

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра природопользования и устойчивого развития полярных областей

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРСКАЯ РАБОТА

на тему Система управления отходами при строительстве многоэтажных жилых домов

исполнитель

Махкамов Дмитрий Сергеевич

руководитель

профессор, кандидат геолого-минералогических наук

Яковлев Олег Николаевич

«К защите допускаю» Заведующий кафедрой

(подпись)

профессор, кандидат географических наук Макеев Вячеслав Михайлович

« 9» ulong20/6.

Санкт–Петербург 2017

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра природопользования и устойчивого развития полярных областей

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРСКАЯ РАБОТА

на тему Система управления отходами при строительстве многоэтажных жилых домов

Махкамов Дмитрий Сергеевич исполнитель

профессор, кандидат геолого-минералогических наук руководитель Яковлев Олег Николаевич

(подпись) профессор, кандидат географических наук Макеев Вячеслав Михайлович

«__»___20_z.

Санкт-Петербург 2017

Оглавление

	Введение	3
1.	Характеристика хозяйственной деятельности ООО «Сэтл сити».	5
	1.1. Состав строительной площадке	7
	1.2. Описание технологических процессов, сопровождающихся	
	образованием отходов	10
2.	Расчет и обоснование предлагаемых нормативов образования	
	отходов	14
	2.1.Строительные отходы	16
	2.2.Отходы механической и биологической очистки сточных вод.	25
	2.3.Древесные отходы	29
	2.4. Грунт, образовавшийся при проведении земляных работ	31
3.	Расчет предлагаемого образования отходов	33
4.	Организация мест образования отходов	36
5.	Расчет предлагаемой ежегодной передачи отходов другим	
	хозяйствующим субъектам	51
6.	Предложения по лимитам размещения отходов	53
	Заключение	56
	Список литературы	58

Введение

Строительство жилых многоэтажных домов - вид деятельности, который очень распространен и активно развивается во всем мире. Возведение дома представляет собой долгий и сложный процесс, вследствие которого образуется большое количество строительных отходов.

Объект работы – многоэтажный жилой дом по адресу г. Санкт-Петербург, ул. Костюшко, д.19, литер А.

Целью работы является анализ системы управления отходами при строительстве жилых многоэтажных домов.

Для достижения поставленной цели необходимо решить следующие задачи:

- ознакомиться с составом образующемся отходом;
- рассчитать и обосновать предлагаемые нормативы образования отходов;
- провести расчет предлагаемого образования отходов;
- обосновать организацию мест образования отходов;
- сделать расчеты количества отходов для ежегодной передачи другим хозяйствующим субъектам;
- сопоставить объемы образующихся отходов по лимитам размещения

Для написания выпускной квалификационной работы использовались справочные материалы (справочник «Утилизация твердых отходов», «Твердые бытовые отходы (сбор, транспортировка, обезвреживание)», «Справочные таблицы весов строительных материалов»), опубликованные работы и периодические издания, а также интернет ресурсы.

Для проведения самостоятельных расчетов использованы данные, полученные в ходе прохождения производственной практики ООО «Сэтл-сити».

1. Характеристика хозяйственной деятельности ООО «Сэтл сити»

Объект образования отходов: строительство многоквартирного жилого дома по адресу: г. Санкт-Петербург

Площадь участка составляет 1,4 га. Участок входит территориальную зону градостроительного зонирования Санкт-Петербурга ТД1-2 многофункциональной зона объектов общественно-деловой застройки и жилых домов (в соответствии с Законом Санкт-Петербурга от 04.02.2009 №9-10 «О Правилах пользования и застройки Санкт-Петербурга»).

Земельный участок ограничен:

```
- c севера – ул.;
```

- с юга – внутриквартальным проездом жилого дома;

- с запада - 5-м Предпортовым проездом;

- с востока - внутриквартальным проездом жилого дома №1.

ОКТМО объекта строительства 40376000

Данный проект разработан на комплекс работ по строительству многоквартирного жилого по адресу: г. Санкт-Петербург,

Продолжительность строительства составляет 36 мес. (с 1 января 2016г по 31 декабря 2018г):

 $2016\Gamma - 12$ мес.;

2017r - 12 mec.;

 $2018\Gamma - 12 \text{ mec.}$

Комплекс работ по строительству многоквартирного дома со встроенными помещениями, встроенно-пристроенным подземным гаражом осуществляется силами подрядных организаций.

В соответствии с календарным графиком производства работ:

- в 2016 году на объекте запланированы работы по устройству свайного поля и срубке оголовков ж/бетонных свай, работы по устройству монолитных конструкций ниже отметки 0.0 и конструкций паркинга, работы по устройству монолитных конструкций выше отметки 0.0;
 - в 2017-2018 гг. предусмотрен комплекс работ:
- по устройству монолитных конструкций выше отметки 0.0,
- по устройству кровли,
- внутренних общестроительных и отделочных работ,
- прокладке внутренних инженерных сетей,
- устройству инженерных сетей и оборудования, благоустройству и озеленению территории.

Разрешительная документация:

- Разрешение на строительство:

1.1 Состав строительной площадке

Производство работ на объекте строительства выполняется поточным методом с привлечением специализированных подрядных организаций.

На территории строительной площадки организован городок подрядчика для организации общего руководства за строительством объекта.

Материально-техническое обеспечение площадки строительства изделиями и конструкциями, материалами и полуфабрикатами осуществляется от предприятий стройиндустрии, складов оптовой поставки и магазинов розничной торговли.

Ремонт, стоянка, техническое обслуживание, мойка и заправка транспортных средств осуществляется за пределами строительной площадки, на территории специализированных организаций по ремонту, обслуживанию автотранспорта.

Собственного автотранспорта на балансе предприятия нет.

В целях наименьшего загрязнения окружающей среды предусматривается централизованная поставка строительных материалов растворов и бетонов, а также необходимых инертных материалов специализированным транспортом.

При строительстве проектируемого объекта предусматривается конструкций заводского использование готовых изготовления: железобетонных металлоконструкции, изделий, деревянных элементов, стеклопакетов, эффективного утеплителя, кровельных и отделочных материалов Ha строительной площадке др. осуществляется только монтаж, сборка, наружная и внутренняя отделка.

Для освещения строительной площадки и бытового городка применяется преимущественно воздушное временное электроснабжение.

В связи с отсутствием возможности подключения временного водоснабжения к водопроводу, согласно ТУ, обеспечение строительства водой осуществляется ее доставкой специализированной техникой (водовозом). Подача воды к местам производства работ осуществляется с помощью гибких шлангов.

Временное водоотведение на строительной площадке производится в накопительные емкости.

Питьевое водоснабжение – привозная питьевая бутилированная вода.

В качестве временного туалета в бытовом городке используются биотуалеты.

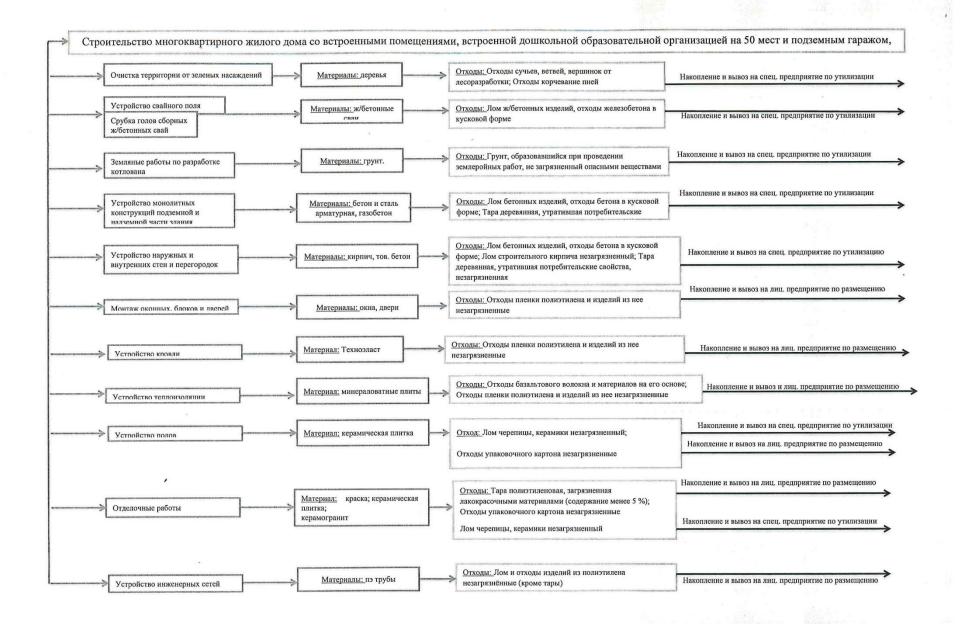
Собственного автотранспорта на балансе предприятия нет.

На стройплощадке организованы места для селективного сбора и временного накопления строительных и бытовых отходов. Накопление отходов осуществляется в специальных контейнерах, что исключает их негативное воздействие на компоненты окружающей среды.

На территории стройплощадки организованы 5 мест временного накопления отходов.

Объектами размещения (в части хранения) твердых бытовых и строительных отходов 4, 5 класса опасности являются: ООО «Полигон ТБО» (договор).

Объектом утилизации (использование) ОТХОДОВ 5 класса опасности (тара деревянная, утратившая потребительские свойства, незагрязненная; отходы сучьев и ветвей; отходы корчевания пней; лом ж/бетонных изделий, отходы железобетона в кусковой форме; лом бетонных изделий, отходы бетона В кусковой форме; строительного кирпича незагрязненный; лом черепицы, керамики незагрязненный) является ООО «Леноблтранс» в соответствии с договором


Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами 5 класса опасности подлежит утилизации (использование) на специализированной площадке ООО «СтройТехнология» в соответствии с договором

1.2 Описание технологических процессов, сопровождающихся образованием отходов

На рисунках (2.1-2.2) представлены технологические процессы, связанные с образованием отходов 4-5 класса опасности.

Рисунок. 2.1

Накопление отходов сроком более 3 лет на предприятии не осуществляется. Собственных полигонов и хранилищ для размещения отходов на предприятии нет. От других предприятий отходы не поступают.

По реакционной способности несовместимых отходов нет.

В таблице 2.1 представлена классификация отходов по различным признакам при строительстве здания.

Классификация отходов по различным признакам.

Таблица 2.1

Наименование отходов
и для окружающей природной среды (по ФККО)
Мусор от офисных и бытовых помещений
организаций несортированный (исключая
крупногабаритный)
Осадок (шлам) механической очистки
нефтесодержащих сточных вод, содержащий
нефтепродукты в количестве менее 15 %,
обводненный
Тара полиэтиленовая, загрязненная
лакокрасочными материалами (содержание
менее 5 %)
Отходы базальтового волокна и материалов на
его основе
Лом бетонных изделий, отходы бетона в
кусковой форме
Лом ж/бетонных изделий, отходы
железобетона в кусковой форме
Лом строительного кирпича незагрязненный
Лом черепицы, керамики незагрязненный
Тара деревянная, утратившая потребительские
свойства, незагрязненная
Отходы пленки полиэтилена и изделий из нее
незагрязненные
Отходы упаковочного картона незагрязненные
Отходы корчевания пней
Отходы сучьев и ветвей

	Tn
	Грунт, образовавшийся при проведении
	землеройных работ, не загрязненный
	опасными веществами
	Лом и отходы изделий из полиэтилена
	незагрязнённые (кроме тары)
2. По характеру действ	ий с отходами
	Мусор от офисных и бытовых помещений
	организаций несортированный (исключая
	крупногабаритный)
	Осадок (шлам) механической очистки
	нефтесодержащих сточных вод, содержащий
	нефтепродукты в количестве менее 15 %,
	обводненный
	Тара полиэтиленовая, загрязненная
Подлежат	лакокрасочными материалами (содержание
размещению	менее 5 %)
	Отходы базальтового волокна и материалов на
	его основе
	Отходы пленки полиэтилена и изделий из нее
	незагрязненные
	Отходы упаковочного картона незагрязненные
	Лом и отходы изделий из полиэтилена
	незагрязнённые (кроме тары)
	Лом бетонных изделий, отходы бетона в
	кусковой форме
	Лом ж/бетонных изделий, отходы
	железобетона в кусковой форме
	Лом строительного кирпича незагрязненный
	Тара деревянная, утратившая потребительские
Подлежат	свойства, незагрязненная
использованию	Отходы корчевания пней
	Отходы сучьев и ветвей
	Лом черепицы, керамики незагрязненный
	Грунт, образовавшийся при проведении
	землеройных работ, не загрязненный
	опасными веществами

2. Расчет и обоснование предлагаемых нормативов образования отходов

Расчет нормативов и количества образующихся отходов выполнен на основании:

- Удельных нормативов образования отходов по данным справочников и соответствующих методик;
- Исходных данных предприятия;
- Ведомости основных строительных работ и объемов материалов.

Для расчета нормативов образования отходов использован Метод расчета по фактическим объемам образования отходов (статистический метод).

Мусор от бытовых помещений организаций несортированный (исключая крупногабаритный)

Расчет образующихся бытовых отходов в результате жизнедеятельности строителей выполнен исходя из продолжительности строительства и среднего числа работающих за время основного периода строительства, по формулам:

$$Q=K\times n, M^3,$$

$$M=Q\times p$$
, T ,

где:

K- норматив образования мусора от бытовых помещений на одного чел., M^3 /год («Санитарная очистка и уборка населенных мест»

Справочник, М. Стройиздат, 1990г, «Твердые бытовые отходы (сбор, транспортировка, обезвреживание). Справочник, 2001)[1];

n – количество строителей, чел.;

p — плотность отходов, T/M^3 .

Расчет образующихся бытовых отходов в результате жизнедеятельности строителей

Таблица 3.1

	Наименование	n,	К,	p,	M,	Q,
№ п/п	объекта	чел.	м ³ /год	T/M^3	т/год	M^3/Γ ОД
1	2	3	4	5	6	7
	Норматив об	разования	я отходов на	2016 год		
1	Рабочие	211	0,22	0,18	8,400	46,400
2	ИТР	24	1,1	0,1	4,300	43,000
ИТОГО в 2016	году (12 мес. работы	ı):			12,700	89,400
	Норматив об	разования	н отходов на 2	2017 год		
3	Рабочие	211	0,22	0,18	8,400	46,400
4	ИТР	39	1,1	0,1	4,300	43,000
ИТОГО в 2017	году (12 мес. работы	ı):			12,700	89,400
	Норматив об	разования	н отходов на 2	2018 год		
5	Рабочие	211	0,22	0,18	8,400	46,400
6	ИТР	39	1,1	0,1	4,300	43,000
ИТОГО в 2018	году (12 мес. работы	<u>(i):</u>			12,700	89,400
ИТОГО:					38,100	268,200

2.1. Строительные отходы

Расчет образования строительных отходов выполнен в соответствии с Правилами разработки и применения нормативов трудно-устранимых потерь и отходов материалов в строительства РДС 82-202-96[13].

Масса образующихся отходов М определена по формуле:

$$M=B\times \kappa:100, T$$
 (3.3)

где:

В- количество используемых материалов, т $(м^3)$;

к - удельный норматив образования отходов, %.

Перечень основных строительных материалов, используемых при строительстве объектов, удельные нормативы образования отходов, виды образующихся отходов и их количество представлены в таблице 3.2

Расчеты нормативов образования отходов строительства представлены в табл. 3.2

Таблица 3.2

Расчет образования строительных отходов

Материалы, из,	делия	Строительн			Количесть	во всего, т/	′м3
Название	Кол-во	Норматив образования отхода, %	Плотность $_{\mathrm{T/M}^3}$	Всег	2016г	2017г	2018г
1	2	3	4	5	6	7	8
Срубка оголовков ж/б свай	191,840 м ³	422,050 191,840	2,2	422,0 50 191,8 40	422,050 191,840	0,000	0,000
Лом железобетонных изд ФККО 8 22 301 01 21 5)	елий, отходы же	лезобетона в кусково	ой форме (Код по	422,0 50 191,8 40	422,050 191,840	0,000	0,000
Бетон для подготовки под фундамент	1250,0 м ³	0,5	2,0	$\frac{12,50}{0}$ 6,250	12,500 6,250	0,000	0,000
Бетон для фундаментной плиты	4110,0 м ³	0,5	2,0	$ \begin{array}{c c} 41,10 \\ \underline{0} \\ 20,55 \\ 0 \end{array} $	41,100 20,550	0,000	0,000
Бетон для стен	1182,6 м³	0,5	2,0	12,00 0 6,000	0,000	<u>6,000</u> 3,000	<u>6,000</u> 3,000
Бетон для перекрытий и покрытия	18650,0 м ³	0,5	2,0	156,5 00 78,25 0	<u>52,167</u> 26,083	<u>52,167</u> 26,083	<u>52,166</u> 26,084

Материалы, из	делия	Строительные отходы			Количество всего, т/м3			
Название	Кол-во	Норматив образования отхода, %	Плотность T/M^3	Всег	2016г	2017г	2018г	
1	2	3	4	5	6	7	8	
Бетон для наружных стен	2025,0м ³	0,5	2,0	20,26 0 10,13 0	0,000	10,130 5,065	10,130 5,065	
Газобетон	2300,0м³	0,5	0,5	5,800 11,50 0	0,000	2,900 5,750	2,900 5,750	
Лом бетонных изделий, с 201 01 21 5)	отходы бетона в к	хусковой форме (Код	по ФККО 8 22	248,1 60 132,6 80	105,767 52,883	71,197 39,898	71,196 39,899	
Кирпич (объем 1 кирпича 0,0025м ³)	1291573 шт/ 3229,0 м ³	1,0	1,3	42,00 <u>0</u> 32,30 0	10,500 8,075	21,000 16,150	10,500 8,075	
Камень поризованный пустотелый (объем 0,008 м ³)	2812,50м ³	1,0	1,3	36,60 <u>0</u> 28,13 0	0,000	18,300 14,065	18,300 14,065	
Лом строительного кирпича незагрязненный (Код по ФККО 8 23 101 01 21 5)					10,500 8,075	39,300 30,215	28,800 22,140	
Минераловатные плиты	160,3 м ³	1,0	0,1	0,160 1,600	0,000	<u>0,160</u> 1,600	0,000	

Материалы, из,	Материалы, изделия Строительные отходы			Количество всего, т/м3			
Название	Кол-во	Норматив образования отхода, %	Плотность $_{\text{T/M}^3}$	Всег	2016г	2017г	2018г
1	2	3	4	5	6	7	8
Фасадные минераловатные плиты	3350,0 м³	1,0	0,1	3,350 33,50 0	0,000	1,675 16,750	1,675 16,750
Отходы базальтового вол 112 01 20 4)	окна и материал	ов на его основе (Ко	д по ФККО 4 57	3,510 35,10 0	0,000	1,835 18,350	1,675 16,750
Тара из-под краски (пластиковое ведро), в 1 ведре 0,025 т, вес тары 0,0003 т	126,0 т /6267 ведер/1,88 т	100,0	0,4	1,880 4,700	0,000	<u>0,940</u> 2,350	<u>0,940</u> 2,350
Тара полиэтиленовая, заг менее 5 %) (Код по ФККО	-	-	ами (содержание	1,880 4,700	0,000	0,940 2,350	<u>0,940</u> 2,350
Керамическая плитка напольная, толщ. 12 мм	13660,0м ² / 163,92м ³	2,0	1,9	6,270 3,300	0,000	0,000	6,270 3,300
Керамическая плитка настенная, толщ. 5мм	18330,0м ² / 91,70м ³	2,0	1,9	3,500 1,830	0,000	0,000	3,500 1,830
Керамогранитные плиты, толщ. 20 мм	15200,0м ² / 304,0м ³	2,0	1,9	11,60 0 6,080	0,000	0,000	11,600 6,080
Лом черепицы, керамики незагрязненный (Код по ФККО 8 23 201 01 21 5)					0,000	0,000	21,370 11,210
Трубы ПЭ D 160 мм (вес 1-го п.м.– 4,5 кг)	25,45п.м/ 0,114	2,5	0,95	0,002 0,002	0,000	0,000	0,002 0,002

25.45.	2.5	0.07				
25,45п.м/ 0,114т	2,5	0,95	0,002 0,002	0,000	0,000	0,002 0,002
450.60	2.5	0.07	0.205			0.205
ŕ	2,5	0,95		0.000	0.000	0,205
			<u> </u>			0,215
592,13 п.м./	2,5	0,95	0,025	0.000	0.000	0,025
1,006т			0,026	0,000	0,000	0,026
18,4 п.м /	2,5	0.0	0,002	0.000	0.000	0,002
·	,	0,9	0.002	0,000	0,000	0,002
,						,
ŕ	2.5	0.95		0.000	0.000	<u>0,248</u>
7,7371	2,3	0,73	0,261	0,000	0,000	0,261
067 11 пм/			0.343			0,343
*	2,5	0,95		0,000	0,000	0,343
<i>'</i>						,
ŕ	2,5	0,95		0.000	0,000	<u>0,103</u>
4,153 т	,	,	0,108	,	,	0,108
250 О п м /			0.001			0,001
,	2,5	0,95		0,000	0,000	$\frac{0,001}{0,001}$
0,0341			0,001			0,001
107.0			0.001			0.001
,	2.5	0.95		0.000	0.000	<u>0,001</u>
0,04T	,	,	0,001	,	,	0,001
50,0 п.м/	2.5	0.95	<u>0,001</u>	0.000	0.000	<u>0,001</u>
0,040 т	2,3	0,73	0,001	0,000	0,000	0,001
(5(0)						
· · · · · · · · · · · · · · · · · · ·	2.5	0.05	0,110	0.000	0.000	0,110
4,400T	2,5	0,95		0,000	0,000	$\frac{0,120}{0,120}$
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
165,0п.м./	2,5	0,95	<u>0,001</u>	0,000	0,000	<u>0,065</u>
	459,62п.м/ 8,227т 592,13 п.м./ 1,006т 18,4 п.м / 0,104 т 1116,82 п.м/ 9,939т 967,11 п.м/ 13,732 т 923,0 п.м/ 4,153 т 250,0 п.м / 0,034т 195,0 п.м/ 0,04т 50,0 п.м/ 0,040 т 656,8 п.м/ 4,400т	0,114T 459,62π.м/ 8,227T 592,13 π.м./ 1,006T 18,4 π.м / 2,5 0,104 T 1116,82 π.м/ 9,939T 2,5 967,11 π.м/ 13,732 T 250,0 π.м/ 4,153 T 250,0 π.м/ 0,04T 2,5 50,0 π.м/ 0,04T 2,5 50,0 π.м/ 0,040 T 2,5 656,8 π.м/ 4,400T 2,5	0,114т 459,62п.м/ 8,227т 2,5 0,95 592,13 п.м./ 1,006т 2,5 0,95 18,4 п.м./ 0,104 т 2,5 0,9 1116,82 п.м/ 9,939т 2,5 0,95 967,11 п.м/ 13,732 т 2,5 0,95 923,0 п.м/ 4,153 т 2,5 0,95 250,0 п.м/ 0,034т 2,5 0,95 195,0 п.м/ 0,04т 2,5 0,95 50,0 п.м/ 0,040 т 2,5 0,95 656,8 п.м/ 4,400т 2,5 0,95	0,114T 0,002 0,002 459,62π.м/ 8,227T 2,5 0,95 0,205 0,215 592,13 π.м./ 1,006T 2,5 0,95 0,025 0,026 18,4 π.м./ 0,104 т 2,5 0,9 0,002 0,002 1116,82 π.м./ 9,939T 2,5 0,95 0,248 0,261 967,11 π.м./ 9,939 π 2,5 0,95 0,343 0,361 923,0 π.м./ 4,153 π 2,5 0,95 0,103 0,108 250,0 π.м./ 0,034 π 2,5 0,95 0,001 0,001 195,0 π.м./ 0,040 π 2,5 0,95 0,001 0,001 50,0 π.м./ 0,040 π 2,5 0,95 0,001 0,001 55,8 π.м./ 4,400 π 2,5 0,95 0,110 0,012	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,114т 0,002 / 0,002 0,000 / 0,000 0,000 459,62п.м/ 8,227т 2,5 0,95 0,205 / 0,215 0,000 0,000 592,13 п.м./ 1,006т 2,5 0,95 0,025 / 0,026 0,000 0,000 18,4 п.м./ 0,104 т 2,5 0,9 0,002 / 0,002 0,000 0,000 1116,82 п.м./ 9,939т 2,5 0,95 0,248 / 0,261 0,000 0,000 967,11 п.м./ 13,732 т 2,5 0,95 0,343 / 0,361 0,000 0,000 923,0 п.м./ 4,153 т 2,5 0,95 0,103 / 0,361 0,000 0,000 250,0 п.м./ 0,034т 2,5 0,95 0,001 / 0,001 0,000 0,000 195,0 п.м./ 0,04т 2,5 0,95 0,001 / 0,001 0,000 0,000 50,0 п.м./ 0,040 т 2,5 0,95 0,001 / 0,001 0,000 0,000 656,8 п.м./ 4,400т 2,5 0,95 0,110 / 0,001 0,000 / 0,000 0,000

110мм, вес 1 п.м. – 1,572 кг)	0,259 т			0,001			0,070
Трубы полипропиленовые, D 50 мм (Вес 1 п.м. – 0,214 кг)	90,0 п.м./ 0,020 т	2,5	0,95	<u>0,001</u> 0,001	0,000	0,000	<u>0,001</u> 0,001
Лом и отходы изделий : ФККО 4 34 110 03 51 5)	из полиэтилена	незагрязненные (кро	оме тары) (Код по	1,043 1,100	0,000	0,000	1,043 1,100
Полиэтиленовая упаковка «Техноэласт» ГРИН ЭПП, (в рулоне 20 м ² , вес полиэтилена с 1 рулон 50г)	5162,0м ² / 258,1шт./0,013 т	100,0	0,05	<u>0,013</u> 0,260	0,000	0,000	<u>0,013</u> 0,260
Полиэтиленовая упаковка «Техноэласт» ЭПП, (в рулоне 20 м ² , вес полиэтилена с 1 рулон 50г)	5162,0м²/ 2581,0 шт./0,013т	100,0	0,05	0,013 0,260	0,000	0,000	0,013 0,260
Полиэтиленовая упаковка минераловатные плиты (размер 1,0x0,5x0,1 м в 1 упаковке 3 листа, или 0,24 м³), расход полиэтилена на 1 упаковку 0,001 м³	160,3м ³ / 7шт/ 0,007м ³	100,0	0,05	<u>0,001</u> 0,007	0,000	<u>0,001</u> 0,007	0,000
Полиэтиленовая упаковка Фасадные минераловатные плиты(размер	33500,0м ³ / 13960шт/ 1,4м ³	100,0	0,05	<u>0,070</u> 1,400	0,000	0,035 0,700	0,035 0,700

1,0x0,5x0,1 м в 1 упаковке 3 листа, или 0,24 м ³), расход полиэтилена на 1 упаковку 0,001 м ³							
Полиэтиленовая упаковка оконных блоков, расход полиэтилена на 1 м ² - 0,001 м ³	6320,0м ² /6,320 м ³	100,0	0,05	0,316 6,320	0,000	0,000	0,316 6,320
Полиэтиленовая упаковка дверных блоков, расход полиэтилена на 1 м ² - 0,0015 м ³	4633,0м ² / 4,630м ³	100,0	0,05	<u>0,232</u> 4,630	0,000	0,000	<u>0,232</u> 4,630
Отходы пленки полиэтил 34 110 02 29 5)	ена и изделий из	нее незагрязненные	(Код по ФККО 4	0,645 12,877	0,000	0,036 0,707	<u>0,609</u> 12,170
Коробки из-под керамической плитки напольной (0,02 м ³ материала в 1 упаковке), вес пустой тары – 0,0002т	13660,0м ² /163,920м ³ /8196коробки/ 1,639 т	100,0	0,109	1,639 15,036	0,000	0,000	1,639 15,036
Коробки из-под керамической плитки настенной (0,02 м ³ материала в 1 упаковке), вес пустой тары – 0,0002т	18330,0м ² /91,700м ³ /4585коробки/ 0,917т	100,0	0,109	<u>0,917</u> 8,412	0,000	0,000	<u>0,917</u> 8,412
Картонные коробки из-	15200,0м ²	100,0	0,109	<u>5,360</u>	0,000	0,000	<u>5,360</u>

под керамогранитных	$/14074$ m $^3/3$			2,820			2,820
плит (в 1 упак. 1,08 м ³ ;	коробки/						·
вес пустой тары –	2,0 _T						
0,0002т							
Отходы упаковочного кар	отона незагрязне	нные (Код по ФККС	0 4 05 183 01 60 5)	7,916	0,000	0,000	<u>7,916</u>
				26,268	0,000	0,000	26,268
Деревянные поддоны	1291573 шт						
из-под кирпича	кирпича/						
(оборотная тара, 5% в	3229 шт						
отходы из-за износа,	поддонов/	5,0	0,6	<u>9,300</u>	0,000	<u>4,650</u>	<u>4,650</u>
излома, на 1 поддоне	$310,0$ м 3	3,0	0,0	15,500	0,000	7,750	7,750
400 шт кирпича, поддон							
размером							
$0.8x1,2x0,1=0.096 \text{ m}^3$							
Деревянные поддоны	351563, шт						
из-под поризованного	кирпича/						
камня(оборотная тара,	1758 шт						
5% в отходы из-за	поддонов/			5,070		2 535	<u>2,535</u>
износа, излома, на 1	$169,0$ м 3	5,0	0,6	$\frac{3,070}{8,450}$	0,000	2,535 4,225	$\frac{2,335}{4,225}$
поддоне 200 шт				0,430		4,223	4,223
кирпича, поддон							
размером							
$0.8x1.2x0.1=0.096 \text{ m}^3$							
Деревянные поддоны	$2300,0 \text{m}^3/$						
(оборотная тара, 5% в	1533 шт						
отходы из-за износа,	поддонов/			0,180		0,090	0,090
излома, на 1 поддоне 96	$147,0$ м 3	5,0	0,6	$\frac{0,180}{0,300}$	0,000	$\frac{0,090}{0,150}$	$\frac{0,090}{0,150}$
шт/ 1,5 м ³ газобетон.				0,300		0,130	0,130
блока, поддон размером							
0,8x1,2x0,1=0,096							

Тара деревянная, утратив ФККО 4 04 140 00 51 5)	шая потребител	льские свойства, незагрязненная (Код по $\begin{vmatrix} 14,550 \\ 24,250 \end{vmatrix}$ 0,000 $\begin{vmatrix} 7,275 \\ 12,125 \end{vmatrix}$ 12,125								
Оконные блоки	4633,0 м2	Готовое изделие. Брак возвращается поставщику								
Дверные блоки	6320,0 м2	Готовое изделие. Брак возвращается поставщику								
НГ (Технониколь),	5162,0 _M ²									
толщ. слоя 4 мм)	$/20,65 \text{ m}^3$	Используется полностью								
«Техноэласт» ГРИН	5162,0м ²	Ионо и омотод на нисети о								
ЭПП, толщ. слоя 4 мм	$/20,65 \text{ m}^3$	Используется полностью								
«Техноэласт» ЭПП,	$5162,0$ м 2	Используется полностью								
толщ. слоя 4 мм	$/20,65 \text{ m}^3$									
Гидроизоляция кровли,	$8013,8m^2$	Используется полностью								
толщ. 4 мм	$/32,05 \text{ m}^3$									
Оклеечная	$16348,6$ m 2 /	Используется полностью								
гидроизоляция	65,4м ³									
фундаментов, толщ. 4										
MM										
Песок	2620,7 м3	Используется полностью								
Щебень	939,1 м3	Используется полностью								
Асфальтобетон	945 м3	Используется полностью								
Вентблоки 400x800x2780	4038 шт.	Готовое изделие. Брак возвращается поставщику								
Вентблоки 500х930х2780	348 шт.	Готовое изделие. Брак возвращается поставщику								
Сборные		Готовое изделие. Брак возвращается поставщику								
железобетонные	330,00									
лестничные марши										
Кабель	272,0 п.м.	Используется полностью								
(электроснабжение)	4/4,U 11.M.									
Арматура	2950,0 т	Используется полностью								

2.2. Отходы (осадки) при механической и биологической очистке сточных вод (осадки очистных сооружений мойки автотранспорта)

На период строительства, при выезде со строительной площадки будет осуществляться мойка колёс транспорта (Распоряжение Администрации СПб №11 от 12.07.2001 г.). Для мойки колес предусмотрено использование комплекта «Мойдодыр - К» с системой оборотного водоснабжения.

Комплект состоит ИЗ очистной установки центробежным моечным насосом, системой подогрева, автоматики И песколовки cпогружным насосом. Автомобиль моется струей воды из ручного пистолета. Грязная вода стекает уклонам ПО площадки установленную в приямке песколовку. Грязевой насосавтомат перекачивает воду в очистную установку. Очищенная центробежным вода, высоконапорным насосом подается на моечный пистолет.

Расчет количества взвешенных веществ и уловленных нефтепродуктов с учетом влажности производился по формуле:

$$M = Q * (C_{дo} - C_{после}) 10^{-6} / (1 - B / 100), т/год$$
где:

 $C_{до}$ - концентрация взвешенных веществ/нефтепродуктов до очистных сооружений, мг/л, («Исходные сведения») $C_{после}$ -концентрация взвешенных веществ/нефтепродуктов после очистных сооружений, мг/л, («Исходные сведения»)

В - влажность взвешенных веществ/нефтепродуктов, %.

Q - количество стоков, поступающих на ОС, составляет:

$$Q=S\times n$$
;

где S-расход воды на 1 мойку,40 л/авт («Исходные сведения»)

n – количество машин, выезжающих со стройплощадки, 10машин /сутки. («Исходные сведения»)

$$Q = 10 \times 40 = 400$$
 л/сут = 0,4 м3/сут

Обезвоживание осадка не производится. Осадок собирается в металлическое ведро и сбрасывается в контейнер для сбора строительных отходов.

Исходные данные и результаты расчета количества осадков после механической очистки сточных вод представлены в соответствии с «Исходные сведения».

Характеристика очистных сооружений сточных вод

Таблица 3.3.

На	Наименование очистного сооружения, установки: Отстойник в составе мойки типа «Мойдодыр-К»													
Me	Метод очистки: механический													
	Перечень и состав загря	хишонкы	вещестн	3,	Степен	Мощнос	Pacxo		Перис	ЭД	Bp	Время работы,		
	поступающих	на очистку	7		Ь	ть, м ³ /час	Д	экс	плуат	ации,		час/ год	Į	
No		Концент ЗВ	грация	Ед. изм	очистк		стоко		день/ г	од				
π/	загрязняющих веществ (ЗВ)	поступа	,	ИЗМ	и, %		В,							
Π		на очи		_			M^3/cyT	2016	2017	2018	2016г	2017г	2018г	
		До очистки	После очист				•	Γ	2017	2010	20101	201/1	20101	
1	Da		КИ	/-	05.5	0.25								
1	Взвешенные веществ	4500	4300	мг/л	95,5	0,25	0,4	180	180	180	288	288	288	
2	Нефтепродукты	220	200	мг/л	90,0	0,25	0,4	180	180	180	288	288	288	
				Переч	ень обра	зующихся	отхоло	R						
No	Наименован	ие вида от	хода	Tiepe	СПВ обра	ь образующихся отходов Код отхода Класс Годовой норматив о по ФККО опасности отхода, т/го			тив образ , т/год	бразования од				
П/ П										2016г	20	17 г	2018 г	
1	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный (Осадок ОС мойки колес автотранспорта)				7	23 101 01 3	39 4	4		0,549	0,	549	0,549	

Расчет количества отходов при эксплуатации мойки колес

Наименование загрязняющего	Расход сточных	Количество дней в году	Расход сточных	Концентрации загрязняющих веществ		Влажнос ть	Плотнос ть		нество ода			
вещества	вод,		вод, $M^3/год$			осадка,	отхода,					
	м ³ /сут			До	После очистки	%	T/M^3	\mathbf{M}^3	T			
				очистки								
	2016 год											
Взвешенные	0.4	180	72.0	4500	200	41 11	1 1	0.476	0.525			
вещества	0,4	160	72,0	4500	200	41,11	1,1	0,476	0,525			
Нефтепродукты	0,4	180	72,0	220	20	41,11	0,9	0,027	0,024			
Всего за 2016 год (6	Всего за 2016 год (6 мес. эксплуатации мойки колес)*:											
			·	2017 год								
Взвешенные	0.4	190	72.0	4500	200	41 11	1 1	0.476	0.525			
вещества	0,4	180	72,0	4500	200	41,11	1,1	0,476	0,525			
Нефтепродукты	0,4	180	72,0	220	20	41,11	0,9	0,027	0,024			
Всего за 2017 год (6	мес. экспл	уатации мойк	и колес)*:					0,503	0,549			
			·	2018 год								
Взвешенные	0,4	180	72,0	4500	200	41,11	1 1	0,476	0,525			
вещества	0,4	160	72,0	4300	200	41,11	1,1	0,470	0,323			
Нефтепродукты	0,4	180	72,0	220	20	41,11	0,9	0,027	0,024			
Всего за 2018 год (6	мес. экспл	уатации мойкі	и колес)*:					0,503	0,549			
ИТОГО								1,509	1,647			

^{*}с поправкой на зимний период времени.

Таблица 3.4

2.3. Древесные отходы

Расчет количества образующихся отходов от вырубки деревьев выполнен на основании Акта обследования сохранения (сноса) зеленых насаждений и расчета их восстановительной стоимости от 7.10.2015 г. по формулам:

$$V = \sum N_i \times V_i + K ,$$

$$M = V \times p$$
,

где:

V – объем фитомассы, M^3 ;

 $N_{\rm i}$ — количество деревьев (кустариников), одного диаметра (см);

 V_i – норматив объема фитомассы для кустариников

K — коэффициент учитывающий процент на пни и сучья, 20%;

М – количества образующихся отходов от вырубки деревьев, т;

р – объемный насыпной вес в свежесрубленном состоянии.

Вид зеленых насаждений, их характеристика и расчет количества отходов от вырубки деревьев представлен таблице 3.4.

Вид зеленых насаждений, их характеристика и расчет количества отходов от вырубки деревьев

Таблица 3.4

	Вид	Кол	Диамет	Нормати	Объем	Объемный	Macc
	дерева	-BO,	p	в объема	фитомасс	насыпной вес	а, т
		ШТ	ствола,	фитомасс	ы, м ³	В	
			CM.	ы, м ³		свежесрублен	
						HOM	
						состоянии, т/	
						M^3	
	2	3	4	5	6	7	8
	Ясень	1	20	0,52	0,52	0,6	0,312
	Роза (куст)	2	-	0,05	0,1	0,6	0,060
	Сирень	3	-	0,05	0,15	0,6	0,090
	Яблоня	3	20	0,49	1,47	0,6	0,882
	Тополь (поросл)	2	-	0,05	0,1		0,06
Bce	го:	11	-	-	2,30	-	1,40
Отх	оды сучьев,	ветвей	і, вершино	ок от	2,30	0,6	1,40
лес	оразработки:						
	оды корчева		ıей (20 %	0,46	0,6	0,28	
объ	ема фитомас	сы):					
Bce	го отходов о	г выру	бки дерен	вьев:	2,76	-	1,68

2.4. Грунт, образовавшийся при проведении земляных работ

Количество грунта, вытесненного при устройстве фундаментов, рассчитано на основании Ведомости объемов строительных, монтажных и специальных работ и результатов комплексного экологического обследования территории.

Согласно экспертному заключению по результатам лабораторных исследований № 48 от 27.01.2015г: уровень загрязнения грунта на глубине отбора 0,0-0,2м, 0,2-1,0м, 1,0-2,0м, 2,0-3,0м, 3,0-4,0м, 4,0-5,0м ПО химическим, микробиологическим, гельминтологическим И токсикологическим показателям выявлено, что почва на территории земельного участка, предназначенного ДЛЯ размещения жилой застройки, соответствует действующим государственным санитарным нормам и гигиеническим нормативам:

- пробы почв на глубине 0-0,2м по степени химического загрязнения относится к категории «допустимая»;
- пробы почв на глубине 0,2-1,0м, 1,0-2,0м, 2,0-3,0м, 3,0-4,0м, 4,0-5,0м по степени химического загрязнения относится к категории «чистая».

Согласно экспертному заключению по радиологическому обследованию территории: по всем показателям соответствует требованиям СанПин 2.6.1.2523-09 и СП 2.6.1.2612-10.

В соответствии с критериями отнесения опасных отходов к классу опасности для ОПС (утверждены приказом МПР Росси от 15 июня 2001г № 511) грунт на территории строительства относится к V классу опасности - практически неопасные, отходы[16].

Количество грунта представлено в таблице 3.6.

Количество грунта.

Таблица 3.6

Наименова	Наименова	Кол-во,	Норма	Удельны	Кол	-во				
ние	ние		образован	й	образо	вания				
работ	материала		ия	вес,	OTXC	ода,				
			отходов,							
		м3	%	т/м3	м3/год	т/год				
1	2	3	4	5	6	7				
Выемка	Голит	116869,35	100,0	1.6	116869,	186990				
грунта	Грунт	110009,33	100,0	1,6	35	,96				
	Всего грунта:									
	35 ,96									

Количество грунта, подлежащего утилизации (использование) сторонними организациями, составляет – 116869,35 м3 (186990,96т).

3. Расчет предлагаемого образованию отходов.

Таблица 3.7

					т		Таолица 3.7	
№	Harrisaran ayya nyana amya ra	Код	Класс	Отходообразующий вид		Планируемый норматив образования отходов в среднем за		
Π/Π	Наименование вида отхода	поФККО	опас.	деятельности, процесс*		год, т		
					2016 г	2017 г	2018г	
1	2	3	4	5	6	7	8	
1	Мусор от офисных и бытовых	7 33 100 01	4	Жизнедеятельность				
	помещений организаций	72 4		сотрудников	12,700	12,700	12,700	
	несортированный (исключая				12,700	12,700	12,700	
	крупногабаритный)							
2	Осадок (шлам) механической	7 23 101 01	4	Зачистка				
	очистки нефтесодержащих	39 4		шламоприемника ОС				
	сточных вод, содержащий			мойки колес	0,549	0,549	0,549	
	нефтепродукты в количестве			автотранспорта				
	менее 15 %, обводненный			«Мойдодыр-К»				
3	Тара полиэтиленовая,	4 38 111 02	4	Отделочные работы (тара				
	загрязненная лакокрасочными	51 4		из-под ПВХ краски)	0,000	0,940	0,940	
	материалами (содержание менее				0,000	0,940	0,940	
	5 %)							
4	Отходы базальтового волокна и	4 57 112 01	4	Устройство	0,000	1,835	1,675	
	материалов на его основе	20 4		теплоизоляции	0,000	1,033	1,073	
				Итого 4 класса опасности	13,249	16,024	15,864	
5	Лом железобетонных изделий,	8 22 301 01		Срубка оголовков				
	отходы железобетона в кусковой	21 5	5	сборных ж/б свай	422,050	0,000	0,000	
	форме						·	
6	Лом строительного кирпича	8 23 101 01		Устройство наружных и				
	незагрязненный	21 5	5	внутренних стен и	10,500	39,300	28,800	
				перегородок				

№ п/п	Наименование вида отхода	Код поФККО	Класс опас.	Отходообразующий вид деятельности, процесс*	Планируемый норматив образования отходов в среднем за год, т			
					2016 г	2017 г	2018г	
1	2	3	4	5	6	7	8	
7	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	Устройство монолитных конструкций подземной и надземной части здания	105,767	71,197	71,196	
8	Лом черепицы, керамики незагрязненный	8 23 201 01 21 5	5	Отделочные работы, устройство полов	0,000	0,000	21,370	
9	Тара деревянная, утратившая потребительские свойства, незагрязненная	4 04 140 00 51 5	5	Растаривание кирпича, газобетонных блоков	0,000	7,275	7,275	
10	Отходы пленки полиэтилена и изделий из нее незагрязненные	4 34 110 02 29 5	5	Растаривание материалов: Техноэласт, минераловатные плиты, оконных блоков, дверных блоков	0,000	0,036	0,609	
11	Отходы упаковочного картона незагрязненные	4 05 183 01 60 5	5	Растаривание картонных коробок: керамическая плитка и керомогранит	0,000	0,000	7,916	
12	Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	5	Устройство инженерных сетей	0,000	0,000	1,043	
13	Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами	8 11 100 01 49 5	5	Земляные работы по разработке котлована	186990,96	0,000	0,000	

№ п/п	Наименование вида отхода	Код поФККО	Класс опас.	Отходообразующий вид деятельности, процесс*	Планируемый норматив образования отходов в среднем за год, т					
		110 4 1410	onac.	деятельности, процесс	2016 г	2017 г	2018Γ			
1	2	3	4	5	6	7	8			
14	Отходы сучьев, ветвей, вершинок от лесоразработки	1 52 110 01 21 5	5	Очистка территории от зеленных насаждений	1,400	0,000	0,000			
16	Отходы корчевание пней	1 52 110 02 21 5	5	Очистка территории от зеленных насаждений	0,280	0,000	0,000			
	Итого 5 класса опасности 187530,957 117,808 138,209									
	Bcero: 187544,206 133,832 154,073									

4. Расчет предлагаемого образованию отходов

В данном разделе приводится предлагаемое ежегодное образование отходов при строительстве многоквартирного жилого дома со встроенными помещениями, встроенной дошкольной образовательной организацией на 50 мест и подземным гаражом, гостиница со встроенными помещениями и подземным гаражом по адресу: г. Санкт-Петербург, ул. Костюшко, д.19, литер А

Предлагаемое ежегодное образование отходов

		тред	Jiai acivioc	емое ежегодное образование отходов						
№п	Наименование вида отхода	Код по	Класс	Наименование	Норматив	Объем	Предлагаемо			
$/\Pi$		ФККО	опас.	технологического	образовани	ежегодно	е ежегодное			
				процесса, в результате	я отходов,	выполняем	образование			
				которого образуются тонн н		ых работ	отходов,			
				отходы	единицу		тонн в год			
					выполняем					
				ых работ						
1	2	3	4	5 6		7	8			
				2016год						
1	Мусор от офисных и	7 33 100	4	Жизнедеятельность						
	бытовых помещений	01 72 4	Исх.	рабочих, уборка	0,04 т/год	211 чел	8,400			
	организаций		26-П-	бытовых помещений						
	несортированный (исключая		2643-	Жизнедеятельность ИТР,						
	крупногабаритный)		12010	уборка бытовых	0,11 т/год	39 чел	4,300			
			ф-рд	помещений						
			ОТ							
			30.11.			Итого	12,700			
			2015г							

Таблица 4.1

№ п /п	Наименование вида отхода	Код по ФККО	Класс опас.	Наименование технологического процесса, в результате которого образуются отходы	Норматив образовани я отходов, тонн на единицу выполняем ых работ	Объем ежегодно выполняем ых работ	Предлагаемо е ежегодное образование отходов, тонн в год
1	2	3	4	5	6	7	8
	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	4 Вх26 /12010 ф от 19.10. 2015г	Зачистка шламоприемника ОС мойки колес автотранспорта «Мойдодыр-К»	0,008 т/м3	72 м3/год	0,549
	Лом железобетонных изделий, отходы железобетона в кусковой форме	8 22 301 01 21 5	5	Срубка голов ж/бетонных свай	100%	422,05 т	422,050
	Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами	8 11 100 01 49 5	5	Земляные работы по разработке котлована	100%	186990,96 T	186990,96
	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	Устройство монолитных конструкций подземной и надземной части здания: бетонная подготовка под фундамент	0,5%	2500,0т	12,500

№п	Наименование вида отхода	Код по	Класс	Наименование	Норматив	Объем	Предлагаемо
/π		ФККО	опас.	технологического	образовани	ежегодно	е ежегодное
				процесса, в результате	я отходов,	выполняем	образование
				которого образуются	тонн на	ых работ	отходов,
				отходы	единицу		тонн в год
					выполняем		
				ых работ			
1	2	3	4	5	6	7	8
				Устройство монолитных			
				конструкций подземной	0,5%	8220,0т	41,100
				и надземной части	и части		
				здания: фундамент			
				Устройство монолитных конструкций подземной			
				и надземной части	0,5%	10433,4т	52,167
				здания: перекрытия и	0,570	10433,41	32,107
				покрытия			
						Итого:	105,767
	Лом строительного кирпича	8 23 101		Устройство наружных и			,
	незагрязненный	01 21 5	5	внутренних стен и	1,0%	1050,0т	10,500
	-			перегородок		·	
	Отходы сучьев, ветвей,	1 52 110	5	Очистка территории от	100,0%	1,40т	1,400
	вершинок от лесоразработки	01 21 5	3	зеленных насаждений	100,0%	1,401	1,400
	Отходы корчевание пней	1 52 110	5	Очистка территории от	100,0%	0,280 т	0,280
		02 21 5	3	зеленных насаждений	100,0%	0,280 T	0,280
				2017 год			
	Мусор от офисных и	7 33 100	4	Жизнедеятельность			
	бытовых помещений	01 72 4	Исх.	рабочих, уборка	0,04 т/год	211 чел	8,400
	организаций		26-П-	бытовых помещений			

№ п /п	Наименование вида отхода	Код по ФККО	Класс опас.	Наименование технологического процесса, в результате которого образуются отходы	технологического процесса, в результате которого образуются отходы отходы единицу выполняем ых работ		Предлагаемо е ежегодное образование отходов, тонн в год
1	2	3	4	5	6	7	8
	несортированный (исключая крупногабаритный)		2643- 12010 ф-рд	Жизнедеятельность ИТР, уборка бытовых помещений	0,11 т/год	39 чел	4,300
			от 30.11. 2015г			Итого:	12,700
	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	4 Bx26 /12010 φ οτ 19.10. 2015Γ	Зачистка шламоприемника ОС мойки колес автотранспорта «Мойдодыр-К»	0,008 т/м3	72 м3/год	0,549
	Тара полиэтиленовая,	4 38 111	4	Отделочные работы	100%	0,480 т	0,480
	загрязненная лакокрасочными	02 51 4	Bx26/ 12010	(ПВХ краски)	100%	0,460 т	0,460
	материалами (содержание менее 5 %)		ф от 19.10. 2015г			Итого:	0,940
	Отходы базальтового	4 57 112	4	Устройство	1,0%	16,0 т	0,160

№ п /п	Наименование вида отхода	Код по ФККО	Класс опас.	Наименование технологического процесса, в результате которого образуются отходы	Норматив образовани я отходов, тонн на единицу выполняем ых работ	Объем ежегодно выполняем ых работ	Предлагаемо е ежегодное образование отходов, тонн в год
1	2	3	4	5	6	7	8
	волокна и материалов на его основе	01 20 4	Исх. 26-П-	теплоизоляции	1,0%	167,50 т	1,675
			2643- 12010 ф-рд от 30.11. 2015г		1,835		
	Лом строительного кирпича	8 23 101		Устройство наружных и	1,0%	2100,0т	21,000
	незагрязненный	01 21 5	5	внутренних стен и перегородок	1,0%	1830,0т	18,300
						Итого:	39,300
	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	Устройство монолитных конструкций подземной и надземной части здания: стен	0,5%	1200,0 т	6,0
				Устройство монолитных конструкций подземной и надземной части здания: перекрытия и покрытия Устройство монолитных	0,5%	10433,4 т	52,167

№п	Наименование вида отхода	Код по	Класс	Наименование	Норматив	Объем	Предлагаемо
/π		ФККО	опас.	технологического	образовани	ежегодно	е ежегодное
				процесса, в результате	я отходов,	выполняем	образование
				которого образуются	тонн на	ых работ	отходов,
				отходы	единицу		тонн в год
					выполняем		
					ых работ		
1	2	3	4	5	6	7	8
				конструкций подземной			
				и надземной части			
				здания: наружные стены			
				Устройство монолитных			
				конструкций подземной	-		
				и надземной части	0,5%	580,0 т	2,900
				здания: газобетонные			
				стены			
						Итого:	71,197
	Отходы пленки полиэтилена	4 34 110		Растаривание	100,0%	0,001 т	0,001
	и изделий из нее	02 29 5	5	минераловатных плит	100,0%	0,035 т	0,035
	незагрязненные					Итого:	0,036
	Тара деревянная,			Растаривание кирпича	5,0%	93,0 т	4,650
	утратившая	4 04 140	5	Растаривание камня	5,0%	50,7т	2,535
	потребительские свойства,	00 51 5	3	Растаривание газобетона	5,0%	1,80 т	0,090
	незагрязненная					Итого:	7,275
				2018 год			
	Мусор от офисных и	7 33 100	4	Жизнедеятельность			
	бытовых помещений	01 72 4	Исх.	рабочих, уборка	0,04 т/год	211 чел	8,400
	организаций		26-П-	бытовых помещений			
	несортированный (исключая		2643-	Жизнедеятельность ИТР,	0,11 т/год	39 чел	4,300
	крупногабаритный)		12010	уборка бытовых	0,11 1/10Д	33 4CH	4,300

№ п /п	Наименование вида отхода	Код по ФККО	Класс опас.	Наименование технологического процесса, в результате которого образуются отходы	Норматив образовани я отходов, тонн на единицу выполняем ых работ	Объем ежегодно выполняем ых работ	Предлагаемо е ежегодное образование отходов, тонн в год
1	2	3	4	5	6	7	8
			ф-рд от 30.11. 2015г	помещений		Итого:	12,700
	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	4 Bx26 /12010 φ οτ 19.10. 2015 Γ	Зачистка шламоприемника ОС мойки колес автотранспорта «Мойдодыр-К»	0,008 т/м3	72 м3/год	0,549
	Тара полиэтиленовая, загрязненная	4 38 111 02 51 4	4 Bx26	Отделочные работы (тара из-под ПВХ	100%	0,480	0,480
	лакокрасочными	02 31 4	/12010	краски)	100%	0,460	0,460
	материалами (содержание менее 5 %)		ф от 19.10. 2015г	Итого:		0,940	
	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	4 Исх. 26-П- 2643- 12010 ф-рд	Устройство теплоизоляции	1,0%	167,50т	1,675

№ п /п	Наименование вида отхода	Код по ФККО	Класс опас.	Наименование технологического процесса, в результате которого образуются отходы	Норматив образовани я отходов, тонн на единицу выполняем ых работ	Объем ежегодно выполняем ых работ	Предлагаемо е ежегодное образование отходов, тонн в год
1	2	3	4 οτ 30.11. 2015Γ	5	6	7	8
	Лом строительного кирпича	8 23 101	5	Устройство наружных и	1,0%	1050,0	10,500
	незагрязненный	01 21 5		внутренних стен и перегородок	1,0%	1830,0	18,300
						Итого:	28,800
	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	Устройство монолитных конструкций подземной и надземной части здания: стен	0,5%	1200,0 т	6,0
				Устройство монолитных конструкций подземной и надземной части здания: перекрытия и покрытия	0,5%	10433,2 т	52,166
				Устройство монолитных конструкций подземной и надземной части здания: наружные стены	0,5%	2026,0 т	10,130
				Устройство монолитных конструкций подземной	0,5%	580,0 т	2,900

№п	Наименование вида отхода	Код по	Класс	Наименование	Норматив	Объем	Предлагаемо
/Π		ФККО	опас.	технологического	образовани	ежегодно	е ежегодное
				процесса, в результате	я отходов,	выполняем	образование
				которого образуются	тонн на	ых работ	отходов,
				отходы	единицу		тонн в год
					выполняем		
					ых работ		
1	2	3	4	5	6	7	8
				и надземной части			
				здания: газобетонные			
				стены			
						Итого:	71,196
	Лом черепицы, керамики незагрязненный	8 23 201 01 21 5	5	Отделочные работы: облицовка фасада	2 %	580,0 т	11,600
				Отделочные работы: облицовка стен	2 %	175,0т	3,500
				Отделочные работы:	2 %	313,5 т	6,270
				облицовка пола		,	·
	m.	4.04.440	_	<i>D</i>	7 00/	Итого:	21,370
	Тара деревянная,	4 04 140	5	Растаривание кирпича	5,0%	93,0 т	4,650
	утратившая	00 51 5		Растаривание камня	5,0%	50,7т	2,535
	потребительские свойства,			Растаривание газобетона	5,0%	1,80 т	0,090
	незагрязненная		_		T	Итого:	7,275
9.	Отходы пленки полиэтилена	4 34 110	5	Растаривание	100 %	0,013т	0,013
	и изделий из нее	02 29 5		Техноэласт	100 %	0,013т	0,013
	незагрязненные			Растаривание	100 %	0,035 т	0,035
				минераловатных плит			
				Растаривание оконных блоков	100 %	0,316 т	0,316

№п	Наименование вида отхода	Код по	Класс	Наименование	Норматив	Объем	Предлагаемо
/п		ФККО	опас.	технологического	образовани	ежегодно	е ежегодное
				процесса, в результате	я отходов,	выполняем	образование
				которого образуются	тонн на	ых работ	отходов,
				отходы	единицу		тонн в год
					выполняем		
					ых работ		
1	2	3	4	5	6	7	8
				Растаривание дверных	100 %	0,232 т	0,232
				блоков			
						Итого:	0,609
	Отходы упаковочного	4 05 183	5	Растаривание картонных	100 %	1,639	1,639
	картона незагрязненные	01 60 5		коробок из-под	100 %	0,917	0,917
				керамической и	100 %	5,360	5,360
				керамогранитной плитки			
						Итого:	7,916
	Лом и отходы изделий из	4 34 110	5	Устройство инженерных	2,5 %	41,72 т	1,043
	полиэтилена незагрязненные	03 51 5		сетей			
	(кроме тары)						

Предлагаемое суммарное ежегодное образование отходов

Таблица 4.2

№ п/	Наименование вида отхода	Код поФККО	Класс опасности	1	гаемое еже ние отходо год 2017г	
1	2	3	4	5	6	7
1	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4 Исх. 26-П-2643- 12010ф-рд от 30.11.2015г	12,700	12,700	12,700
2	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	4 Вх26/12010ф от 19.10.2015г	0,549	0,549	0,549
3	Тара полиэтиленовая, загрязненная лакокрасочными материалами (содержание менее 5 %)	4 38 111 02 51 4	4 Вх26/12010ф от 19.10.2015г	0,000	0,940	0,940
4	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	4 Исх. 26-П-2643- 12010ф-рд от 30.11.2015г	0,000	1,835	1,675
5	Лом железобетонных изделий, отходы железобетона в кусковой форме	8 22 301 01 21 5	5	422,050	0,000	0,000
6	Лом строительного кирпича незагрязненный	8 23 101 01 21 5	5	10,500	39,300	28,800
7	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	105,767	71,197	71,196
8	Лом черепицы, керамики незагрязненный	8 23 201 01	5	0,000	0,000	21,370

		21 5				
9	Тара деревянная, утратившая потребительские свойства, незагрязненная	4 04 140 00 51 5	5	0,000	7,275	7,275
10	Отходы пленки полиэтилена и изделий из нее незагрязненные	4 34 110 02 29 5	5	0,000	0,036	0,609
11	Отходы упаковочного картона незагрязненные	4 05 183 01 60 5	5	0,000	0,000	7,916
13	Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	5	0,000	0,000	1,043
13	Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами	8 11 100 01 49 5	5	186990,9 6	0,000	0,000
14	Отходы сучьев, ветвей, вершинок от лесоразработки	1 52 110 01 21 5	5	1,400	0,000	0,000
15	Отходы корчевание пней	1 52 110 02 21 5	5	0,280	0,000	0,000

4. Организация мест образования отходов

На площадке организованы места для селективного сбора и временного накопления строительных и бытовых отходов. Накопление отходов осуществляется в специальных контейнерах, что исключает их негативное воздействие на компоненты окружающей среды.

Периодичность вывоза отходов определена из учета условий накопления, нормативного объема образования, санитарных и экологических норм, грузоподъемности автотранспортных средств.

Места временного накопления (МВНО) строительных и бытовых отходов на территории предприятия.

На территории стройплощадки организованы 5 мест временного накопления отходов:

МВНО-1 -металлический контейнер с крышкой емкостью $V=0.75 \text{ м}^3$ для временного накопления твердых бытовых отходов, образующихся результате жизнедеятельности строителей, работающих на стройплощадке. Вывоз отходов осуществляется спец. автотранспортом ПО договору на лицензированное предприятие по размещению (в части хранения) и захоронению ТБО. В соответствии с СанПиНом 42-128-4690-88 «Санитарные правила содержания территорий населенных мест» бытовые отходы, образующиеся в период строительства, вывозятся с территории предприятия в холодное время года не реже 1 раза в 3 суток, а в теплое время года - ежедневно, что исключает возможность их загнивания и разложения.

МВНО-2 — Металлический контейнер емкостью $V=6,0\,\mathrm{m}^3$ для временного накопления строительных отходов 4 класса опасности, образующихся на площадке строительства.

Периодичность вывоза смешанных строительных отходов определяется периодичностью образования отдельных видов отходов, объемом контейнера и грузоподъемностью автотранспортного средства. Вывоз осуществляется один раз в квартал на лицензированное предприятие по размещению (в части хранения) отходов 4 класса опасности.

МВНО-3 — Металлический контейнер емкостью V=6,0 м³ для временного накопления строительных отходов 5 класса опасности (отходы пленки полиэтилена и изделий из нее незагрязненные, отходы упаковочного картона незагрязненные, лом и отходы изделий из полиэтилена незагрязненные (кроме тары)), образующиеся на площадке строительства.

Периодичность вывоза строительных отходов определяется формированием транспортной партии и грузоподъемностью автотранспортного средства. Вывоз осуществляется один раз в квартал на лицензированное предприятие по размещению (в части хранения) отходов 5 класса опасности [18].

МВНО-4 — Металлический контейнер емкостью V=27,0 м³ для временного накопления строительных отходов 5 класса опасности (лом железобетонных изделий, отходы железобетона в кусковой форме, лом бетонных изделий, отходы бетона в кусковой форме, лом строительного кирпича незагрязненный, лом черепицы, керамики незагрязненный), образующихся на площадке строительства.

Периодичность вывоза строительных отходов определяется формированием транспортной партии и грузоподъемностью автотранспортного средства. Вывоз осуществляется один раз в месяц на предприятие по утилизации (использование) отходов 5 класса опасности [19].

МВНО-5 — Металлический контейнер емкостью V=6,0 м³ для временного накопления строительных отходов 5 класса опасности (тара деревянная, утратившая потребительские свойства, незагрязненная, отходы корчевания пней, отходы сучьев и ветвей), образующихся на площадке строительства.

Периодичность вывоза строительных отходов определяется формированием транспортной партии и грузоподъемностью автотранспортного средства. Вывоз осуществляется один раз в неделю на предприятие по утилизации (использованию) отходов 5 класса опасности.

Временное накопление грунта, образовавшегося при проведении землеройных работ, не загрязненный опасными веществами 5 класса опасности не производится. Грунт при откопке котлована сразу грузится в самосвал и вывозится на предприятие по утилизации (использованию) отходов 5 класса опасности [18].

Перечень и характеристика мест временного накопления отходов представлены в Таблице 5.1.

Характеристика мест временного накопления отходов

Таблица 5.1

	Потитомороми	Вместимость, тонн											
№ π/π	Наименование		Для накопления отходов										
J\211/11	и номер по карте-схеме	Общая	I класс	II класс	III класс	IV класс	V класс						
	картс-слемс		опасности	опасности	опасности	опасности	опасности						
1	2	3	4	5	6	7	8						
1	MBHO-1	0,1	-	-	-	0,035	-						
2	MBHO-2	3,2	-	-	-	0,831	-						
3	MBHO-3	2,5	-	-	-	-	2,3						
4	MBHO-4	50,0	-	-	-	-	46,6						
5	MBHO-5	3,5	-	-	-	-	2,23						

5. Расчет предлагаемой ежегодной передачи отходов другим хозяйствующим субъектам

При строительстве здания жилого дома образуются отходы 4-5 класса опасности. Собственных полигонов и хранилищ для размещения отходов на предприятии нет. От других предприятий отходы не поступают.

В таблице 6.1. представлены данные по передаче отходов другим хозяйствующим субъектам.

Предлагаемая ежегодная передача отходов другим хозяйствующим субъектам

№ Наименование		Код по	Класс		емая ежегод	ная перед	цача отходо	в, тонн в	Наименование юридического лица, которому передаются отходы, его место	Дата и № договора на	Срок действия договора
п/	вида отхода	ФККО	опасн	Для использо вания	Для обезврежи вания		я размещен Захороне ние	ния Всего	нахождения, ИНН	передачу отходов	
1	2	3	4	5	6	7	8	9	10	11	12
•	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4	0,000	0,000	38,100	0,000	38,100	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса опасности	Nº	до
	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	4	0,000	0,000	1,647	0,000	1,647	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса опасности	N º	до
	Тара полиэтиленовая, загрязненная лакокрасочными материалами (содержание менее 5 %)	4 38 111 02 51 4	4	0,000	0,000	1,888	0,000	1,880	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса опасности	Nº	до
	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	4	0,000	0,000	3,510	0,000	3,510	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса опасности	Nº	до
•	Лом железобетонных изделий, отходы железобетона в кусковой форме	8 22 301 01 21 5	5	422,050	0,000	0,000	0,000	0,000	Специализированный полигон по использованию отходов 5класса опасности	Nº	до
	Лом строительного кирпича незагрязненный	8 23 101 01 21 5	5	78,600	0,000	0,000	0,000	0,000	Специализированный полигон по использованию отходов 5класса опасности	No	до
	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	5	248,160	0,000	0,000	0,000	0,000	Специализированный полигон по использованию отходов 5класса опасности	Nº	до
	Лом черепицы, керамики незагрязненный	8 23 201 01 21 5	5	21,370	0,000	0,000	0,000	0,000	Специализированный полигон по использованию отходов 5класса опасности	Nº	до
	Тара деревянная, утратившая потребительские свойства, незагрязненная	4 04 140 00 51 5	5	14,550	0,000	0,000	0,000	0,000	Специализированный полигон по использованию отходов 5класса опасности	No	до
0.	Отходы пленки полиэтилена и изделий из нее незагрязненные	4 34 110 02 29 5	5	0,000	0,000	0,645	0,000	0,645	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса опасности	Nº	до
1.	Отходы упаковочного картона незагрязненные	4 05 183 01 60 5	5	0,000	0,000	7,916	0,000	7,916	Лицензированный полигон из ГРОРО по размещению отходов 4-5 класса	No	до

									опасности		
	Лом и отходы изделий из	4 34 110 03	5						Лицензированный полигон из ГРОРО	No	до
2.	полиэтилена незагрязненные	51 5		0,000	0,000	1,043	0,000	1,043	по размещению отходов 4-5 класса	24≅	до
	(кроме тары)								опасности		
	Грунт, образовавшийся при	8 11 100 01	5						Специализированный полигон по		
3	проведении землеройных работ, 49 5			186990,9	0,000	0,000	0,000	0,000	использованию отходов 5класса	$\mathcal{N}_{\underline{0}}$	до
]3.	не загрязненный опасными		6		0,000	0,000	0,000		опасности		
	веществами								опасности		
	Отходы сучьев, ветвей,	1 52 110 01	5			Специализированный полигон		Специализированный полигон по	No	до	
4.	вершинок от лесоразработки	21 5		1,400	0,000	0,000	0,000	0,000	использованию отходов 5класса	31≅	до
									опасности		
	Отходы корчевание пней	1 52 110 02	2 5						Специализированный полигон по	No	ПО
5.		21 5		0,280	0,000	0,000	0,000	0,000	использованию отходов 5класса	745	до
									опасности		

Таблица 6.2

		1	I													T	абл	ица	6.2		
								Предлага	аемые ли	МИТЫ	ежего	дного	разме	цения от							
№ п/ Наименование вида отхода			Предлагаемый норматив											экс	Отходы, предлагаемые к ежегодному размещению на эксплуатируемых (собственных) объектах размещения отходов, тон в год						
	Наименование вида отхода	Код по ФККО	отходо	ов в сре ц, тонн	днем	Наименов	Инд.пред принимат ель или	No	Ли		иты на размещение отходов, тонн			Наи мено вани е	№ объек	Лимиты на размещение отходов тонн					
П						ание	юр. лицо,	объекта		Вто	ом чис	сле по	годам	объе	та		В том числе по годам				
			2016	2017	2018	объекта размещен ия отходов	эксплуат ирующее объект размещен ия отходов	размещен ия в ГРОРО	Всего	201	201 7	201	20 1 9		разме щения В ГРОР О	Вс ег о	2 0 -	2	2 2 0 0 	20 –	
1	2	3		4		5	6	7	8	9	10	11	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	14	15	16	1 7	1 8	1 2 9 0		
	оды IV класса опасности	1			ı					1		1			1		1				
1 I	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	12,700	12,70	12,70	Полигон твердых бытовых отходов			38,100	12,7 00	12,7 00	12,7 00	0, 0,0	_	-	-	-	-	- -	-	
2 0	Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15 %, обводненный	7 23 101 01 39 4	0,549	0,549	0,549	Полигон твердых бытовых отходов			1,647	0,54	0,54 9	0,54	0, 0,0) -	-	-	-	-		-	
3 3	Гара полиэтиленовая, вагрязненная лакокрасочными материалами (содержание менее 5%)	4 38 111 02 51 4	0,000	0,940	0,940	Полигон твердых бытовых отходов			1,880	0,00	0,94	0,94	0, 0,0	-	-	-	-	-	- -	-	
	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	0,000	1,835	1,675	Полигон твердых бытовых отходов			3,510	0,00	1,83 5	1,67 5	0, 0,0	-	-	ı	-	-	- -	-	
Итог	то IV класса опасности		13,249	16,02 4	15,86 4				45,137	13,2 49	16,0 24	15,8 64	$\begin{vmatrix} 0, \\ 0 \end{vmatrix} 0,$	-	-	-	-	-	- -	-	
	оды V класса опасности	1	Г	1					I	T		1	· ·		T		1				
5 0	Лом железобетонных изделий, отходы железобетона в кусковой форме	8 22 301 01 21 5	422,05 0		0,000	-			0,000	0	0,00	0	$0 \mid 0,$	-	-	-	-	-	- -	_	
. ()	Пом строительного кирпича незагрязненный	8 23 101 01 21 5	10,500	39,30 0	28,80	-			0,000	0,00	0,00	0,00	$\begin{bmatrix} 0, \\ 0 \end{bmatrix} 0,$	-	-	-	-	-		-	

7	Лом бетонных изделий, отходы бетона в кусковой форме	8 22 201 01 21 5	105,76	71,19 7	71,19	-	0,000	0,00	0,00	0,00	0,	0,0	-	-	-	-	- -	-	-
8	Лом черепицы, керамики незагрязненный	8 23 201 01 21 5	0,000	0,000	21,37	-	0,000	0,00	0,00	0,00	Λ	0,0	-	-	-	-		-	-
9	Тара деревянная, утратившая потребительские свойства, незагрязненная	4 04 140 00 51 5	0,000	7,275	7,275	-	0,000	0,00	0,00	0,00	0,	0,0	-	-	-	-		-	-
1 0	Отходы пленки полиэтилена и изделий из нее незагрязненные	4 34 110 02 29 5	0,000	0,036	0,609	Полигон твердых бытовых отходов	0,645	0,00	0,03	0,60 9	0,	0,0	-	-	-	-	- -	-	-
1 1	Отходы упаковочного картона незагрязненные	4 05 183 01 60 5	0,000	0,000	7,916	Полигон твердых бытовых отходов	7,916	0,00	0,00	7,91 6	0,	0,0	-	-	-	-	- -	-	-
1 2	Лом и отходы изделий из полиэтилена незагрязненные (кроме тары)	4 34 110 03 51 5	0,000	0,000	1,043	Полигон твердых бытовых отходов	1,043	0,00	0,00	1,04 3	0,	0,0	-	-	-	-	- -	-	-
1 3	Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами	8 11 100 01 49 5	186990 ,96	0,000	0,000	-	0,000	0,00	0,00	0,00	0,	0,0	-	-	-	-	- -	-	-
1 4	Отходы сучьев, ветвей, вершинок от лесоразработки	1 52 110 01 21 5	1,400	0,000	0,000	-	0,000	0,00	0,00	0,00	0,	0,0	-	-	-	-	- -	-	-
1 5	Отходы корчевание пней	1 52 110 02 21 5	0,280	0,000	0,000	-	0,000	0,00	0,00	0,00	0, 0	0,0	-	-	-	-	- -	-	-
Ито	ого V класса опасности		187530 ,957	117,8 08	138,2 09	-	 9,604	0,00	0,03 6	9,56 8	0,	0,0	-	_	-	-		-	_
ИТ	ОГО		187544 ,206	133,8 32	154,0 73	-	 54,741	13,2 49	16,0 60	25,4 32	0, 0	0,0	-	-	-	-		-	-

Заключение

В работе рассмотрены вопросы накопления отходов, образованных в ходе строительства многоэтажного жилого комплекса «Setl-City», и соблюдения нормативов размещения данных отходов. Также проведен анализ данных, полученных исполнителем в ходе прохождения производственной практики.

В результате проведенной работы получены следующие результаты:

- оценены и обоснованы нормативы образования бытовых отходов.
 По данным проведенного расчета при строительстве данного объекта образуется 89,400 м³/год отходов.
- проведен расчет предлагаемого образования отходов. Зафиксировано возможное увеличение предлагаемого норматива образования отходов IV класса опасности за период 2016 2017 гг. с 13,249 до 16,024 т/год при уменьшении данного показателя за отрезок 2017 2018 гг. до 15,864 т/год. Однако за год отмечается уменьшение значения использования планируемого норматива образования отходов V класса опасности с 187,544 т в 2016 г. до 133,832 т в 2017 г. Тем не менее, отмечается тенденция к увеличению использования отходов в 2018 г. до 154,073 т/год;
- обоснована организация мест образования отходов для рассматриваемого многоэтажного жилого комплекса «Setl-City». В пределах предприятия установлены 5 типов мест временного накопления строительных и бытовых отходов (МНВО);
- рассчитаны предлагаемые нормативы ежегодной передачи отходов другим хозяйствующим субъектам, связанным с данным жилым комплексом;
- проведено сопоставление объемов образующихся отходов по лимитам размещения.

Многоэтажный жилой комплекс «Setl-City» - это яркий пример использования экологических нормативов размещения

отходов, с целью уменьшения воздействия на окружающую среду. По мнению исполнителя, система обращения с отходами практикуемая организацией ООО «Сэтл сити» должна применяться в строительстве других подобных и проектируемых жилых комплексов.

Список использованной литературы

- 1. Справочник «Утилизация твердых отходов», том 1, М., Стройиздат, 2001. -80 с.
- 2. Систер В.Г. и др. Твердые бытовые отходы (сбор, транспортировка, обезвреживание). Справочник. АКХ им. К.Д.Памфилова. М.,2001.-55 с.
- 3. «Справочные таблицы весов строительных материалов», Е.В Макаров, Н.Д. Светлаков, М.1971.-48с.
- 4. «Методические указания по разработке проектов нормативов образования отходов и лимитов на их размещение». Утверждены приказом Министерством природных ресурсов и экологии РФ от 05.08.2014 №349.
- 5. Отходы производства и потребления. Сборник нормативнометодических документов. Казань. Новое знание, 1999.
- 6. ГОСТ 16338-85 «Полиэтилен низкого давления».
- 7. Закон РФ "Об охране окружающей природной среды" Ф3-7 ОТ 10.01.2002.
- 8. Закон РФ "О санитарно-эпидемиологическом благополучии населения" ФЗ-52 от 30.03.1999
- 9. Приказ МПР РФ №511 от 15.06.2001 «Об утверждении Критериев отнесения опасных отходов к классу опасности для окружающей природной среды».
- 10.Приказ Минприроды России от 18.07.2014 № 445 «Об утверждении федерального классификационного каталога отходов» (ФККО).
- 11.Постановление Правительства РФ от 16.07.2000г. №461 "О правилах разработки и утверждения нормативов образования отходов и лимитов на их размещение".
- 12. Правила обращения со строительными отходами в г. Санкт-Петербурге (с изменениями на 20.10.2005).
- 13. Правила разработки и применения нормативов трудно устранимых потерь и отходов материалов в строительстве. РДС 82-202-96. М., 1996г.
- 14. Предельное количество накопления токсичных промышленных отходов на территории предприятия (организации)", Москва, 1995. Минздрав СССР Минжилкомхоз РСФСР.
- 15. Санитарная очистка и уборка населенных мест. Справочник. 1997
- 16.СанПиН 2.1.7.1287-03 «Санитарно-эпидемиологические требования к качеству почвы»
- 17.СанПиН 42-128-4690-88 «Санитарные правила и нормы содержания территорий населенных мест»

- 18.СанПиН 2.1.7.1386-03 «Санитарным правилам по определению класса опасности токсичных отходов производства и потребления».
- 19.СанПиН 2.1.7.1322-03 (введены 15.06.2003). «Гигиенические требования к размещению и обезвреживанию отходов производства и потребления».
- 20.CTO 00044807-001-2006.
- 21. Федеральный закон об отходах производства и потребления № 89-ФЗ от 24.06.1998. (с изменениями на 28 декабря 2016 года).
- 22. Федеральный классификационный каталог отходов, утвержденный приказом МПР России №445 от 18.07.2014г.
- 23. http://refoam.ru/?openstat=