

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИЛРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра гидрофизики и гидропрогнозов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (бакалаврская работа)

На тему

Фрактальная диагностика рядов скоростей речных потоков

Исполнитель

Александров Алексей Игоревич

(фамилия, имя, отчество)

Руководитель

кандидат технических наук, доцент (ученая степень, ученое звание)

> Гайдукова Екатерина Владимировна (фамилия, имя, отчество)

«К защите допускаю» Заведующий кафедрой

(подпись)

кандидат технических наук, доцент

(ученая степень, ученое звание) Хаустов Виталий Александрович

(фамилия, имя, отчество)

«09» More 20/72.

Санкт-Петербург 2017

	PFFMS
МИЛИАСТЕ	ОСТРО ОГРАЗОРАЦИЯ И ЦАУУИ РОССИЙСУОЙ ФЕЛЕРАЦИИ
	РСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИСКОИ ФЕДЕРАЦИИ
федерал	ьное государственное оюджетное ооразовательное учреждение
	высшего ооразования
	«РОССИИСКИИ ГОСУДАРСТВЕННЫИ
	ГИДРОМЕТЕОРОЛОГИЧЕСКИИ УНИВЕРСИТЕТ»
	Кафедра <u>гидрофизики и гидропрогнозов</u>
DIII	ГУСИНА ПИФИИ А ПИОННА П РАГОТА
DDII	ІУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА
	(бакалаврская работа)
Т	
На тему Ч	рактальная диагностика
nghon	
рядов	скоростей речных потоков
рядов Исполнитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ Александров Алексей Игоревич
рядов Исполнитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ Александров Алексей Игоревич (фамилия, имя, отчество)
рядов Исполнитель Руковолитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) канлилат технических наук доцент
рядов Исполнитель Руководитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание)
рядов Исполнитель Руководитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>Кандидат технических наук, доцент</u> (ученая степень, ученое звание) Гай лукова Екатерина Влалимировна
рядов Исполнитель Руководитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Гайдукова Екатерина Владимировна</u> (фамилия, имя, отчество)
рядов Исполнитель Руководитель	СКОРОСТЕЙ РЕЧНЫХ ПОТОКОВ <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>Кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Гайдукова Екатерина Владимировна</u> (фамилия, имя, отчество)
рядов Исполнитель Руководитель	Скоростей речных потоков <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Гайдукова Екатерина Владимировна</u> (фамилия, имя, отчество)
РЯДОВ Исполнитель Руководитель «К защите допу	СКАЮ»
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю»
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю» Скаю Скамона
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю» (подпись) Скаров Алексей Игоревич Александров Алексей Игоревич (фамилия, имя, отчество) Самилия, имя, отчество (фамилия, имя, отчество)
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю» Скаю» (подпись) Скаронализи имя, отческих наук, доцент (лодпись) Скаронализи имя, отческих наук, доцент
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю» (подпись) Кандидат технических наук, доцент (подпись) Кандидат технических наук, доцент (подпись) Кандидат технических наук, доцент (ученая степень, ученое звание)
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скоростей речных потоков <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Гайдукова Екатерина Владимировна</u> (фамилия, имя, отчество) <u>скаю</u> <u>скаю</u> <u>скаю</u> <u>скаю</u> <u>скано</u> <u>скано</u> <u>стодпись</u>) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Хаустов Виталий Александрович</u>
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скаю» Скаю» Сились) Силисо
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка «»	Скаю» Скаю» Сидпись) Сидина, имя, отчество) Сидина, имя, отчество)
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка «»	Санкт-Петербург
РЯДОВ Исполнитель Руководитель «К защите допу Заведующий ка	Скоростей речных потоков <u>Александров Алексей Игоревич</u> (фамилия, имя, отчество) <u>Кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Гайдукова Екатерина Владимировна</u> (фамилия, имя, отчество) (подпись) <u>кандидат технических наук, доцент</u> (ученая степень, ученое звание) <u>Хаустов Виталий Александрович</u> (фамилия, имя, отчество) 20с.

Содержание

		Стр.
	Введение	3
1	Фрактальная диагностика в методологии частично инфинитного	
	моделирования	5
1.1	Неустойчивость решения прогностической модели	5
1.2	Фрактальная диагностика временного ряда процесса	6
1.3	Расширение предметной области прогностической модели	8
2	Формирование рядов скоростей речных потоков	10
2.1	Инструментарий	10
2.2	Ряды скоростей речных потоков	12
3	Статистическая обработка рядов скоростей речных потоков	16
4	Фрактальная диагностика рядов скоростей речных потоков	23
4.1	Алгоритм фрактальной диагностики временных рядов	23
4.2	Анализ результатов	26
	Заключение	47
	Список использованных источников	48
	Приложение А – Ряды скоростей потока	50

Введение

Для описания процесса неустановившегося движения воды в открытых руслах используются дифференциальные уравнения, впервые полученные Сен-Венаном в 1871 году. Существуют различные формы записи этих уравнений.

Система уравнений одномерной гидравлической идеализации для деформируемых русел способна решать непростые задачи, связанные с прогнозами паводков и половодий, размывами в нижних бьефах ГЭС, сгоннонагонными явлениями и т. п.

Однако существуют проблемы, которые не представляется возможным решить посредством данной системы.Это образование в быстротоках периодических поверхностных волн; низкочастотные колебания скорости в реках и каналах при неизменных граничных условиях, грядообразование[1].

Система уравнений Сен-Венана:

$$\begin{split} \dot{t}_{0} - \frac{\partial h}{\partial x} &= \frac{Q^{2}}{C^{2}RF^{2}} + \frac{1}{gF}\frac{\partial Q}{\partial t} + \frac{2\alpha Q}{gF^{2}}\frac{\partial Q}{\partial x};\\ &\frac{\partial F}{\partial t} + \frac{\partial Q}{\partial x} = q_{1}(x,t);\\ &B\frac{\partial z}{\partial t} + \frac{\partial G}{\partial x} = q_{2}(x,t);\\ &G &= f(d,U,...). \end{split}$$

где *i*_• – уклон реки, ‰;

- *h* уровень воды, м;
- Q^2 расход воды, м³/с;
- *С*² коэффициент Шези;
- F площадь поперечного сечения, м²;
- *R* гидравлический радиус, м;
- q_1 модуль притока, м²/с.

Цель исследования заключается в выявлении числа переменных по рядам измеренных скоростей потока. Согласно теореме Такенса одна переменная несет информацию обо всех переменных рассматриваемой системы. Определить число переменных по ряду одной компоненты можно с помощью фрактальной диагностики.

Для достижения цели исследования необходимо решить следующие задачи:

а) провести измерения пульсации скоростей потока при различных соотношениях уклона поверхности и уклона дна;

б) провести статистическую обработку полученных рядов скоростей речных потоков;

в) выполнить фрактальную диагностику рядов скоростей речных потоков.

1 Фрактальная диагностика в методологии частично инфинитного моделирования

1.1 Неустойчивость решения прогностической модели

Общепринятые методы гидрологических расчетов основываются или на многолетних рядах наблюдений, или на эмпирических зависимостях, полученных путем обобщения данных наблюдений.

Практическая инженерная гидрология для статистического описания вероятностных распределений всех видов многолетнего речного стока семейство распределений К. Пирсона [2]. Ha использует ИХ основе определяются проектные значения расходов воды максимального стока, необходимые для проектирования и эксплуатации водохозяйственных объектов, расходы минимального стока, значения которых важны для отраслей, связанных с водоснабжением и другие задачи. Такой подход предполагает, что режим формирования стока, а также условия, влияющие на формирование стока – климат, антропогенное воздействие не изменяются в течение времени.

В гидропрогнозах процессы рассматриваются как эволюционные, а значит, в большинстве случаев любая методика оценки изменений водного режима опирается не на фактические ряды, а на генетическую модель формирования стока. Генетический метод основан на отыскании причинной обусловленности гидрологических явлений. Решение же моделей может быть и неустойчивым. Причем эта неустойчивость именно физического характера, она не имеет непосредственного отношения к неустойчивости статистических оценок моментов в связи с недостаточной продолжительностью наблюдений.

Для преодоления возникшей проблемы в РГГМУ была разработана методология частично инфинитного моделирования[3]. Неустойчивость рассматривается как атрибут процессов развития, а так как развитие системы означает появление у нее новых свойств (фазовых переменных), то необходимо

установить, какое число фазовых переменных надо вводить в модель формирования стока, чтобы расширенное (двух- или трехмерное) распределение плотности вероятности оказалось бы устойчивым. В работе В. В. Коваленко [3] предложены различные пути обеспечения устойчивости моделирования и прогнозирования случайных процессов формирования стока. Одним из таких путей является переход к многомерным вероятностным распределениям. Их размерность можно установить методами фрактальной диагностики, которая стала активно применяться в гидрологии [4].

1.2 Фрактальная диагностика временного ряда процесса

Фрактал(лат.fractus- дробленый) – термин, означающийгеометрическую фигуру, обладающую свойствомсамоподобия, то есть составленную из нескольких частей, каждая из которыхподобнавсей фигуре целиком. В более широком смысле под фракталами понимают множества точек вевклидовом пространстве, имеющие дробную метрическую размерность.

Метрической размерностью называют число, выражающее связь между измеряемым размером фигуры и единицей, лежащей в основе измерения.Метрическая размерность линий равна 1, метрическая размерность плоских фигур равна 2, а объемных фигур – 3, т.е. совпадает с их топологической размерностью. Но есть фигуры, метрическая размерность которых является дробной.

Если размерность объектов целая, ИХ размер будет оставаться одинаковым при переходе от больших единиц к меньшим и наоборот. Но, например, такой природный объект, как берег реки, озера или моря. Длина береговой линии будет разной в зависимости от того, измеряют ее сантиметрами километрами, метрами, или миллиметрами. Такаяприроднаялиния является чем-

топромежуточныммеждуматематическойлиниейиматематическойплоскостью и имеет размерность1<D<2.

Фрактальная размерность описывает степень заполненности изучаемым объектом своего пространства вложения. Этим объектом в нашем случае служит временной ряд расходов воды. Фрактальность ряда связывается с факторами. Если этих факторов порождающими его много И ОНИ равновероятны, то приходим к белому шуму, который заполняет пространство вложения наподобие ничем не связанных молекул газа, заполняющего объем. Если же во временном ряде существуют корреляции, то они образуют группировки членов ряда. Это приводит к тому, что у ряда появляется своя собственная размерность (фрактальная, дробная). По Б. Мандельброту, множество X называется фрактальным, если его размерность Xaycdop $\phi a D(X)$ не является целым числом[4]. Для определения корреляционной размерности необходимо подсчитать количество точек, попарные евклидовы расстояния между которыми меньше заданного расстояния r. При изменении r изменяется таких относительная доля C(r)точек. Величина C(r)называется корреляционной суммой (или корреляционным интегралом) и определяется как отношение числа точек, расстояния между которыми меньше *r*, к общему числу точек:

$$D = \lim_{r \to 0} (\ln C(r) / \ln r) \, .$$

Фрактальные размерности позволяет оценить минимальное число фазовых переменных, необходимых для устойчивого моделирования изучаемых процессов, путем определения размерности пространства вложения – целое число, непосредственно следующее за фрактальной размерностью[5].

Подробности ее вычисления см. [4,6,7].

1.3 Расширение предметной области прогностической модели

Для моделирования процесса формирования стока часто применяют уравнение:

$$\frac{dQ}{dt} = -\frac{1}{k\tau}Q + \frac{\dot{X}}{\tau},\tag{1.1}$$

гдеQ – расход воды, м³/с;

k – коэффициент стока;

т – время добегания, сек;

 \dot{X} – интенсивность осадков на водосбор, м³/с;

t – время, сек.

На рисунке 1 представлен алгоритм усложнения модели путем введения новых переменных.

Рисунок 1 – Формирование новых моделей в процессе познания [1]

В данной модели речной бассейн рассматривается с точки зрения одной предметной области – гидрологии. При этом в уравнении предполагается, что

задаваемые параметры: время добегания, коэффициент стока – являются постоянными величинами, но это действительно только в первом приближении. На самом деле, время добегания зависит от расхода воды. Коэффициент стока не всегда может быть константой, так как зависит от процесса насыщения грунта водой, следовательно, зависит от осадков. Модель может быть усложнена при более широком рассмотрении системы путем включения в нееи других параметров (фазовых переменных), например, температуры воздуха, испарения. При этом меняется размерность фазового пространства (см. рисунок 2). В монографиях В.В.Коваленко развитие интерпретируется как усложнение фазового пространства объекта, а фазовое пространство трактуется как матрица переменных, характеризующая состояние объекта[1].

Рисунок 2 – Изменение фазового пространства

Неустойчивость рассматривается как атрибут процессов развития. Если решение модели оказалось неустойчивым, это означает, что надо расширять фазовое пространство с новыми фазовыми переменными. В результате деятельности по изучению материального объекта выходят за рамки расширенной предметной области, решение вновь оказывается неустойчивым, и необходимо вводить следующую фазовую переменную.

Введение новой фазовой переменной порождает появление новой области исследования (предметной области). Так, например, формирование стока описывается семью параметрами, обеспечивающими взаимодействие

гидрологии с другими предметными областями (метеорологией, физикой, экономикой и т. д.).

2 Формирование рядов скоростей речных потоков

2.1 Инструментарий

Измерения производились с помощью гидрометрической вертушки ГР-99. Кафедрой гидрометрии была предоставлена вертушка без контактного устройства. Для фиксации отчетов использовалась аудиоколонка, самостоятельно переделанная для подключения к корпусу вертушки. Сигнал с аудиоколонки (каждые пол-оборота винта) фиксировался при помощи диктофона в формате *amr*. Прибор измерения показан на рисунке 3.

Рисунок 3 – Самодельное контактное устройство

Гидрометрическая вертушка ГР-99 осуществляет измерение скорости течения потока воды. Работа гидрометрических вертушек основана на наличии зависимости между скоростью вращения лопастного винта вертушки и скоростью набегающего водного потока. Основные части гидрометрической вертушки ГР-99 (см. рисунок 4):

- корпус;
- ходовая часть с лопастным винтом;
- хвостовое оперение;
- контактное устройство (система магнит геркон) (см. рисунок 5).

Рисунок 4 – Гидрометрическая вертушка ГР-99

Рисунок 5 – Оригинальное контактное устройство

При проведении измерений корпус вертушки был закреплен на деревянной штанге, что можно видеть на рисунке 6.

Рисунок 6 – Вертушка, закреплённая на деревянной штанге

2.2 Ряды скоростей речных потоков

В качестве исходных данных использовались результаты непрерывных измерений скоростей течения на реке Стрелка.

Водосбор р. Стрелки находится на территории Ломоносовского района и Гатчинского района Ленинградской области и Петродворцового района г. Санкт-Петербурга. Рассматриваемая территория расположена на северозападе Европейской части России (см. рисунок 7).

Рисунок 7 – Северо-запад европейской части России карта физическая

Площадь водосбора реки составляет 155 км².

Река Стрелка берет свое начало на Ижорской возвышенности у деревни Терволово Гатчинского района в 43 километрах юго-западнее Санкт-Петербурга.

Длина реки более 34 километров, средний уклон – 2,9%. Русло очень извилистое. Преобладающая ширина русла от 1 до 8 м. Глубина не превышает 1,5 метра.

Бассейн реки имеет продолговатую форму. Поверхность бассейна слабохолмистая.

Гидрографическая сеть бассейна представлена в основном мелиоративными канавами и небольшими ручьями, общее число которых 155 общей протяженностью 190 км [8].

Река Стрелка относится к равнинным рекам со смешанным питанием с преобладанием снегового.

Для измерений было выбрано три участка. Прямой участок реки (см. рисунок 9), участок с поворотом (см. рисунок 10), и участок, где происходит сужение русла (с подпором) (см. рисунок 11). Все три участка представлены на рисунке 8. На каждом участке измерения производились в течение двух часов.

Рисунок 8 – Спутниковый снимок участка реки, на котором проводились

измерения

Рисунок 9 – Прямой участок реки

Рисунок №10 – Участок реки с поворотом

Рисунок 11 – Участок реки, на котором происходит сужение русла

На рисунке 12 представлен фрагмент работы по установке гидрометрической вертушки.

Рисунок 12 – Установка вертушки

3 Статистическая обработка рядов скоростей речных потоков

Обработка полученных записей вызвала некоторые сложности, связанные с тем, что существует не так много программ способных преобразовывать звукоряд в числовой. Кроме того, в аудиозаписи присутствовали шумы, которые необходимо было устранить.

Для обработки данных было рассмотреномножество графических и аудио программ и приложений, среди которых:

«Аудиомастер» – многофункциональный аудиоредактор для работы с звуковыми файлами.

«*Graph*» – программа с открытым кодом, предназначенная для построения математических графиков.

«Audacity» –свободныймногоплатформенныйаудиоредактор звуковых файлов

«*BPM Analyzer*» – приложение, позволяющее узнать число ударов в минуту любой звуковой дорожки.

«*Wav2txt*» – это программа *Windows*, которая преобразует аудиофайл формата WAV в текстовый файл с разделителями табуляции, подходящий для загрузки в электронную таблицу или другую программу анализа.

«AdobeAudition» – аудиоредактор, разработанный фирмой Adobe. Позволяет работать с одиночными аудио файлами, а также может выступать в качестве многодорожечного редактора. Программа поддерживает различные форматы, в том числеформат amr.

«*Wavview*» – приложение для преобразования *WAV* файла в форматы *txt*, *xls*. Поддерживаются форматы 8-bit/16-bit *PCM*, с любым количеством каналов.

В итоге, для решения данной задачи, подошли редакторы «AdobeAudition» и «Wavview».

Обработка происходила поэтапно. В первую очередь аудиозапись конвертировалась из формата *amr*в *wav*.

Затем, припомощифункций Adaptive Noise Reduction, Noise Reduction (process) в Adobeaudition устранялись фоновые и широкополосные шумы. На рисунке 13 видно, что амплитуда сигналов поступающих с гидровертушки сильно выделяется на фоне шумов

Рисунок 13 – Пятисекундный фрагмент записи

После первичной обработки запись фрагментировалась и при помощи приложения *Wavview* преобразована в формат *xls*. Пример результата преобразования показан на рисунке 14. На рисунке видно, что программа создаёт числовой ряд, преобразованный из аудиофайла.

Рисунок 14 – Пример преобразования из формата wav в xls в приложении

Wavview

Из-за высокой детализации записи в формате *wav* и принципа работы программы *Wavview*, полученные ряды включали в ceбя много дублированных значений. Поэтому после преобразования, в *Excel* был произведен поиск и фильтрация повторяющихся значений. В результате удалось получить необходимые отчеты. Длина одного двухчасового ряда включает в ceбя приблизительно тридцать тысяч значений. В таблице 1 представлен фрагмент двухчасового ряда.

	Отчет сигнала поступающего		
N⁰	каждые пол-оборота вертушки	секунды	Количество оборотов
1	0,095	0	1
2	0,280667	_	2
3	0,450833	_	3
4	0,765833	_	4
5	1,035667	1	5
6	1,230833	_	6
7	1,390333	_	7
8	1,589333	—	8
9	1,75	_	9
10	1,961167	_	10
11	2,15	2	11
12	2,430833	_	12
13	2,5855	—	13
14	2,77	—	14
15	2,975167	—	15
16	3,175667	3	16
17	3,355	—	17
18	3,617333	—	18
19	3,807333	—	19
20	3,976167	_	20
21	4,1525	4	21
22	4,420833	_	22
23	4,585833	_	23
24	4,755833	_	24
25	4,987667	_	25

Таблица 1 – Фрагмент двухчасового ряда

	Отчет сигнала поступающего		
N⁰	каждые пол-оборота вертушки	секунды	Количество оборотов
26	5,15	5	26
27	5,395167	-	27
28	5,571	-	28
29	5,755333	-	29
30	5,975333	-	30

Затем полученные ряды были осреднены по тридцать, шестьдесят и сто секунд (см. Приложение А) для дальнейшей обработки по методу периодограмманализаА.Шустера.

Метод открыт в 1898г. и нашел широкое применение в практике различных геофизических исследований, как один из основных методов выделения скрытых периодичностей во временных рядах. Следует указать на одно из важных достоинств метода, а именно, его более высокую избирательность по сравнению с методом спектрального анализа. Вследствие, этого, особенно при анализе коротких рядов наблюдений, периодограммный метод может иметь и самостоятельное значение.

Рассмотрим краткие теоретические предпосылки метода Шустера. Известно, что любую функцию *f*(*t*) можно представить рядом Фурье:

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nqt + b_n \sin nqt),$$
(3.1)

где *a*₀ – среднее ряда значений;

$$q=\frac{2\pi}{N};$$

N – число наблюденных моментов f(t).

Точность функции f(t) будет определяться числом измерений (наблюдений). Вне пределов этого ряда его значения будут повторяться, так как входящие в него периоды являются кратными взятому промежутку и никакого реального значения не имеют.

Однако при изучении внутренней структуры исследуемого ряда необходимо найти действительные периоды. Для этого выражение записывается в виде:

$$f(t) = a_0 + A_1 \sin(q_1 t + \varphi_1) + A_2 \sin(q_2 t + \varphi_2) + \ldots + l(t), \qquad (3.2)$$

где $q_1 = \frac{2\pi}{T_1}, q_2 = \frac{2\pi}{T_2}, \dots;$

 T_1 , $T_2...$ – действительные периоды;

 A_1 , A_2 – их амплитуды;

l(t) – некоторая неизвестная ограниченная непериодическая функция.

Данный ряд менее точно выражает функцию f(t), чем ряд Фурье, однако он может дать более или менее точно приближенные значения для исследуемой функции внепределов рассматриваемого ряда.

Чтобы найти параметры периодичности *Т*в исследуемом ряду, весь ряд данных делят на отрезки величиной с предполагаемый период *T*(остаток отбрасывается). Здесь один отрезок помещается под другим и производится суммирование по вертикальным столбцам:

$$x_0 x_1 x_2 \dots x_{T-1}$$

 $x_T x_{T+1} x_{T+2} \dots \dots x_{2T-1}$

 $\underline{x}_{(m-1)T}\underline{x}_{(m-1)T+1}\underline{x}_{(m-1)T+2}\dots \underline{x}_{mT-1}$ Суммы $\sum_{0}\sum_{1}\sum_{2}\dots \sum_{T-1}$ Среднее $\overline{x}_{0}\overline{x}_{1}\overline{x}_{2}\dots \overline{x}_{T-1}$ Далее вычисляются a_{T} , b_{T} , A_{T} и ϕ_{T} :

....

$$a_T = \frac{2}{T} \sum_{t=0}^{T-1} x_t \cos\left(\frac{2\pi}{T}t\right),$$
(3.3)

$$b_T = \frac{2}{T} \sum_{t=0}^{T-1} x_t \cos(\frac{2\pi}{T}t), \qquad (3.4)$$

По вычисленным амплитудам и фазам для различных пробных периодов строится график, где по оси абсцисс откладываются периоды, а по оси ординат – амплитуды соответствующих периодов. Получается периодограмма. Максимумы на периодограмме указывают на возможные периоды, характеризующие закономерности данного ряда.

При разложении в ряд Фурье ограниченного числа данных могут быть получены максимумы для периодов, которые вовсе не присущи данному ряду, так называются ложные периоды. Они получаются в виде вторичных максимумов. Для их обнаружения Шустером выведена формула:

$$S_1 = S\left(1 \pm \frac{1,43}{n}\right),\tag{3.5}$$

где *n* – число вошедших в ряд периодов.

Эти ложные периоды отличаются от истинных тем, что с увеличением ряда соответствующие им максимумы на периодограмме приближаются к максимуму истинного периода, который в отличие от них остается без изменения.

Для обнаруженной определения истинности В каком-либо ряду периодичности Шустер предлагает использовать величину отношения амплитуды этого периода к ее математическому ожиданию. Малые величины этого отношения дают основание предполагать, что выявленная периодичность является случайной. Чем больше амплитуда будет превышать математическое ожидание, тем вероятнее наличие вариации с данным периодом в исследуемом ряду.

По осредненным рядам были определены периоды по методу Шустера, результаты показаны в таблицах 2 и 3.

Из таблицы 2 видно, что с увеличением периода осреднения незначительно увеличивается период, но уменьшается достоверность амплитуды. В таблице 3 показаны выбранные периоды для каждого участка.

	Стрелка 1			C	трелка	2	Стрелка 3		
	30	60	100	30	60	100	30	60	100
A	1,45	2,91	3,48	1,45	4,02	7,47	1,78	3,37	5,92
k	2,57	2,60	1,86	1,27	1,26	1,05	1,54	1,22	1,13
Достоверность,	99	99	93	72	72	55	82	70	62
%									
Период	16	8	9	16	12	10	23	17	10
Минуты	8	8	15	8	12	17	12	17	17

Таблица 2 – Результаты обработки рядов по методу Шустера

Были выбраны большие периоды, так как при истинности меньших периодов они будут включены в большие. Наоборот такая теория не действует.

Таблица 3 – Осреднение результатов по участкам

Период Участок	30	60	100	Период
1	8	8	15	15
2	8	12	17	17
3	12	17	17	17

Получено, что реки Стрелка низкочастотный период пульсации скоростного потока равен 17 минутам. Период не зависит от соотношения уклонов дна и водной поверхности.

4 Фрактальная диагностика рядов скоростей речных потоков

4.1 Алгоритм фрактальной диагностики временных рядов

Алгоритм фрактальной диагностики временных рядовпредставлен в виде таблицы 4.

Таблица 4 Алгоритм расчета фрактальной размерности

1)	4ф	1980	Ряд						
		2220							
		2960							
		2930							
		2150							
		1940							
		2420							
		2670							
		2600							
		2430	4ф-1=3						
		2310	1						
2)	1 φ , tau=0								
		1	2	3	4	5	6	7	8
		1980	2220	2960	2930	2150	1940	2420	2670
		ABS(1-1)	ABS(1-2)	ABS(1-3)	ABS(1-4)	ABS(1-5)	ABS(1-6)	ABS(1-7)	ABS(1-8)
			ABS(2-2)	ABS(2-3)	ABS(2-4)	ABS(2-5)	ABS(2-6)	ABS(2-7)	ABS(2-8)
			и т. д.			•			
		0	240	980	950	170	40	440	690
			0	740	710	70	280	200	450
				0	30	810	1020	540	290
					0	780	990	510	260
						0	210	270	520
							0	480	730
								0	250
3)	Мах из тр	еугольной мат	рицы без пер	вой строки		•			
	max	1020							
4)	Диапазон	ы							
	r = 0-255-	510-766-1020							
	Сколько з	начений в диа	пазоне						
	0-255	7							
	0-510	15							
	0-766	21							
	0-1020	27							
5)			с	ln c	ln r	Логарифм ко	нца диапазон	a	
	0-255	7	0.26	-1.35	5.54	ln(255)			
	0-510	15	0.56	-0.59	6.23	ln(510)			
	0-766	21	0.78	-0.25	6.64	ln(766)			
	0-1020	27	1	0	6.93	$\ln(1020)$			

в долях от 1 Например 27 - 1

6)	tau=1									
	1980	2220	2220	2960	2930	2150	1940	2420	2670	2600
	2220	2960	0	740	710	70	280	200	450	380
	2960	2930		0	30	810	1020	540	290	360
	2930	2150			0	780	990	510	260	330
	2150	1940				0	210	270	520	450
	1940	2420					0	480	730	660
	2420	2670						0	250	180
	2670	2600							0	70
	2600	==>								
	2430									
	2310									

21 - x x = (21*1)/27x = 21/27

7) $2\phi = 1\phi + 1$

240+740 980+710

0	980	1690	1020	450	240	890	1070
	0	770	1520	1090	820	490	810
		0	810	1800	1530	800	620
			0	990	1260	1030	710
				0	690	1000	1180
					0	730	910
						0	320

 $\max_{r=0.450-900-1350-1800}$

_

r = 0.450.900-1350-1800							
		с	ln c	ln r			
0-450	2	0.07	-2.60	6.11			
0-900	13	0.48	-0.73	6.80			
0-1350	23	0.85	-0.16	7.21			
0-1800	27	1.00	0	7.50			

8) tau=2

			2960	2930	2150	1940	2420	2670	2600	2430
	1980	2960	0	30	810	1020	540	290	360	530
	2220	2930		0	780	990	510	260	330	500
	2960	2150			0	210	270	520	450	280
	2930	1940				0	480	730	660	490
	2150	2420					0	250	180	10
	1940	2670						0	70	240
	2420	2600							0	170
	2670	2430								
	2600 =	=>								
	2430									
	2310									
9)	$3\varphi = 2\varphi + 2$			30+980	810+1690	1	1		r	1
			0	1010	2500	2040	990	530	1250	1600
				0	1550	2510	1600	1080	820	1310
					0	1020	2070	2050	1250	900
						0	1470	1990	1690	1200
							0	940	1180	1190
								0	800	1150
									0	490
			max	2510						
			r = 0-628-	-1255-1883-25	10			1		
					с	ln c	ln r			
			0-628	2	0.07	-2.60	6.44			
			0-1255	16	0.59	-0.52	7.13			
			0-1883	22	0.81	-0.20	7.54			
			0-2510	27	1	0	7.83			
10)	tau=3									
			2930	2150	1940	2420	2670	2600	2430	2310
	1980	2930	0	780	990	510	260	330	500	620

2220	2
2960	19
2930	24
2150	20
1940	20
2420	24
2670	23
2600	==>
2430	
2310	

2150	0	210	270	520	450	280	160
1940		0	480	730	660	490	370
2420			0	250	180	10	110
2670				0	70	240	360
2600					0	170	290
2430						0	120
2310							
=>							

11) $4\phi = 3\phi + 3$

1010+780 2500+990

0	1790	3490	2550	1250	860	1750	2220
	0	1760	2780	2120	1530	1100	1470
		0	1500	2800	2710	1740	1270
			0	1720	2170	1700	1310
				0	1010	1420	1550
					0	970	1440
						0	610

 $\begin{array}{ll} max & 3490 \\ r = 0{-}872{-}1745{-}2618{-}3490 \end{array}$

		с	ln c	ln r
0-872	2	0.07	-2.60	6.77
0-1745	17	0.63	-0.46	7.46
0-2618	24	0.89	-0.12	7.87
0-3490	27	1	0	8.16

12)

1ф		2ф		3ф		4ф	
ln r	ln c	ln r	ln c	ln r	ln c	ln r	ln c
5.54224	-1.349926	6.1098	-2.60269	6.442142	-2.6391	6.77165	-2.6391
6.23539	-0.587786	6.803	-0.73089	7.135289	-0.5596	7.4648	-0.499
6.64086	-0.251314	7.2084	-0.16034	7.540754	-0.2412	7.87026	-0.1542
6.92854	0	7.4961	0	7.828436	0	8.15794	0

13) d=delta(ln c)/delta(ln r)

	d(ln c)	d(ln r)	d	
1	0.76	0.69		1.10
2	1.87	0.69		2.70
3	2.08	0.69		3.00
4	2.14	0.69		3.09

4.2 Анализ результатов

Результат фрактальной диагностики ряда, осреднённого по 9 минут. Прямой участок реки.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3.На рисунке 15 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т. к. фрактальная размерность равняется 0,74.

Рисунок 15 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 16 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 16 – Кривая насыщения при расчетных параметрах 4-3

Участок реки с сужением русла.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 17 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 17 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 18 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 18 – Кривая насыщения при расчетных параметрах 4–3

Участок реки с поворотом.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 19 видно, что кривая

насыщения выходит на прямую линию, но затем продолжает возрастать, что не позволяет выявить число фазовых переменных.

Рисунок 19 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 5. На рисунке 20 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,71

Рисунок 20 – Кривая насыщения при расчетных параметрах 3–5

Результат фрактальной диагностики ряда, осреднённого по 8 минут. Прямой участок реки.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 21 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 21 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 4. На рисунке 22 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 22 – Кривая насыщения при расчетных параметрах 3-4

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 23 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 23 – Кривая насыщения при расчетных параметрах 4–3

Участок реки с сужением русла.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 24 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 24 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3.На рисунке 25 видно, что кривая насыщения не выходит на прямую линию.

Рисунок №25 – Кривая насыщения при расчетных параметрах 4–3

Участок реки с поворотом.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 26 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,55

Рисунок 26 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 4. На рисунке 27 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 27 – Кривая насыщения при расчетных параметрах 3-4

Результат фрактальной диагностики ряда, осреднённого по 7 минут. Прямой участок реки.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 28 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,77.

Рисунок 28 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 29 видно, что кривая насыщения выходит на прямую линию, но затем начинает возрастать, что не позволяет выявить число фазовых переменных.

Рисунок 29 – Кривая насыщения при расчетных параметрах 4-3

Участок реки с сужением русла.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 30 видно, что кривая насыщения выходит на прямую линию, но затем, если рассмотреть рисунок 31, с изменением числа сдвижек продолжает возрастать.

Рисунок 30 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 4.На рисунке 31 видно, что кривая насыщения выходит на прямую линию, но затем продолжает возрастать.

Рисунок 31 – Кривая насыщения при расчетных параметрах 3-4

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 4. На рисунке 32 видно, что кривая насыщения выходит на прямую линию, но затем продолжает возрастать. При этом нельзя выявить число фазовых переменных достаточных системе.

Рисунок 32 – Кривая насыщения при расчетных параметрах 4-4

Участок реки с поворотом.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 33 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,53.

Рисунок 33 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 34 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 34 – Кривая насыщения при расчетных параметрах 4–3

Результат фрактальной диагностики ряда, осреднённого по 6 минут. Прямой участок реки.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 35 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,531.

Рисунок 35 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 36 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,57.

Рисунок 36 – Кривая насыщения при расчетных параметрах 4–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 4. На рисунке 37 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 37 – Кривая насыщения при расчетных параметрах 4-4

Участок реки с сужением русла.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 38 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 38 – Кривая насыщения при расчетных параметрах 3-3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 39 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 39 – Кривая насыщения при расчетных параметрах 4-3

При расчете фрактальной размерности было взято: число фазовых переменных – 5, число сдвижек – 3. На рисунке 40 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 40 – Кривая насыщения при расчетных параметрах 5–3

Участок реки с поворотом.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3.На рисунке 41 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,54.

Рисунок 41 – Кривая насыщения при расчетных параметрах 3-3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 4.На рисунке 42 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,56.

Рисунок 42 – Кривая насыщения при расчетных параметрах 3–4

Результат фрактальной диагностики ряда, осреднённого по 5 минут.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 43 видно, что кривая насыщения не выходит на прямую линию, а продолжает возрастать.

Рисунок 43 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 44 видно, что кривая насыщения выходит на прямую линию, фрактальная размерность равняется 1,01, значит системе достаточно двух фазовых переменных.

Рисунок 44 – Кривая насыщения при расчетных параметрах 4–3

При расчете фрактальной размерности было взято: число фазовых переменных – 5, число сдвижек – 3. На рисунке 45 видно, что кривая насыщения выходит на прямую линию, фрактальная размерность равняется 1,19, значит системе достаточно двух фазовых переменных.

Рисунок 45 – Кривая насыщения при расчетных параметрах 5–3

Участок реки с сужением русла.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3. На рисунке 46 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 46 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3.На рисунке 47 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,39.

Рисунок 47 – Кривая насыщения при расчетных параметрах 4–3

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 4. На рисунке 48 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 48 – Кривая насыщения при расчетных параметрах 4–4

Участок реки с поворотом.

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 3.На рисунке 49 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,46.

Рисунок 49 – Кривая насыщения при расчетных параметрах 3–3

При расчете фрактальной размерности было взято: число фазовых переменных – 3, число сдвижек – 4.На рисунке 50 видно, что кривая насыщения выходит на прямую линию, значит системе достаточно одной фазовой переменной, т.к. фрактальная размерность равняется 0,48.

Рисунок 50 – Кривая насыщения при расчетных параметрах 3–4

При расчете фрактальной размерности было взято: число фазовых переменных – 4, число сдвижек – 3. На рисунке 51 видно, что кривая насыщения не выходит на прямую линию.

Рисунок 51 – Кривая насыщения при расчетных параметрах 4-3

Обобщенные результаты показаны в таблицах 5-7.

Таблица 5 – Фрактальные размерности при разном осреднении и разных параметрах расчета для прямого участка реки

Осреднение	2	3	4	5	6	7	8	9
Параметры	МИН							
3–3	нет	нет	0,98	0,72	0,60	0,86	0,54	0,74
3–4	нет	нет	_	1,21	_	_	нет	_
4–3	_	1,27	1,01	1,00	0,64	0,82	0,57	0,75
5–3	нет	_	1,03	1,15	_	_	_	_
6–3	нет	1,40	_	_	_	_	_	_
4-4	нет	_	1,22	1,33	нет	_	_	_
5–4	2,36	1,51	1,48	_	_	_	_	_
6–4	2,51	1,53	_	_	_	_	_	_
7–3	_	1,43	_	_	_	_	_	_
Размерность								
пространства	3	2	2	2	1	1	1	1
вложения								

Таблица 6 – Фрактальные размерности при разном осреднении и разных параметрах расчета для участка реки с островом (сужением русла).

Осреднение	2	3	4	5	6	7	8	9
Параметры	МИН	МИН						
3–3	0,37	0,41	0,41	0,40	0,44	0,37	0,38	нет
3-4	_	_	0,40	_	0,36	0,31	_	_
4–3	0,35	0,41	_	0,38	0,39	нет	0,29	нет
5–3	0,37	_	0,36	_	0,40	_	нет	_
6–3	_	0,39	_	_	0,40	_	_	_
4-4	0,40	_	0,35	0,33	нет	0,32	_	_
5-4	_	_	0,40	_	_	_	_	_
8–3	0,61	_	_	_	_	_	_	_
3–5	_	_	_	_	нет	_	_	_
Размерность								
пространства	1	1	1	1	1	1	1	_
вложения								

Таблица 7 – Фрактальные размерности при разном осреднении и разных параметрах расчета для участка реки с поворотом.

Осреднение	2	3	4	5	6	7	8	9
Параметры	МИН							
3–3	0,61	0,59	0,62	0,46	0,54	0,53	0,56	0,45
3–4	—	0,57	0,61	0,48	0,56	нет	0,52	0,54
3–5	_	_	_	_	_	_	_	0,80
4–5	_	_	_	_	_	_	_	0,71
4–3	0,61	0,63	0,60	0,52	0,62	0,44	0,35	0,43
5–3	0,59	_	_	_	0,56	_	_	_

Осреднение	2	3	4	5	6	7	8	9
Параметры	МИН	МИН	МИН	МИН	МИН	МИН	МИН	МИН
6–3	_	0,65	_	_	_	_	_	_
4-4	0,62	0,57	0,62	_	0,55	_	_	_
5-4	_	_	_	0,30	_	_	_	_
Размерность								
пространства	1	1	1	1	1	1	1	1
вложения								

Так как скорости потока измерялись всего 2 часа, то осреднять значения пульсации можно только до 9 минут для использования методики определения фрактальнойразмерности. При таком осреднении длина ряда получилась 13 значений. Это недостаточно для получения надежных результатов.

Получено, что для прямого участка p. Стрелка при разном осреднении требуется разное число фазовых переменных для описания скоростного потока. При меньшем осреднении большее число переменных. Вероятно, система чувствует большее число соседей или высокие частоты пульсации скоростей.

Для участка с сужением русла и поворотом получено, что размерность пространства вложения равно единице для любого осреднения. Предполагалось, что ряды скоростей, полученные при разном соотношении уклонов дна и водной поверхности, будут своей фрактальной размерностью чувствовать эту разницу. Разница фрактальных размерностей почти в два раза, но на числе фазовых переменных это не отразилось: размерность пространства вложения равно единице.

Заключение

В ходе выполнения работы были получены следующие результаты:

a) проведены измерения пульсации скоростей потока при различных соотношениях уклона поверхности и уклона дна;

б) проведена обработка полученных рядов скоростей речных потоков;

в) выполнена фрактальная диагностика рядов скоростей речных потоков.

Получено, чторяды скоростей не чувствуют разницы в уклонах дна и водной поверхности.

Для более надежных результатов и достоверных выводов необходимы более продолжительные ряды наблюдений за скоростью потока.

Список использованных источников

1 Коваленко, В.В. Частично инфинитный механизм турбулизации природных и социальных процессов [Текст] / В. В. Коваленко.– СПб.: изд. РГГМУ, 2006. – 166 с.

2 СΠ 33-101-2003 Свод правил по проектированию И строительству.Определение основных расчетных гидрологических характеристик[Электронный pecypc] Режим http://docs.cntd.ru/ доступа: -Москва: document/1200035578 Техэксперт, 2015. (Дата обращения: 18.05.2017).

3 Коваленко, В.В. Частично инфинитная гидрология[Текст] / В.В. Коваленко – СПб.: изд. РГГМУ, 2007. – 230с.

4 Коваленко, В. В. Прогнозирование изменений фрактальной размерности многолетнего речного стока [Текст] / В. В. Коваленко, Е. В.Гайдукова, А. Б. Г Куасси // География и природные ресурсы, № 4,2008. –С. 136–143.

5 Гайдукова, Е.В. Фрактальнаядиагностикалетнее осеннегоминимального стока России [Текст] / Е.В.Гайдукова, М.Н. Громова //
 Ученые записки РГГМУ, № 21, 2010. –С. 20–24.

6 Божокин, С.В. Фракталы и мультифракталы. [Текст] / С.В. Божокин, Д.А. Паршин. – СПб: изд. СПбГТУ, 2000 – 134 с.

7 Коваленко, В.В. Диагностирование неустойчивости формирования и фрактальной размерности многолетних рядов летне-осенней межени Восточной Сибири методами частично инфинитной гидрологии [Текст] / В.В. Коваленко, Е.В. Гайдукова, М.Н. Громова, В.С. Девятов, А. Хамлили // Ученые записки РГГМУ, № 13, 2008. –С. 30–39.

8 Овчаренко, В. В. Река Стрелка [Электронный ресурс] Режим доступа: http://www.baltfriends.ru/node/30– Межрегиональная общественная молодежная экологическая организация, 2008 (Дата обращения 2.03.2017).

9 Коваленко, В.В. Моделирование гидрологических процессов [Текст] / В.В. Коваленко, Н. В. Викторова, Е. В. Гайдукова. – СПб.: изд. РГГМУ, 2006. – 560 с.

10 Викторова, Н.В. Исследование применимости стохастической модели формирования летне-осеннего и зимнего минимального стока для оценки гидрологических последствий антропогенного изменения климата: Автореф. дис. канд. техн. наук[Текст] / Н.В.Викторова – СПб, 2002. – 285 с.

11 Коваленко, В.В. Критерии устойчивого развития гидрологических процессов и картирование зон ожидаемых аномалий параметров годового стока рек СНГ при антропоген- ном изменении климата [Текст] / В.В Коваленко, В.А Хаустов // Метеорология и гидрология,№ 12, 1998. –С. 96–112.

12 . Шредер, М. Фракталы, хаос, степенные законы [Текст] / М. Шредер – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005. – 528 с.

 Ресурсы поверхностных вод СССР: Гидрологическая изученность.
 Т. 2. Карелия и Северо-Запад [Текст] / под ред. Е. Н. Таракановой. – Л.: Гидрометеоиздат, 1965. – 700 с.

14 Пространственно-временные колебания стока рек СССР [Текст] / под ред. А.В. Рождественского. – Л.: Гидрометеоиздат, 1998.

15 Георгиевский, Ю. М. Гидрологические прогнозы Текст. / Ю.М. Георгиевский, С.В. Шаночкин. –СПб.: Изд. РГГМУ, 2007. – С.436.

Приложение А – Ряды скоростей потока

Таблица А.1 – Осредненные по тридцать секунд ряды скоростей речных

N⁰	секунды	количество оборотов	скорость течения
1	30	95	0,364
2	60	88	0,337
3	90	88	0,337
4	120	83	0,318
5	150	92	0,353
6	180	81	0,311
7	210	96	0,368
8	240	87	0,334
9	270	90	0,345
10	300	87	0,334
11	330	85	0,326
12	360	93	0,357
13	390	88	0,337
14	420	90	0,345
15	450	91	0,349
16	480	88	0,337
17	510	94	0,360
18	540	87	0,334
19	570	86	0,330
20	600	90	0,345
21	630	88	0,337
22	660	89	0,341
23	690	80	0,307
24	720	85	0,326
25	750	79	0,303
26	780	89	0,341
27	810	93	0,357
28	840	88	0,337
29	870	90	0,345
30	900	93	0,357
31	930	97	0,372
32	960	85	0,326
33	990	101	0,387
34	1020	91	0,349
35	1050	88	0,337
36	1080	82	0,314

потоков, полученные на прямом участке реки

No	секунды	количество оборотов	скорость течения
37	1110	81	0,311
38	1140	90	0,345
39	1170	82	0,314
40	1200	93	0,357
41	1230	88	0,337
42	1260	88	0,337
43	1290	80	0,307
44	1320	77	0,295
45	1350	77	0,295
46	1380	84	0,322
47	1410	82	0,314
48	1440	84	0,322
49	1470	82	0,314
50	1500	88	0,337
51	1530	85	0,326
52	1560	88	0,337
53	1590	83	0,318
54	1620	91	0,349
55	1650	85	0,326
56	1680	85	0,326
57	1710	83	0,318
58	1740	82	0,314
59	1770	91	0,349
60	1800	89	0,341
61	1830	97	0,372
62	1860	101	0,387
63	1890	89	0,341
64	1920	81	0,311
65	1950	85	0,326
66	1980	99	0,380
67	2010	80	0,307
68	2040	81	0,311
69	2070	88	0,337
70	2100	84	0,322
71	2130	92	0,353
72	2160	75	0,288
73	2190	84	0,322
74	2220	84	0,322
75	2250	85	0,326
76	2280	84	0,322
77	2310	86	0,330
78	2340	85	0,326

N⁰	секунды	количество оборотов	скорость течения
79	2370	88	0,337
80	2400	89	0,341
81	2430	89	0,341
82	2460	80	0,307
83	2490	85	0,326
84	2520	93	0,357
85	2550	81	0,311
86	2580	92	0,353
87	2610	77	0,295
88	2640	78	0,299
89	2670	80	0,307
90	2700	92	0,353
91	2730	88	0,337
92	2760	86	0,330
93	2790	85	0,326
94	2820	90	0,345
95	2850	90	0,345
96	2880	83	0,318
97	2910	94	0,360
98	2940	85	0,326
99	2970	83	0,318
100	3000	82	0,314
101	3030	89	0,341
102	3060	86	0,330
103	3090	83	0,318
104	3120	80	0,307
105	3150	85	0,326
106	3180	87	0,334
107	3210	84	0,322
108	3240	95	0,364
109	3270	86	0,330
110	3300	80	0,307
111	3330	85	0,326
112	3360	89	0,341
113	3390	86	0,330
114	3420	87	0,334
115	3450	85	0,326
116	3480	87	0,334
117	3510	81	0,311
118	3540	90	0,345
119	3570	92	0,353
120	3600	86	0,330

No	секунды	количество оборотов	скорость течения
121	3630	87	0,334
122	3660	77	0,295
123	3690	90	0,345
124	3720	87	0,334
125	3750	86	0,330
126	3780	93	0,357
127	3810	90	0,345
128	3840	79	0,303
129	3870	96	0,368
130	3900	79	0,303
131	3930	86	0,330
132	3960	86	0,330
133	3990	87	0,334
134	4020	88	0,337
135	4050	84	0,322
136	4080	87	0,334
137	4110	76	0,291
138	4140	83	0,318
139	4170	84	0,322
140	4200	88	0,337
141	4230	99	0,380
142	4260	86	0,330
143	4290	84	0,322
144	4320	91	0,349
145	4350	80	0,307
146	4380	76	0,291
147	4410	88	0,337
148	4440	81	0,311
149	4470	86	0,330
150	4500	86	0,330
151	4530	87	0,334
152	4560	79	0,303
153	4590	92	0,353
154	4620	87	0,334
155	4650	90	0,345
156	4680	86	0,330
157	4710	84	0,322
158	4740	79	0,303
159	4770	93	0,357
160	4800	85	0,326
161	4830	87	0,334
162	4860	90	0,345

N⁰	секунды	количество оборотов	скорость течения
163	4890	81	0,311
164	4920	85	0,326
165	4950	84	0,322
166	4980	88	0,337
167	5010	82	0,314
168	5040	85	0,326
169	5070	86	0,330
170	5100	85	0,326
171	5130	93	0,357
172	5160	89	0,341
173	5190	87	0,334
174	5220	81	0,311
175	5250	91	0,349
176	5280	85	0,326
177	5310	90	0,345
178	5340	84	0,322
179	5370	86	0,330
180	5400	82	0,314
181	5430	84	0,322
182	5460	86	0,330
183	5490	87	0,334
184	5520	88	0,337
185	5550	90	0,345
186	5580	91	0,349
187	5610	85	0,326
188	5640	83	0,318
189	5670	90	0,345
190	5700	84	0,322
191	5730	88	0,337
192	5760	92	0,353
193	5790	94	0,360
194	5820	83	0,318
195	5850	81	0,311
196	5880	96	0,368
197	5910	87	0,334
198	5940	80	0,307
199	5970	84	0,322
200	6000	93	0,357
201	6030	85	0,326
202	6060	79	0,303
203	6090	91	0,349
204	6120	81	0,311

No	секунды	количество оборотов	скорость течения
205	6150	88	0,337
206	6180	85	0,326
207	6210	88	0,337
208	6240	94	0,360
209	6270	81	0,311
210	6300	89	0,341
211	6330	88	0,337
212	6360	87	0,334
213	6390	89	0,341
214	6420	90	0,345
215	6450	77	0,295
216	6480	85	0,326
217	6510	87	0,334
218	6540	86	0,330
219	6570	86	0,330
220	6600	77	0,295
221	6630	86	0,330
222	6660	89	0,341
223	6690	89	0,341
224	6720	94	0,360
225	6750	89	0,341
226	6780	80	0,307
227	6810	81	0,311
228	6840	85	0,326
229	6870	91	0,349
230	6900	73	0,280
231	6930	78	0,299
232	6960	94	0,360
233	6990	86	0,330
234	7020	76	0,291
235	7050	81	0,311
236	7080	95	0,364
237	7110	87	0,334
238	7140	86	0,330
239	7170	88	0,337
240	7200	87	0,334

Таблица А.2 – Осредненные по шестьдесят секунд ряды скоростей речных потоков, полученные на прямом участке реки

N⁰	секунды	количество оборотов	скорость течения
1	60	183	0,351
2	120	171	0,328
3	180	173	0,332
4	240	183	0,351
5	300	177	0,339
6	360	178	0,341
7	420	178	0,341
8	480	179	0,343
9	540	181	0,347
10	600	176	0,337
11	660	177	0,339
12	720	165	0,316
13	780	168	0,322
14	840	181	0,347
15	900	183	0,351
16	960	182	0,349
17	1020	192	0,368
18	1080	170	0,326
19	1140	171	0,328
20	1200	175	0,335
21	1260	176	0,337
22	1320	157	0,301
23	1380	161	0,309
24	1440	166	0,318
25	1500	170	0,326
26	1560	173	0,332
27	1620	174	0,334
28	1680	170	0,326
29	1740	165	0,316
30	1800	180	0,345
31	1860	198	0,380
32	1920	170	0,326
33	1980	184	0,353
34	2040	161	0,309
35	2100	172	0,330
36	2160	167	0,320
37	2220	168	0,322
38	2280	169	0,324
39	2340	171	0,328

No	секунды	количество оборотов	скорость течения
40	2400	177	0,339
41	2460	169	0,324
42	2520	178	0,341
43	2580	173	0,332
44	2640	155	0,297
45	2700	172	0,330
46	2760	174	0,334
47	2820	175	0,335
48	2880	173	0,332
49	2940	179	0,343
50	3000	165	0,316
51	3060	175	0,335
52	3120	163	0,312
53	3180	172	0,330
54	3240	179	0,343
55	3300	166	0,318
56	3360	174	0,334
57	3420	173	0,332
58	3480	172	0,330
59	3540	171	0,328
60	3600	178	0,341
61	3660	164	0,314
62	3720	177	0,339
63	3780	179	0,343
64	3840	169	0,324
65	3900	175	0,335
66	3960	172	0,330
67	4020	175	0,335
68	4080	171	0,328
69	4140	159	0,305
70	4200	172	0,330
71	4260	185	0,355
72	4320	175	0,335
73	4380	156	0,299
74	4440	169	0,324
75	4500	172	0,330
76	4560	166	0,318
77	4620	179	0,343
78	4680	176	0,337
79	4740	163	0,312
80	4800	178	0,341
81	4860	177	0,339

N⁰	секунды	количество оборотов	скорость течения
82	4920	166	0,318
83	4980	172	0,330
84	5040	167	0,320
85	5100	171	0,328
86	5160	182	0,349
87	5220	168	0,322
88	5280	176	0,337
89	5340	174	0,334
90	5400	168	0,322
91	5460	170	0,326
92	5520	175	0,335
93	5580	181	0,347
94	5640	168	0,322
95	5700	174	0,334
96	5760	180	0,345
97	5820	177	0,339
98	5880	177	0,339
99	5940	167	0,320
100	6000	177	0,339
101	6060	164	0,314
102	6120	172	0,330
103	6180	173	0,332
104	6240	182	0,349
105	6300	170	0,326
106	6360	175	0,335
107	6420	179	0,343
108	6480	162	0,311
109	6540	173	0,332
110	6600	163	0,312
111	6660	175	0,335
112	6720	183	0,351
113	6780	169	0,324
114	6840	166	0,318
115	6900	164	0,314
116	6960	172	0,330
117	7020	162	0,311
118	7080	176	0,337
119	7140	173	0,332
120	7200	175	0,335

Таблица А.3 – Осредненные по сто секунд ряды скоростей речных потоков,

non y termbre na nprintent y taetke peki	полученные	на прямом	участке реки
--	------------	-----------	--------------

N⁰	секунды	количество оборотов	скорость течения
1	100	301	0.346177
2	200	292	0.335827
3	300	294	0.338127
4	400	296	0,340427
5	500	304	0,349627
6	600	292	0,335827
7	700	284	0,326627
8	800	290	0,333527
9	900	300	0,345027
10	1000	317	0,364577
11	1100	280	0,322027
12	1200	293	0,336977
13	1300	282	0,324327
14	1400	269	0,309377
15	1500	279	0,320877
16	1600	281	0,323177
17	1700	293	0,336977
18	1800	288	0,331227
19	1900	316	0,363427
20	2000	293	0,336977
21	2100	276	0,317427
22	2200	277	0,318577
23	2300	284	0,326627
24	2400	291	0,334677
25	2500	285	0,327777
26	2600	286	0,328927
27	2700	276	0,317427
28	2800	289	0,332377
29	2900	295	0,339277
30	3000	282	0,324327
31	3100	284	0,326627
32	3200	284	0,326627
33	3300	287	0,330077
34	3400	288	0,331227
35	3500	284	0,326627
36	3600	296	0,340427
37	3700	284	0,326627
38	3800	299	0,343877
39	3900	281	0,323177

N⁰	секунды	количество оборотов	скорость течения
40	4000	289	0,332377
41	4100	281	0,323177
42	4200	279	0,320877
43	4300	300	0,345027
44	4400	276	0,317427
45	4500	281	0,323177
46	4600	287	0,330077
47	4700	289	0,332377
48	4800	286	0,328927
49	4900	286	0,328927
50	5000	284	0,326627
51	5100	283	0,325477
52	5200	295	0,339277
53	5300	296	0,340427
54	5400	277	0,318577
55	5500	281	0,323177
56	5600	303	0,348477
57	5700	284	0,326627
58	5800	299	0,343877
59	5900	296	0,340427
60	6000	283	0,325477
61	6100	282	0,324327
62	6200	282	0,324327
63	6300	297	0,341577
64	6400	295	0,339277
65	6500	278	0,319727
66	6600	279	0,320877
67	6700	293	0,336977
68	6800	289	0,332377
69	6900	275	0,316277
70	7000	283	0,325477
71	7100	286	0,328927
72	7200	289	0,332377