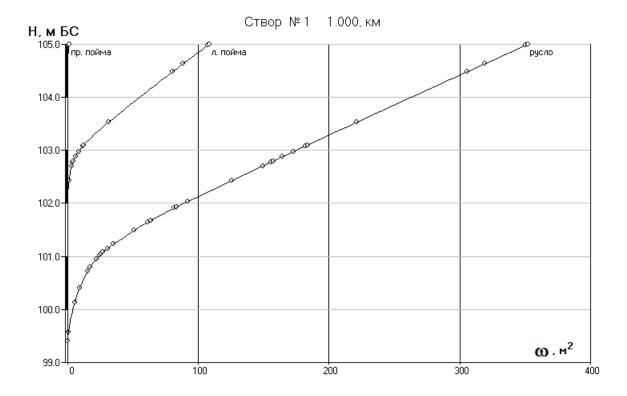



Рисунок 5.3.2 - График кривых площадей  $\omega(H)$ реки Мокши, построенных программой

отдельно для русла и пойменных отсеков профиля по данным за 1963 год.

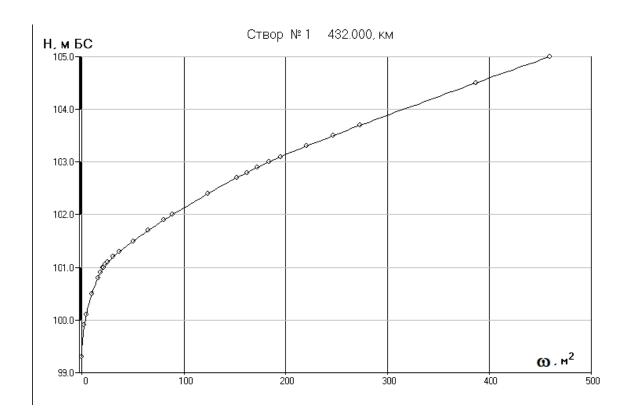



Рисунок 5.3.3 - График кривых площадей **ω**(H) реки Мокши, построенных программой отдельно для русла за 1974 год.

#### 5.4 Построение кривых расходов

Действия по решению общей задачи расчетов начинаются с обращения к заданию меню окна программы «Кривые расходов», которое становится доступным после построения кривых площадей сечений  $\omega(H)$ . При вызове этого задания возникает панель заданий по выполнению расчетов. В верхней части панели имеется группа радиальных кнопок, определяющих задачу расчетов. Предусмотрена возможность выбора задач:

- расчет шероховатости русла по данным измеренного расхода воды;
- расчет расхода Q при зафиксированном уровне высоких вод (УВВ);
- расчет расхода Q при зафиксированном уровне Н;
- расчет уровня H при заданном расходе Q;
- расчет обеспеченных уровней Hp% при заданных обеспеченных расходах Qp%;

- только построение кривых Q(H).

Ясно, что вторая и третья из названных задач не имеют принципиальных отличий.

В зависимости от выбора задачи изменяется вид и состав некоторых средств управления расчетами, помещенных на этой панели. При каждом обращении к заданию меню «Кривые расходов» первоначально устанавливается первое из перечисленных заданий и состояние панели приобретает соответствующий ему вид. Для примера на рисунке 6 изображен вид панели, соответствующий заданию «расчет обеспеченных уровней Нр% при заданных обеспеченных расходах Qp%».

Для решения любой из перечисленных задач необходимо ввести значение уклона водотока. Для этого на панели имеется редакционное окно с подписью «Расчетный уклон водотока». Пользователь всегда может непосредственно вписать принятое значение уклона в этом окне.

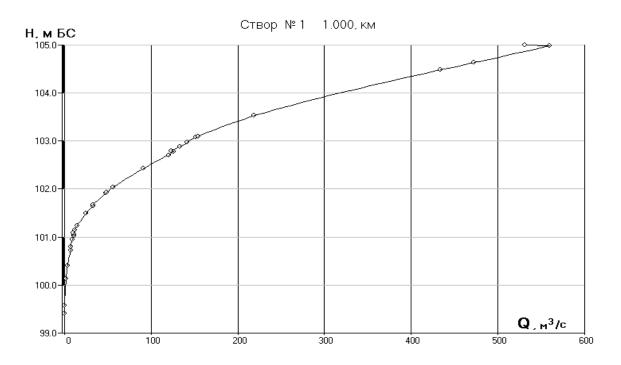



Рисунок 5.4.1. - Кривая расходов реки Мокша, построенная с помощью программы «Profiles» за 1963 год.

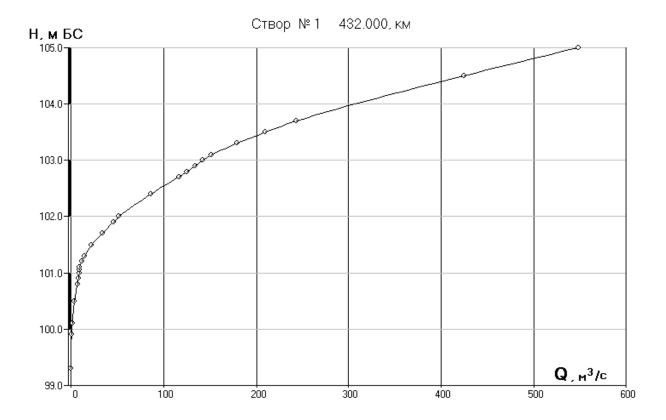



Рисунок 5.4.1. - Кривая расходов реки Мокша, построенная с помощью программы «Profiles» за 1974 год.

## 5.5. Коэффициент шероховатости

Применяемые в данной программе формулы расчета коэффициентов Шези установлены применительно к использованию гидравлического радиуса.

| При вычислении<br>коэффициента Шези                   | Применять формулу<br>• Маннинга |
|-------------------------------------------------------|---------------------------------|
| 1спользовать в расчетах —                             | С Форхгеймера                   |
| среднюю глубину потока                                | С Павловского                   |
| гидравлический радиус                                 | С Гангилье-Куттера              |
| С потока на правой пойме<br>С для каждого отсека отде | льно                            |
| Уклон поток                                           | а на пойме                      |
| левой                                                 | правой                          |
|                                                       |                                 |

Рисунок 5.5.1 - Панель задания дополнительных параметров гидравлических расчетов при обращении к опции меню «Параметры расчетов по Шези».

Коэффициенты шероховатости пойменных отсеков профиля во всех случаях задаются пользователем. Коэффициент шероховатости русла может быть рассчитан по данным измеренного расхода воды при известном уклоне. Предполагается, что расход измерен в условиях без затопления пойменных отсеков.

## 5.6 Обработка и анализ полученных данных

Таблица, представленная в программа «Profiles» была преобразована в таблицу формата Excel.

Таблица 4. Итоговая расчетная таблица программы «Profiles» для створа реки Мокша за 1963 год.

| Отметка<br>уровня,<br>Н(м) | Площадь,<br>F (м.кв) | Ширина,<br>В (м) | Ср.глубина,<br>Нср(м) | Расход,<br>Q(м.куб/с) |
|----------------------------|----------------------|------------------|-----------------------|-----------------------|
| 99.41                      | 0.0                  | 0.0              | 0.0                   | 0.0                   |
| 99.45                      | 0.0291               | 1.454            | 0.0200                | 0.0012                |
| 99.50                      | 0.1473               | 3.272            | 0.0450                | 0.0108                |
| 99.55                      | 0.3563               | 5.090            | 0.0700                | 0.0351                |
| 99.58                      | 0.5253               | 6.181            | 0.0850                | 0.0589                |
| 99.60                      | 0.6508               | 6.362            | 0.1023                | 0.0825                |
| 99.65                      | 0.9803               | 6.816            | 0.1438                | 0.1560                |
| 99.70                      | 1.332                | 7.269            | 0.1833                | 0.2492                |
| 99.75                      | 1.707                | 7.723            | 0.2211                | 0.3618                |
| 99.80                      | 2.105                | 8.177            | 0.2574                | 0.4937                |
| 99.85                      | 2.525                | 8.630            | 0.2926                | 0.6450                |
| 99.90                      | 2.968                | 9.084            | 0.3267                | 0.8161                |
| 99.95                      | 3.433                | 9.537            | 0.3600                | 1.007                 |
| 100.00                     | 3.922                | 9.991            | 0.3925                | 1.219                 |
| 100.05                     | 4.433                | 10,44            | 0.4244                | 1.451                 |
| 100.10                     | 4.966                | 10,9             | 0.4557                | 1.705                 |
| 100.13                     | 5.297                | 11,17            | 0.4742                | 1.867                 |
| 100.15                     | 5.524                | 11,58            | 0.4769                | 1.955                 |
| 100.20                     | 6.129                | 12,62            | 0.4859                | 2.196                 |
| 100.25                     | 6.786                | 13.65            | 0.4972                | 2.469                 |
| 100.30                     | 7.494                | 14.68            | 0.5105                | 2.775                 |
| 100.35                     | 8.254                | 15.71            | 0.5253                | 3.115                 |
| 100.40                     | 9.065                | 16.74            | 0.5414                | 3.491                 |
| 100.45                     | 9.921                | 17.48            | 0.5677                | 3.943                 |
| 100.50                     | 10,81                | 18.21            | 0.5939                | 4.428                 |
| 100.55                     | 11,74                | 18.94            | 0.6200                | 4.949                 |
| 100.60                     | 12,71                | 19.67            | 0.6460                | 5.504                 |
| 100.65                     | 13.71                | 20.40            | 0.6719                | 6.096                 |
| 100.70                     | 14.75                | 21.13            | 0.6978                | 6.725                 |

| 100.73 | 15.39 | 21.57 | 0.7133 | 7.121 |
|--------|-------|-------|--------|-------|
| 100.75 | 15.84 | 23.75 | 0.6670 | 7.010 |
| 100.80 | 17.16 | 29.19 | 0.5881 | 6.984 |
| 100.85 | 18.65 | 30.43 | 0.6130 | 7.803 |
| 100.90 | 20.21 | 31.67 | 0.6380 | 8.681 |
| 100.95 | 21.82 | 32.91 | 0.6630 | 9.617 |
| 100.95 | 21.82 | 32.92 | 0.6630 | 9.617 |
| 101.00 | 23.55 | 36.15 | 0.6515 | 10,26 |
| 101.03 | 24.66 | 38.09 | 0.6475 | 10,7  |
| 101.05 | 25.44 | 40.13 | 0.6341 | 10,89 |
| 101.08 | 26.79 | 49.69 | 0.5392 | 10,29 |
| 101.10 | 27.80 | 50.73 | 0.5479 | 10,79 |
| 101.15 | 30.40 | 53.34 | 0.5699 | 12,11 |
| 101.20 | 33.15 | 56.57 | 0.5859 | 13.45 |
| 101.23 | 34.87 | 58.51 | 0.5960 | 14.32 |
| 101.25 | 36.05 | 58.94 | 0.6116 | 15,05 |
| 101.30 | 39.02 | 60.01 | 0.6503 | 16.98 |
| 101.35 | 42.05 | 61.07 | 0.6885 | 19.00 |
| 101.40 | 45.13 | 62.14 | 0.7262 | 21.13 |
| 101.45 | 48.26 | 63.21 | 0.7635 | 23.37 |
| 101.49 | 50.81 | 64.06 | 0.7930 | 25.23 |
| 101.50 | 51.45 | 64.40 | 0.7989 | 25.68 |
| 101.55 | 54.71 | 66.07 | 0.8281 | 27.97 |
| 101.60 | 58.06 | 67.74 | 0.8571 | 30.36 |
| 101.65 | 61.48 | 69.40 | 0.8859 | 32.87 |
| 101.68 | 63.64 | 74.47 | 0.8546 | 33.22 |
| 101.70 | 65.14 | 74.95 | 0.8691 | 34.39 |
| 101.75 | 68.91 | 76.14 | 0.9051 | 37.38 |
| 101.80 | 72.75 | 77.33 | 0.9407 | 40.49 |
| 101.85 | 76.65 | 78.53 | 0.9761 | 43.72 |
| 101.90 | 80.60 | 79.72 | 1.011  | 47.07 |
| 101.91 | 81.40 | 79.96 | 1.018  | 47.75 |
| 101.93 | 83.01 | 80.77 | 1.028  | 49.00 |
| 101.95 | 84.63 | 81.58 | 1.037  | 50.27 |
| 102.00 | 88.76 | 83.59 | 1.062  | 53.55 |
| 102.04 | 92.14 | 85.20 | 1.081  | 56.27 |

| 102.05 | 92.99 | 85.35 | 1.089 | 57.07 |
|--------|-------|-------|-------|-------|
| 102.10 | 97.28 | 86.08 | 1.130 | 61.17 |
| 102.15 | 101.6 | 86.82 | 1.170 | 65.40 |
| 102.20 | 106.0 | 87.55 | 1.210 | 69.75 |
| 102.25 | 110.4 | 88.29 | 1.250 | 74.23 |
| 102.30 | 114.8 | 89.02 | 1.289 | 78.83 |
| 102.35 | 119.3 | 89.75 | 1.329 | 83.55 |
| 102.40 | 123.8 | 90.49 | 1.368 | 88.40 |
| 102.43 | 126.5 | 90.93 | 1.391 | 91.36 |
| 102.45 | 128.3 | 91.32 | 1.405 | 93.30 |
| 102.50 | 132.9 | 92.31 | 1.440 | 98.22 |
| 102.55 | 137.5 | 93.29 | 1.474 | 103.3 |
| 102.60 | 142.2 | 94.28 | 1.509 | 108.4 |
| 102.65 | 147.0 | 95.26 | 1.543 | 113.7 |
| 102.70 | 151.8 | 96.25 | 1.577 | 119.2 |
| 102.71 | 152.7 | 96.44 | 1.583 | 120.3 |
| 102.75 | 156.6 | 98.74 | 1.586 | 123.5 |
| 102.78 | 159.6 | 100.5 | 1.589 | 126.0 |
| 102.80 | 161.7 | 106.9 | 1.512 | 123.5 |
| 102.85 | 167.0 | 107.8 | 1.550 | 129.7 |
| 102.88 | 170.3 | 108.3 | 1.572 | 133.5 |
| 102.90 | 172.5 | 109.8 | 1.570 | 135.1 |
| 102.95 | 178.1 | 113.6 | 1.568 | 139.3 |
| 102.98 | 181.5 | 115.8 | 1.567 | 141.9 |
| 103.00 | 183.8 | 117.3 | 1.567 | 143.7 |
| 103.05 | 189.8 | 121.1 | 1.567 | 148.4 |
| 103.08 | 193.5 | 123.4 | 1.568 | 151.4 |
| 103.10 | 195.9 | 124.1 | 1.579 | 154.0 |
| 103.15 | 202.2 | 125.7 | 1.608 | 160.9 |
| 103.20 | 208.5 | 127.3 | 1.638 | 167.9 |
| 103.25 | 214.9 | 128.9 | 1.667 | 175.1 |
| 103.30 | 221.4 | 130.5 | 1.696 | 182.5 |
| 103.35 | 228.0 | 132.2 | 1.725 | 190.1 |
| 103.40 | 234.6 | 133.8 | 1.754 | 197.8 |
| 103.45 | 241.3 | 135.4 | 1.783 | 205.7 |
| 103.50 | 248.1 | 137.0 | 1.811 | 213.7 |

| 103.53 | 252.3 | 138.0 | 1.829 | 218.7 |
|--------|-------|-------|-------|-------|
| 103.55 | 255.0 | 138.1 | 1.847 | 222.6 |
| 103.60 | 261.9 | 138.3 | 1.894 | 232.4 |
| 103.65 | 268.9 | 138.6 | 1.940 | 242.4 |
| 103.70 | 275.8 | 138.8 | 1.987 | 252.7 |
| 103.75 | 282.7 | 139.1 | 2.033 | 263.0 |
| 103.80 | 289.7 | 139.3 | 2.079 | 273.6 |
| 103.85 | 296.7 | 139.6 | 2.126 | 284.3 |
| 103.90 | 303.7 | 139.8 | 2.172 | 295.2 |
| 103.95 | 310.7 | 140.1 | 2.218 | 306.3 |
| 104.00 | 317.7 | 140.3 | 2.264 | 317.5 |
| 104.05 | 324.7 | 140.6 | 2.310 | 328.9 |
| 104.10 | 331.7 | 140.8 | 2.356 | 340.4 |
| 104.15 | 338.8 | 141.1 | 2.401 | 352.2 |
| 104.20 | 345.8 | 141.3 | 2.447 | 364.0 |
| 104.25 | 352.9 | 141.6 | 2.493 | 376.1 |
| 104.30 | 360.0 | 141.8 | 2.538 | 388.3 |
| 104.35 | 367.1 | 142.1 | 2.584 | 400.7 |
| 104.40 | 374.2 | 142.3 | 2.629 | 413.2 |
| 104.45 | 381.3 | 142.6 | 2.675 | 425.9 |
| 104.48 | 385.6 | 142.7 | 2.702 | 433.6 |
| 104.50 | 388.5 | 142.8 | 2.720 | 438.7 |
| 104.55 | 395.6 | 143.1 | 2.764 | 451.6 |
| 104.60 | 402.8 | 143.4 | 2.808 | 464.7 |
| 104.63 | 407.1 | 143.6 | 2.835 | 472.6 |
| 104.65 | 409.9 | 144.0 | 2.848 | 477.4 |
| 104.70 | 417.2 | 144.9 | 2.879 | 489.4 |
| 104.75 | 424.4 | 145.8 | 2.911 | 501.6 |
| 104.80 | 431.7 | 146.7 | 2.943 | 513.9 |
| 104.85 | 439.1 | 147.6 | 2.975 | 526.4 |
| 104.90 | 446.5 | 148.5 | 3.006 | 539.1 |
| 104.95 | 454.0 | 149.5 | 3.038 | 551.9 |
| 104.98 | 458.5 | 150.0 | 3.056 | 559.7 |
| 105.00 | 461.6 | 165.0 | 2.798 | 531.2 |

Таблица 4. Итоговая расчетная таблица программы «Profiles» для створа реки Мокша за 1974 год.

| Отметка уровня,<br>Н(м) | Площадь,<br>F (м.кв) | Ширина,<br>В (м) | Ср.глубина,<br>Нср(м) | Расход,<br>Q(м.куб/с) |
|-------------------------|----------------------|------------------|-----------------------|-----------------------|
| 99.50                   | 0.0                  | 0.0              | 0.0                   | 0.0                   |
| 99.55                   | 0.0402               | 1.607            | 0.0250                | 0.0019                |
| 99.60                   | 0.1607               | 3.215            | 0.0500                | 0.0124                |
| 99.65                   | 0.3617               | 4.822            | 0.0750                | 0.0364                |
| 99.70                   | 0.6428               | 6.429            | 0.1000                | 0.0785                |
| 99.70                   | 0.6429               | 6.429            | 0.1000                | 0.0785                |
| 99.75                   | 0.9761               | 6.899            | 0.1415                | 0.1502                |
| 99.80                   | 1.333                | 7.370            | 0.1808                | 0.2415                |
| 99.85                   | 1.713                | 7.841            | 0.2185                | 0.3521                |
| 99.90                   | 2.117                | 8.312            | 0.2547                | 0.4819                |
| 99.95                   | 2.544                | 8.783            | 0.2897                | 0.6312                |
| 100.00                  | 2.995                | 9.253            | 0.3237                | 0.8001                |
| 100.05                  | 3.470                | 9.724            | 0.3568                | 0.9890                |
| 100.10                  | 3.968                | 10.20            | 0.3892                | 1.198                 |
| 100.15                  | 4.489                | 10.67            | 0.4209                | 1.429                 |
| 100.20                  | 5.034                | 11.14            | 0.4520                | 1.680                 |
| 100.20                  | 5.034                | 11.14            | 0.4520                | 1.680                 |
| 100.25                  | 5.615                | 12.08            | 0.4647                | 1.908                 |
| 100.30                  | 6.243                | 13.03            | 0.4791                | 2.165                 |
| 100.35                  | 6.918                | 13.98            | 0.4949                | 2.452                 |
| 100.40                  | 7.640                | 14.92            | 0.5119                | 2.770                 |
| 100.45                  | 8.410                | 15.87            | 0.5299                | 3.120                 |
| 100.50                  | 9.227                | 16.82            | 0.5487                | 3.504                 |
| 100.55                  | 10.09                | 17.77            | 0.5681                | 3.922                 |
| 100.60                  | 11.00                | 18.71            | 0.5881                | 4.376                 |
| 100.65                  | 11.96                | 19.66            | 0.6085                | 4.867                 |
| 100.70                  | 12.97                | 20.61            | 0.6294                | 5.397                 |
| 100.70                  | 12.97                | 20.61            | 0.6294                | 5.397                 |
| 100.75                  | 14.11                | 24.92            | 0.5662                | 5.471                 |

| 100.80 | 15.46 | 29.22 | 0.5291 | 5.730 |
|--------|-------|-------|--------|-------|
| 100.85 | 16.95 | 30.20 | 0.5612 | 6.532 |
| 100.90 | 18.48 | 31.18 | 0.5928 | 7.389 |
| 100.95 | 20.06 | 32.15 | 0.6241 | 8.302 |
| 100.99 | 21.37 | 32.93 | 0.6488 | 9.072 |
| 101.00 | 21.70 | 33.79 | 0.6422 | 9.151 |
| 101.05 | 23.52 | 38.93 | 0.6042 | 9.522 |
| 101.10 | 25.78 | 51.56 | 0.5000 | 9.201 |
| 101.15 | 28.42 | 54.20 | 0.5244 | 10.47 |
| 101.20 | 31.20 | 56.84 | 0.5489 | 11.85 |
| 101.20 | 31.20 | 56.84 | 0.5489 | 11.85 |
| 101.25 | 34.13 | 60.31 | 0.5659 | 13.23 |
| 101.30 | 37.23 | 63.78 | 0.5837 | 14.73 |
| 101.35 | 40.48 | 66.00 | 0.6133 | 16.55 |
| 101.40 | 43.83 | 68.22 | 0.6425 | 18.49 |
| 101.45 | 47.30 | 70.44 | 0.6714 | 20.55 |
| 101.50 | 50.87 | 72.66 | 0.7002 | 22.73 |
| 101.55 | 54.52 | 73.13 | 0.7455 | 25.40 |
| 101.60 | 58.19 | 73.60 | 0.7906 | 28.19 |
| 101.65 | 61.88 | 74.07 | 0.8354 | 31.10 |
| 101.70 | 65.60 | 74.55 | 0.8799 | 34.13 |
| 101.70 | 65.60 | 74.55 | 0.8799 | 34.13 |
| 101.75 | 69.36 | 75.91 | 0.9137 | 37.00 |
| 101.80 | 73.19 | 77.27 | 0.9471 | 39.99 |
| 101.85 | 77.09 | 78.64 | 0.9803 | 43.10 |
| 101.90 | 81.05 | 80.00 | 1.013  | 46.32 |
| 101.95 | 85.12 | 82.60 | 1.030  | 49.20 |
| 102.00 | 89.31 | 85.19 | 1.048  | 52.22 |
| 102.05 | 93.58 | 85.79 | 1.091  | 56.19 |
| 102.10 | 97.89 | 86.38 | 1.133  | 60.28 |
| 102.15 | 102.2 | 86.98 | 1.175  | 64.50 |
| 102.20 | 106.6 | 87.58 | 1.217  | 68.84 |
| 102.25 | 111.0 | 88.17 | 1.259  | 73.30 |
| 102.30 | 115.4 | 88.77 | 1.300  | 77.88 |
| 102.35 | 119.9 | 89.37 | 1.341  | 82.59 |
| 102.40 | 124.3 | 89.96 | 1.382  | 87.41 |

| 102.45 | 128.9 | 90.56 | 1.423 | 92.36 |
|--------|-------|-------|-------|-------|
| 102.50 | 133.4 | 91.15 | 1.463 | 97.42 |
| 102.55 | 138.0 | 92.50 | 1.492 | 102.1 |
| 102.60 | 142.6 | 93.85 | 1.520 | 106.8 |
| 102.65 | 147.4 | 95.19 | 1.548 | 111.7 |
| 102.70 | 152.2 | 96.54 | 1.576 | 116.8 |
| 102.70 | 152.2 | 96.54 | 1.576 | 116.8 |
| 102.75 | 157.1 | 101.6 | 1.546 | 119.0 |
| 102.80 | 162.1 | 106.7 | 1.519 | 121.3 |
| 102.85 | 167.4 | 107.7 | 1.555 | 127.3 |
| 102.90 | 172.8 | 108.6 | 1.592 | 133.5 |
| 102.95 | 178.4 | 112.4 | 1.586 | 137.5 |
| 103.00 | 184.1 | 116.3 | 1.583 | 141.7 |
| 103.05 | 190.0 | 120.1 | 1.582 | 146.1 |
| 103.10 | 196.1 | 124.0 | 1.582 | 150.8 |
| 103.15 | 202.3 | 125.7 | 1.609 | 157.4 |
| 103.20 | 208.7 | 127.5 | 1.637 | 164.2 |
| 103.25 | 215.1 | 129.3 | 1.664 | 171.1 |
| 103.30 | 221.6 | 131.0 | 1.691 | 178.2 |
| 103.35 | 228.2 | 132.8 | 1.719 | 185.5 |
| 103.40 | 234.9 | 134.6 | 1.746 | 192.9 |
| 103.45 | 241.7 | 136.3 | 1.773 | 200.5 |
| 103.50 | 248.5 | 138.1 | 1.800 | 208.3 |
| 103.55 | 255.4 | 138.3 | 1.847 | 217.8 |
| 103.60 | 262.3 | 138.5 | 1.894 | 227.5 |
| 103.65 | 269.3 | 138.7 | 1.941 | 237.4 |
| 103.70 | 276.2 | 139.0 | 1.988 | 247.4 |
| 103.75 | 283.2 | 139.2 | 2.035 | 257.6 |
| 103.80 | 290.1 | 139.4 | 2.081 | 268.0 |
| 103.85 | 297.1 | 139.6 | 2.128 | 278.5 |
| 103.90 | 304.1 | 139.8 | 2.175 | 289.2 |
| 103.95 | 311.1 | 140.1 | 2.221 | 300.0 |
| 104.00 | 318.1 | 140.3 | 2.268 | 311.1 |
| 104.05 | 325.1 | 140.5 | 2.314 | 322.3 |
| 104.10 | 332.2 | 140.7 | 2.360 | 333.6 |
| 104.15 | 339.2 | 141.0 | 2.407 | 345.1 |

| 104.20 | 346.3 | 141.2 | 2.453 | 356.8 |
|--------|-------|-------|-------|-------|
| 104.25 | 353.3 | 141.4 | 2.499 | 368.6 |
| 104.30 | 360.4 | 141.6 | 2.545 | 380.6 |
| 104.35 | 367.5 | 141.8 | 2.591 | 392.7 |
| 104.40 | 374.6 | 142.1 | 2.637 | 405.0 |
| 104.45 | 381.7 | 142.3 | 2.683 | 417.5 |
| 104.50 | 388.8 | 142.5 | 2.728 | 430.1 |
| 104.55 | 395.9 | 143.3 | 2.764 | 441.8 |
| 104.60 | 403.1 | 144.0 | 2.799 | 453.7 |
| 104.65 | 410.3 | 144.8 | 2.835 | 465.7 |
| 104.70 | 417.6 | 145.5 | 2.870 | 477.8 |
| 104.75 | 424.9 | 146.3 | 2.905 | 490.1 |
| 104.80 | 432.2 | 147.0 | 2.940 | 502.6 |
| 104.85 | 439.6 | 147.8 | 2.975 | 515.2 |
| 104.90 | 447.0 | 148.5 | 3.010 | 528.0 |
| 104.95 | 454.4 | 149.3 | 3.045 | 540.9 |
| 105.00 | 461.9 | 150.0 | 3.080 | 553.9 |

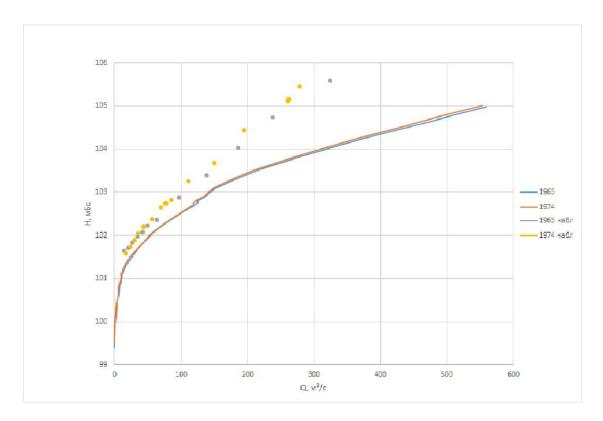



Рисунок 5.5.2 - Кривые зависимости Q=f(H) по данным наблюденийи по программе «Profiles»

На графике видно расхождение данных наблюдений и кривых, построенных с помощью «Profiles».

## Заключение

В данной работе мною была рассмотрена река Мокша на участке водомерного поста Темников.

Целью работы являлось построение графических зависимостей расходов от уровней.

Задачи данной работы были следующими:

- 1) Построить кривые Q=f(H); F=f(H); V=f(H);
- 2) Рассчитать коэффициенты шероховатости n по формуле Маннинга для всего диапазона уровней.
  - 3) Построить кривую зависимости n=f(H).
- 4) Построение Q=f(H) с помощью программы «Profiles». За 1963 год и 1974 год.

В ходе данной работы были сравненены методы построения кривых зависимостей, а также рассмотрение эффективности программы Profiles.

В начале, при построении кривых зависимостей Q=f(H); F= f(H); V= f(H); использовалась программа Excel, с помощью которой были построены графические кривые зависимостей на основе данных наблюдения водомерного поста Темников, река Мокша за 1963 год.

Следующим шагом было использование программы «Profiles», данными для построения кривых зависимостей и расчета коэффициента шероховатости также послужили наблюдения водомерного поста Темников река Мокшаза 1963 год и 1974 год.

С помощью обширного функционала данной программы, были решены следующие задачи:

- построен морфопрофиль реки Мокша за 1963 и 1974 год.
- построен график кривых площадей для русла и пойменных отсеков профиля
  - построена кривая расходов воды
  - рассчитан коэффициент шероховатости

Проанализировав профили реки Мокша, можно заметить изменение рельефа дна, скорее всего связанное с заносимостью русла за 11 лет.

Исходя из полученного графика, ясно видно, что кривая зависимости Q=f(H), построенная с помощью программы Profiles демонстрирует более полную картину зависимости расхода от уровня воды, давая возможность анализировать данные в случае неполной информации, вызванной неудовлетворительными условиями и неточностью данных.

Список используемых источников

1. Барышников Н. Б., Исаев Д. И. Русловые процессы – Спб.: РГГМУ,

2014 - 504 c.

- 2. Быков В. Д., Васильев А. В. Гидрометрия. Л: Гидрометеоиздат,  $1977-448 \; {\rm c}.$
- 3. Карасев И. Ф., Васильев А. В., Субботина Е. С. Гидрометрия. Л: Гидрометеоиздат, 1991-376 с.
- 4. Карта реки Мокша. ЦКФ ВМФ, 1977 25 с.
- 5. СП 33-101-2003 Определение основных расчетных гидрологических характеристик