

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра метеорологии, климатологии и охраны атмосферы

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(магистерская диссертация)

На тему	«Термический режим Российской Арктики
	и его климатические изменения»
Исполнитель	Самсоненкова Полина Игоревна
	(фамилия, имя, отчество)
Руководитель _	доктор технических наук, старший научный сотрудник, профессор (ученая степень, ученое звание)
	Лобанов Владимир Алексеевич
	(фамилия, имя, отчество)
«К защите допу	скаю»
Заведующий ка	
	(нолинев.)
59	кандидат физико-математических наук, доцент
	(ученая степень, ученое знание)
	Сероухова Ольга Станиславовна
	(фамилия, имя, отчество)

«15» 06 2022 г.

Введение
Глава 1. Физико-географическое описание района исследования5
1.1.Географические особенности территории5
1.2. Климат района исследований6
1.3. Пункты наблюдений и информация8
1.4. Методика исследований12
Глава 2. Оценка качества данных и пространственные закономерности в стационарных условиях
2.1.Оценка однородности и стационарности эмпирических
распределений14
2.1.1 Оценка однородности и стационарности температуры
воздуха18
2.1.2 Оценка однородности и стационарности продолжительности
солнечного сияния
2.2. Восстановление пропусков и приведение непродолжительных рядов к
многолетнему периоду27
2.2.1 Восстановление пропусков и приведение непродолжительных
рядов температуры воздуха к многолетнему периоду28
2.2.2 Восстановление пропусков и приведение непродолжительных
рядов продолжительности солнечного сияния к многолетнему периоду
2.3.Пространственные климатические закономерности температур
воздуха
2.4. Пространственные климатические закономерности
продолжительности солнечного сияния
Глава 3. Оценка проявлений климатических изменений температуры
воздуха
3.1. Теоретические положения
3.2. Результаты моделирования временных рядов в пунктах
наблюдений48
3.3. Пространственные обобщения показателей нестационарности56
3.4. Сравнение современного потепления Арктики с потеплением 1920-50
годов
Глава 4. Оценка проявлений климатических изменений продолжительности
солнечного сияния85
4.1. Результаты моделирования временных рядов в пунктах
наблюдений45
4.2. Пространственные обобщения показателей нестационарности49
• •
Глава 5. Термический режим российской Арктики
5.1 Связь между температурой и продолжительностью солнечного сияния
Заключение
Литература
тиилильние/9

Введение

Погода - это постоянно меняющееся состояние атмосферы, характеризующееся определенным набором метеорологических элементов в данное время, момент или период времени в данной области. Определение климата основано на концепции погоды и усреднении погодных условий, установленных за многолетний период.

Магистерская диссертация посвящена актуальной теме — Термический режим Российской Арктики и его климатические изменения.

Термический режим определяется обменом тепла между атмосферным воздухом и окружающей средой закономерным, колебанием температуры в атмосфере и других параметров. Исследование термического режима в данной работе осуществляется с помощью информации о среднемесячной температуре воздуха и продолжительности солнечного сияния. Также описывается взаимосвязь между этими двумя показателями. На основе этих данных будут определены климатические изменения термического режима на выбранной территории.

Проблема изменение климата в настоящее время является актуальной темой для многих сфер жизни. Изучение проявлений изменений теплового режима на региональном уровне является популярной задачей.

Для того чтобы решить поставленную задачу, необходимо выполнить следующие виды работ:

- собрать информацию о среднемесячной температуре воздуха на 49 метеостанциях в Российской Арктике, которые равномерно распределены по всей территории;
- собрать информацию о среднемесячной продолжительности солнечного сияния воздуха на 49 метеостанциях на территории российской Арктики, которые равномерно распределены по территории;

- создать базу данных долгосрочных рядов среднемесячных показателей температуры за двенадцать месяцев для 49 метеостанций;
- создать базу данных долгосрочных рядов среднемесячных показателей продолжительности солнечного сияния за двенадцать месяцев для 49 метеостанций;
- оценить качество данных, их единообразие и свести данные к одному многолетнему периоду наблюдения;
- провести моделирование долгосрочных рядов стационарными и нестационарными моделями;
- провести пространственное обобщение полученных показателей нестационарности;
 - для сравнения потепления в разные периоды;
- оценить взаимосвязь между температурой и продолжительностью солнечного сияния;
- определить климатические изменения выбранных параметров и сделать вывод об изменении теплового режима Российской Арктики.

При выполнении работы используются следующие математические и статистические методы:

- статистические критерии оценки однородности эмпирических распределений по Диксону и Смирнову-Граббсу;
- статистические критерии Фишера и Стьюдента для оценки стационарности отклонений и средних значений временных рядов;
- методика восстановления зазоров и удлинения коротких рядов рядамианалоги;
 - нестационарные линейные модели изменения тренда и шага;
- методы пространственной интерполяции для отображения показателей нестационарности; [1,2,3]

Глава 1. Физико-географическое описание района исследования.

1.1 Географические особенности территории

Арктика представляет собой единую физико-географическую область Земли, прилегающую к Северному полюсу и включающую окраины континентов Евразии и Северной Америки, почти весь Северный Ледовитый океан с островами (за исключением прибрежных островов Норвегии), а также прилегающие части Атлантического и Тихого океанов. Принято считать, что арктические регионы начинаются за Полярным кругом.

Хотя большая часть Арктики занята океаном, ее акватория не игнорируется. Большая часть Арктики занята российским сектором, который включает в себя такие острова, как Земля Франца-Иосифа, Новая Земля, Северная Земля, а также Новосибирские острова и остров Врангеля. Как правило, российская Арктика и полярные регионы этих стран представляют собой тундру, царство вечной мерзлоты.

По особенностям рельефа в Арктике выделяют: шельф с островами континентального происхождения и прилегающими окраинами континентов и Арктический бассейн. Площадь шельфа занята окраинными морями — Баренцевым, Карским, Лаптевых, Восточно-Сибирским и Чукотским. Рельеф суши Российской Арктики в основном равнинный; местами, особенно на островах, гористый. Центральная часть — Арктический бассейн, область глубоководных бассейнов (до 5527 м) и подводных хребтов. Самая высокая точка Арктики - гора Гунбьорн (Гренландия). [1,3,4]

1.2 Климат района

Климат Арктического бассейна в первую очередь определяется отсутствием или полным отсутствием солнечной радиации зимой и очень

большим притоком радиации летом. Годовой радиационный баланс поверхности арктических морей в целом положительный; отрицательный баланс наблюдается только на Гренландском плато. Тем не менее, летние температуры низкие, потому что радиация расходуется на таяние снега и льда, а температура поверхности и воздуха остается близкой к 0° . К влиянию радиационных условий присоединяется сильное влияние общей циркуляции атмосферы.

В Арктическом бассейне интенсивная циклоническая активность наблюдается во все сезоны года. Циклоны возникают на арктических фронтах, а также проникают в Арктику из более низких широт, где они развиваются на полярных фронтах. Повышенное давление преобладает в течение всего года над высокогорным плато Гренландии. Но в остальной части Арктики разделение значительно меняется от месяца к месяцу, и антициклонические системы обнаруживаются на средних картах на относительно небольших площадях в разных частях океана, а зимой над Аляской и над северо-восточной Азией. Облачный покров в Арктическом бассейне, как правило, большой, а ветры сильные. Среднемесячные температуры в Арктическом бассейне колеблются от -40°С зимой до 0°С летом.

Исходя из особенностей циркуляции атмосферы в различных частях Арктики, можно выделить четыре основных климатических региона: Атлантический, Сибирский, Тихоокеанский. Различия в этих областях в основном связаны с зимним периодом. Зимой Атлантический регион находится под влиянием Атлантики, преобладает западный перенос, что определяет более теплую зиму по сравнению с другими районами Арктики. Температура воздуха в январе колеблется с запада на восток до -8 °C в Баренцевом море -30 °C на востоке Карского моря. Суровость погодных условий в холодный период зависит от скорости ветра. Наблюдаются сильные метели с южными ветрами. Высота снежного покрова на материке достигает 40 см.

Сибирский регион Арктики зимой находится в основном под влиянием арктического антициклона. Зима в основном ясная и холодная. Средние температуры самого холодного месяца составляют около -35°C, а на побережье

материка -38°C. Однако из-за более слабых ветров и относительной сухости воздуха тепловые ощущения не больше, чем в Атлантическом регионе, где температура в южной части Шпицбергена составляет примерно -15°C. Влияние атлантических явлений ослабевает в районе Северной Земли. Характерной особенностью зимы на побережье является общее снижение температуры внутри страны, что заметно при южных ветрах.

Особенности ледового режима летом определяются выносом холодного азиатского воздуха в зимние месяцы. Большой ледяной покров этого района обусловлен, помимо особенностей циркуляции воды, также резкой антициклоничностью погоды зимой, которая снижает температуру в море Лаптевых и в Восточно-Сибирском море. Например, средняя температура июля в районе Чаунской бухты составляет около 5°C, а на той же широте в Варде (Норвегия) 10°C.

Соотношение температур между океаном и континентом меняет знак ближе к лету. В середине июля температурный контраст между морем и сушей становится более острым, что связано с потеплением северной части континента, что способствует развитию циклонической активности на арктическом фронте.

В сентябре южные и юго-западные ветры сменяют преобладающие летом северные и северо-восточные ветры, это связано с началом формирования континентального антициклона.

Тихоокеанский регион Арктики включает в себя в основном Чукотское море. Зимой этот район находится под влиянием Алеутской впадины. В районе Берингова пролива воздействие Тихого океана ощущается наиболее сильно, и юго-восточные ветры иногда приносят кратковременную оттепель. На западе района (мыс Шмидта, остров Врангеля) во время зимнего потепления дневная температура держится на уровне -10°. Средний уровень температуры намного выше, чем в Сибирском Арктическом регионе. Тихоокеанская ветвь Арктического фронта лежит в районе Алеутской впадины, на широте около 60°, циклоны этой ветви смещаются в основном на Аляску, но лишь некоторые из

них попадают в Чукотское море, над которым они перемещают свою северную более холодную часть.

Влияние Северного Ледовитого и Тихого океанов летом снижает возможное повышение температуры примерно на . Абсолютный максимум Врангеля не достигает 20°, в других местах той же широты на западе, например, в низовьях реки Лены, он приближается к 30°.

Осадки в Тихоокеанском регионе в основном связаны с западными и югозападными циклонами. Они получают увеличение из-за большой арктической территории и увеличения температурного контраста над Чукотским морем. Количество осадков невелико, но вероятность осадков почти в два раза выше, чем в остальной части Арктики. [5,6]

Арктики - уникальный регион формирования Территория ДЛЯ температурного режима. Климат этой местности формируется при гораздо меньшем притоке тепла от Солнца, чем климат неполярных регионов. Жара арктического региона определяется адвективным теплом, океанскими течениями и воздушными потоками из низких географических широт. Количество адвективного тепла в Арктике зависит от глобальных процессов циркуляции океана и атмосферы. Также считается, что Арктика наиболее чувствительна к изменениям количества парниковых газов в атмосфере, таких как водяной пар, углекислый газ, метан и другие, а также к количеству облаков. [7]

1.3 Пункты наблюдений

Для анализа теплового режима Российской Арктики было взято 49 станций. Геоинформационный слой координат метеостанций, сформированный в ГИС MapInfo, отражается на карте расположения метеостанций на территории (рис.1.1). Это указывает на то, что область покрыта наблюдениями довольно равномерно.

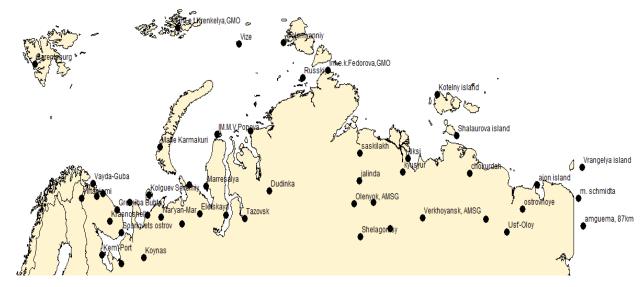


Рисунок 1.1. Метеостанции на территории российской Арктики.

Для анализа термического режима в работе использовались данные температуры, а также данные о продолжительности солнечного сияния.

Таблица 1.1 – наблюдения за температурой на 49 метеорологических станциях на территории российской Арктики.

Код	Название	Период	кол-во лет	Ширта	Долгота
20046	Им.Э.Т.Кренкеля,ГМ0	1957 - 2019	63	80,60	58,10
20069	Визе	1945 - 2019	75	79,50	77.0
20087	Голомянный	1930 - 2017	88	79,60	90,60
20107	Баренцбург	1940 - 2018	79	78,10	14,20
20289	Русский	1935 - 1998	64	77,20	96,60
20292	Им.Е.К.Федорова,ГМО	1932 - 2019	88	77,70	104,30
20667	Им.М.В.Попова	1940 - 2017	78	73,30	70,10
20674	Диксон	1916 - 2019	104	73,50	80,40
20744	Малые Кармакулы	1876 - 2019	144	72,40	52,70
21432	0. Котельный	1933 - 2019	86	76,0	137,90
21647	0. Шалаурова	1928 - 2004	77	73,20	143,90
21802	Саскылах	1935 - 2018	84	72,0	114,10
21824	Тикси	1932 - 2018	87	71,60	128,90
21908	Жилинда	1942 - 2018	77	70,10	114,0
21921	Кюсюр	1909 - 2018	110	70,70	127,00
21946	Чокурдах	1939 - 2019	81	70,60	147,9
21982	0. Врангеля	1926 - 2019	94	71,0	-178,5
22003	Вайда-Губа	1913 - 2018	106	69,90	32,0
22028	Териберка	1889 - 2018	130	69,20	35,10
22095	Колгуев Северный	1933 - 2017	85	69,10	49,20

		T	1		1
22101	Виртаниеми	1954 - 2018	65	68,90	28,40
22113	Мурманск	1918 - 2019	102	69,0	33,10
22140	Гремиха Бухта	1895 - 2017	123	68,10	39,50
22165	Канин Нос	1915 - 2019	105	68,60	43,30
22235	Краснощелье	1932 - 2018	87	67,30	37,10
22292	Индига	1923 - 2018	96	67,70	48,70
22355	Сосновец остров	1862 - 2018	157	66,50	40,70
22520	Кемь-порт	1863 - 2018	156	64,980	34,80
22550	Архангельск	1813 - 2019	207	64,40	40,70
22583	Койнас	1912 - 2018	107	64,80	47,60
23022	Амдерма	1934 - 2018	85	69,80	61,70
23032	Марресаля	1940 - 2017	78	69,70	66,80
23074	Дудинка	1906 - 2012	107	69,40	86,20
23205	Нарьян-Мар	1926 - 2019	94	67,60	53,0
23219	Хоседа-Хард	1931 - 2016	86	67,10	59,40
23220	Елецкая	1955 - 2018	64	67,80	64,80
23242	Новый Порт	1951 - 2018	68	67,70	72,90
23256	Тазовск	1932 - 2018	87	67,50	78,70
24125	Оленек АМСГ	1935 - 2019	85	68,50	112,40
24136	Сухана	1938 - 2018	81	68,620	118,330
24266	Верхоянск, АМСГ	1886 - 2019	134	67,550	133,380
24329	Шелагонцы	1940 - 2019	80	66,250	114,280
24343	Жиганск	1935 - 2019	85	66,770	123,40
25042	0. Айон	1939 - 2018	80	69,80	168,70
25138	Островное	1933 - 2018	86	68,120	164,160
25173	М. Шмидта	1932 - 2013	82	68,90	-179,40
25206	Среднеколымск	1887 - 2018	132	67,450	153,0
25325	Усть-Олой	1936 - 2018	82	66,550	159,420
25372	Амгуема, 87км	1951 - 1995	45	67,0	-178,90

Таблица 1.2 – наблюдения за продолжительностью солнечного сияния на 49 метеорологических станциях на территории российской Арктики.

Код	Название	Период	кол-во лет	Ширта	Долгота
20046	Кренкеля ГМО	1961 - 2019	53	80,60	58,10
20069	Визе	1961 - 2019	52	79,50	77.0
20087	Голомянный	1966 - 2019	50	79,60	90,60
20107	Баренцбург	1961 - 2019	58	78,10	14,20
20289	Русский	1961 - 1995	34	77,20	96,60

			_	1	
20292	Им.Е.К.Федорова ГМО	1961 - 2019	55	77,70	104,30
20667	Им.М.В.Попова	1961 - 2019	44	73,30	70,10
20674	Диксон	1961 - 2019	57	73,50	80,40
20744	Малые Кармакулы	1961 - 2019	54	72,40	52,70
21432	0. Котельный	1940 - 2019	64	76,0	137,90
21647	0. Шалаурова	1939 - 2000	43	73,20	143,90
21802	Саскылах	1961 - 2019	55	72,0	114,10
21824	Тикси	1961 - 2019	31	71,60	128,90
21908	Жилинда	1966 - 2019	54	70,10	114,0
21921	Кюсюр	1961 - 2000	40	70,70	127,00
21946	Чокурдах	1959 - 2017	58	70,60	147,9
21982	0. Врангеля	1961 - 2019	59	71,0	-178,5
22003	Вайда-Губа	1961 - 2019	58	69,90	32,0
22028	Териберка	1983 - 2019	36	69,20	35,10
22095	Колгуев Северный	1967 - 2019	51	69,10	49,20
22101	Виртаниеми	1961 - 2019	54	68,90	28,40
22113	Мурманск	1961 - 2019	58	69,0	33,10
22140	Гремиха Бухта	1985 - 2017	32	68,10	39,50
22165	Канин Нос	1966 - 2019	53	68,60	43,30
22235	Краснощелье	1961 - 2019	58	67,30	37,10
22292	Индига	1946 - 2019	65	67,70	48,70
22355	Сосновец остров	1950 - 2019	65	66,50	40,70
22520	Кемь-порт	1930 - 2019	86	64,980	34,80
22550	Архангельск	1931 - 2019	76	64,40	40,70
22583	Койнас	1961 - 2019	59	64,80	47,60
23022	Амдерма	1961 - 2019	54	69,80	61,70
23032	Марресаля	1967 - 2019	49	69,70	66,80
23074	Дудинка	1957 - 2012	53	69,40	86,20
23205	Нарьян-Мар	1949 - 2019	71	67,60	53,0
23219	Хоседа-Хард	1950 - 2016	67	67,10	59,40
23220	Елецкая	1961 - 2019	59	67,80	64,80
23242	Новый Порт	1961 - 2019	59	67,70	72,90
23256	Тазовск	1961 - 2019	59	67,50	78,70
24125	Оленек АМСГ	1941 - 2015	71	68,50	112,40
24136	Сухана	1961 - 2019	59	68,620	118,330
24266	Верхоянск, АМСГ	1934 - 2019	74	67,550	133,380
24329	Шелагонцы	1957 - 2019	63	66,250	114,280
24343	Жиганск	1943 - 2019	72	66,770	123,40
25042	0. Айон	1969 - 2019	49	69,80	168,70
	0. ДИОП			35,50	

25138	Островное	1959 - 2019	61	68,120	164,160
25173	М. Шмидта	1961 - 1993	33	68,90	-179,40
25206	Среднеколымск	1961 - 1997	37	67,450	153,0
25325	Усть-Олой	1942 - 2013	32	66,550	159,420
25372	Амгуема	1950 - 1995	46	67,0	-178,90

Метаданные и многолетние ряды были импортированы в компьютер для расчетов, и в результате была создана региональная база данных климатических данных. При анализе информационных особенностей сформированной базы данных, представленных в табл.1.1, видно, что продолжительность наблюдений колеблется в широких пределах от 45 лет на метеостанции Амгуэма, 87 км, до 207 лет на метеостанции Архангельск и составляет в среднем 86 лет. Из таблицы 1.2 следует, что продолжительность наблюдений продолжительности солнечного сияния составляет в среднем 50 лет, при этом минимум 12 лет на станции Тикси и 56 лет на станции Кемь-Порт. [1]

1.4 Методика

Первым пунктом выпускной квалификационной работы является сбор информации о среднемесячной температуре воздуха метеостанций в Российской Арктике, которые равномерно распределены по всей территории. Затем мы создаем базу данных долгосрочных рядов среднемесячных показателей температуры за двенадцать месяцев на 49 выбранных метеостанциях.

Аналогичные действия выполняются для сбора информации о продолжительности солнечного сияния и формирования новой базы данных для тех же 49 выбранных метеостанций.

На следующем этапе работы оценивается качество данных, оценивается их однородность и ряды сводятся к многолетнему периоду примерно одинаковой продолжительности.

Следующий этап методологии связан со статистическим моделированием долгосрочных рядов и их аппроксимацией стационарной моделью выборки и

двумя нестационарными моделями: линейным трендом и ступенчатым изменением среднего значения с вычислением показателей нестационарности.

Далее проводится пространственное обобщение показателей нестационарности и разницы температурных норм, полученных за предыдущий и последующие периоды по отношению к году ступенчатого изменения температуры.

Кроме того, рассматривается вопрос о возможности выявления известного потепления 1920-40 годов в Арктике и сравнения его с современным антропогенным потеплением.

Статистическое моделирование долгосрочных рядов продолжительности солнечного сияния также выполняется и аппроксимируется стационарной моделью выборки и двумя нестационарными моделями: линейным трендом и ступенчатыми изменениями среднего значения с вычислением нестационарных показателей.

Проведено пространственное обобщение показателей нестационарности и разницы в нормах продолжительности солнечного сияния, полученных для предыдущего и последующих периодов по отношению к году изменения шага.

Оценивается взаимосвязь между продолжительностью солнечного сияния и температурой воздуха.

Результатом работы является вывод о климатическом изменении этих параметров и теплового режима в целом. [1,3]

Глава 2. Оценка качества данных и пространственные закономерности в стационарных условиях.

2.1 Оценка однородности и стационарности

Первым этапом исследования является оценка однородности эмпирических распределений метеорологических характеристик. Оно может быть нарушено из-за резкого отклонения от эмпирического распределения максимальных и минимальных значений. Оценка однородности рядов наблюдений по метеорологическим характеристикам проводится на основе генетического и статистического анализа исходных данных наблюдений. Генетический анализ заключается В выявлении физических причин, вызывающих неоднородность исходных данных наблюдений. Для оценки статистической значимости однородности используется критерий Диксона и Смирнова-Граббса. Вот три основные причины неоднородности эмпирических распределений метеорологических характеристик:

- резко отклоняющиеся метеорологические значения могут иметь особые условия формирования, например, образованные тайфунами, ураганами и т.д.;
- экстремальное событие имеет более редкую вероятность возникновения, чем та, которая определяется эмпирической формулой для короткой серии наблюдений, когда экстремальное событие включено в общую последовательность наблюдений;
- из-за значительной погрешности измерения может появиться резкое отклонение значения.

При оценке однородности сначала сомнительные экстремумы, резко отклоняющиеся от эмпирического распределения, проверяются по статистическим критериям, и если однородность нарушена, ее причина определяется на основе генетического анализа.

Статистика критериев Диксона рассчитывается на основе эмпирических данных по следующим формулам:

а) для максимального члена выборки, ранжированного в порядке возрастания (Y_n) :

$$DI_n = (Y_n - Y_{n-1})/(Y_n - Y_1)$$
 (1)

$$D2_n = (Y_n - Y_{n-1})/(Y_n - Y_2)$$
 (2)

$$D3_n = (Y_n - Y_{n-2})/(Y_n - Y_2)$$
(3)

$$D4_n = (Y_n - Y_{n-2})/(Y_n - Y_3) \tag{4}$$

$$D5_n = (Y_n - Y_{n-2})/(Y_n - Y_1)$$
 (5)

б) для минимального члена ранжированной в возрастающем порядке выборки (Y_I) :

$$D1_1 = (Y_1 - Y_2)/(Y_1 - Y_n) \tag{6}$$

$$D2_{1}=(Y_{1}-Y_{2})/(Y_{1}-Y_{n-1})$$
 (7)

$$D3_{1}=(Y_{1}-Y_{3})/(Y_{1}-Y_{n-1})$$
 (8)

$$D4_1 = (Y_1 - Y_3)/(Y_1 - Y_{n-2})$$
 (9)

$$D5_{1}=(Y_{1}-Y_{3})/(Y_{1}-Y_{n})$$
 (10)

где $Y_1 < Y_2 < ... < Y_n$; n - объем выборки.

Статистика критерия Смирнова-Граббса для тах члена ранжированной последовательности (Y_n) рассчитывается по формуле:

$$G_n = (Y_n - Y_{cp})/\sigma_y \tag{11}$$

и для $\min (Y_1)$:

$$G_I = (Y_{cp} - Y_I)/\sigma_v \tag{12}$$

где Ycp, σ_y - среднее значение и среднеквадратическое отклонение анализируемой выборки, определяемые по формулам:

$$Y_{cp} = \sum Y_i / n \tag{13}$$

$$\sigma^2_y = \Sigma (Y_i - Y_{cp})^2 / (n-1) \tag{14}$$

где σ^2_{ν} – дисперсия.

Оценка однородности по критериям производится путем сравнения расчетного значения статистики критериев, полученной из эмпирических данных, с критическим значением из таблиц. В этом случае уровень значимости (а) обычно устанавливается равным 5%, что соответствует принятию нулевой гипотезы однородности с вероятностью 95%, размер выборки (п). В результате гипотеза однородности может быть принята, если вычисленное статистическое значение меньше соответствующего критического.

Стационарность средних значений и дисперсий для последовательных частей ряда оценивается с использованием критериев Стьюдента и Фишера, которые также обобщаются для особенностей гидрометеорологической информации. Анализ в соответствии с этими критериями проводится после оценки отсутствия резко отклоняющихся экстремумов, которые существенно влияют на средние значения и дисперсию.

Для оценки стационарности дисперсий и средних, соответственно, согласно критериям Фишера и Стьюдента, временной ряд разделяют на две или более подвыборок одинаковой или разной длины, и желательно связать границы разбиения с датами предполагаемого нарушения стационарности. Для каждой подвыборки вычисляются значения средних (Ycpj) и дисперсий (σ2j), которые используются для получения расчетных значений статистики Фишера:

$$F = \sigma_{j}^{2} / \sigma_{j+1}^{2} \tag{15}$$

при $\sigma^2_j > \sigma^2_{j+1}$, где σ^2_j , σ^2_{j+1} - соответственно дисперсии двух следующих друг за другом подвыборок (j и j+1) объемом \mathbf{n}_1 и \mathbf{n}_2 .

Уровень значимости F-распределения для нормальных распределений независимых случайных величин: $\alpha = 5$ %.

Для оценки стационарности двух средних значений последовательных подвыборок используется значение статистики критерия Стьюдента, которая определяется по формуле:

$$t = \frac{Y_{\text{cp1}} - Y_{\text{cp2}}}{\sqrt{n_1 \sigma_1^2 + n_2 \sigma_2^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}}$$
(16)

где $Y_{\rm cp1}$, $Y_{\rm cp2}$, σ_1^2 , σ_2^2 — средние значения и дисперсии двух последовательных выборок; n_1 , n_2 — объемы выборок.

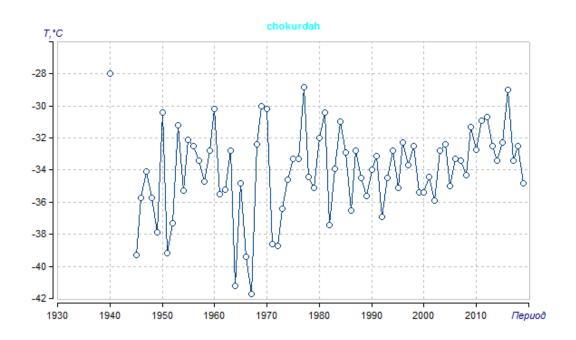
Оценка стационарности по критерию Стьюдента также осуществляется путем сравнения расчетных и критических значений статистики. Если вычисленное значение меньше критического значения при заданном уровне значимости, гипотеза однородности (стационарности) не отвергается. [8]

2.1.1 Оценка однородности и стационарности температуры воздуха.

При анализе термического режима российской Арктики в данной работе использовались многолетние данные рядов температуры воздуха, которые подверглись оценке однородности и стационарности.

Вывод о принятии гипотезы однородности и стационарности для четырех месяцев, каждого сезона года (январь, апрель, июль, октябрь) представлен в таблице 2.1.

Таблица 2.1. — Результаты оценки однородности и стационарности среднемесячных температур воздуха по критериям Диксона (д), Фишера (ф) и Стьюдента (ст) на метеостанциях Российской Арктики.


			январь			июль		гол
код	название	Д	ф	ст	Д	ф	ст	год
20046	Кренкеля ГМ0	+	+	(+)4,8	+	+	+	
20069	Визе	+	+	+	+	-	+	
20087	Голомянный	+	+	+	+	-	+	
20107	Баренцбург	+	+	(-)2,7	+	-	-	
20289	Русский	+	(-)2,4	+	+	-	(+)3,7	
20292	Им.Е.К.Федорова ГМО	+	+	+	-	+	+	1944,1956,1976
20667	Им.М.В.Попова	+	+	+	+	+	+	
20674	Диксон	+	+	+	+	+	+	
20744	Малые Кармакулы	+	+	+	+	+	+	
21432	0. Котельный	+	+	(-)2,8	+	+	+	
21647	0. Шалаурова	+	+	+	+	+	+	
21802	Саскылах	+	+	+	+	+	+	
21824	Тикси	+	+	+	+	+	+	
21908	Жилинда	+	+	+	+	+	+	

21946 Чокурдах	21921	Кюсюр	+	+	+	+	+	+	
21982 О. Врангеля +		•	-	-	+	+	+	+	1967,1964,1945
22003 Вайда-Губа +		****	+	+	+	+	-	-	
20228 Териберка			+	+	+	+	+	+	
22095 Колгуев Северный +			+	+	+	+	+	+	
22101 Виртаниеми		•	+	+	-		+		
22113 Мурманск		·	+	+	-	+	+	+	
22140 Гремиха Бухта + + - + + + + + + +			_	+	-	+	+	+	1968,1985,2016
22165 Канин Нос		••	+	+	-	+	+	(+)4	
22235 Краснощелье - (+)4,7 + + (+)4,1 + 1968,1985,2016		•	+	+	+	+	+	+	
22292 Индига + <td< td=""><td></td><td> Краснощелье</td><td>-</td><td>(+)4,7</td><td>+</td><td>+</td><td>(+)4,1</td><td>+</td><td>1968,1985,2016</td></td<>		 Краснощелье	-	(+)4,7	+	+	(+)4,1	+	1968,1985,2016
22355 Сосновец остров +		•	+	+	+	+	+	+	
22520 Кемь-порт +	22355		+	+	+	+	+	-	
22550 Архангельск +	22520	• •	+	+	+	+	+	+	
23022 Амдерма + + + + + + + + + + + 23032 Марресаля + (-)2,3 + + + + + + + + + + + + + + + + + + +	22550	·	+	+	+	+	+	+	
23032 Марресаля + (-)2,3 +	22583	 Койнас	+	+	+	+	+	+	
23074 Дудинка + + + + + + + + + + + 23205 Нарьян-Мар + + + + + + + + + + + + + + + + + + +	23022	Амдерма	+	+	+	+	+	+	
23205 Нарьян-Мар +	23032	Марресаля	+	(-)2,3	+	+	+	+	
23205 Нарьян-Мар +	23074		+	+	+	+	+	+	
23220 Елецкая + + + + + + + + + + + + + + + + + + +	23205	Нарьян-Мар	+	+	+	+	+	+	
23242 Новый Порт + -	23219	Хоседа-Хард	+	+	+	+	+	+	
23256 Тазовск + + + + - <t< td=""><td>23220</td><td>Елецкая</td><td>+</td><td>+</td><td>+</td><td>+</td><td>(+)3,1</td><td>+</td><td></td></t<>	23220	Елецкая	+	+	+	+	(+)3,1	+	
24125 Оленек АМСГ + + + - - - - 24136 Сухана + (+)3,4 + + - - - 24266 Верхоянск, АМСГ + + - + - - - 24329 Шелагонцы (-)2,1 + (+)4,1 + - - - 24343 Жиганск +	23242	Новый Порт	+	+	+	+	+	+	
24136 Сухана + (+)3,4 + + - - - 24266 Верхоянск, АМСГ + + + + - - - 24329 Шелагонцы (-)2,1 + (+)4,1 + - - - 24343 Жиганск +	23256	Тазовск	+	+	+	+	-	-	
24266 Верхоянск, АМСГ + + - + - - 24329 Шелагонцы (-)2,1 + (+)4,1 + - - 24343 Жиганск + <td>24125</td> <td>Оленек АМСГ</td> <td>+</td> <td>+</td> <td>-</td> <td>+</td> <td>-</td> <td>-</td> <td></td>	24125	Оленек АМСГ	+	+	-	+	-	-	
24329 Шелагонцы (-)2,1 + (+)4,1 + - - 24343 Жиганск + + + + + + + + + + + + + + + + + + + -	24136	Сухана	+	(+)3,4	+	+	ı	ı	
24343 Жиганск + <t< td=""><td>24266</td><td>Верхоянск, АМСГ</td><td>+</td><td>+</td><td>-</td><td>+</td><td>1</td><td>1</td><td></td></t<>	24266	Верхоянск, АМСГ	+	+	-	+	1	1	
25042 0. Айон (+)4,8 (+)4,8 + (+)4,4 + (-)2,3 25138 Островное (+)4,1 (-)2,1 + + + (+)4,2 25173 М. Шмидта (+)4,5 - + + + (+)4,3 25206 Среднеколымск (+)3,7 + - + + (+)4,3 25325 Усть-Олой - (+)3,9 + + + + 1950,1950,1996 25372 Амгуема + + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + + 20069 Визе (+)4.3 + + + + + + +	24329	Шелагонцы	(-)2,1	+	(+)4,1	+	ı	ı	
25138 Островное (+)4,1 (-)2,1 + + + (+)4,2 25173 М. Шмидта (+)4,5 - + + + (+)4,3 25206 Среднеколымск (+)3,7 + - + + (+)4,3 25325 Усть-Олой - (+)3,9 + + + - 1950,1950,1996 25372 Амгуема + + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + + + 20069 Визе (+)4.3 + <t< td=""><td>24343</td><td>Жиганск</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td></t<>	24343	Жиганск	+	+	+	+	+	+	
25173 М. Шмидта (+)4,5 - + + + (+)4,3 25206 Среднеколымск (+)3,7 + - + + (+)4,3 25325 Усть-Олой - (+)3,9 + + + - 1950,1950,1996 25372 Амгуема + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + 20069 Визе (+)4,3 + + + + +	25042	0. Айон	(+)4,8	(+)4,8	+	(+)4,4	+	(-)2,3	
25206 Среднеколымск (+)3,7 + - + + (+)4,3 25325 Усть-Олой - (+)3,9 + + + - 1950,1950,1996 25372 Амгуема + + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + 20069 Визе (+)4,3 + + + + +	25138	Островное	(+)4,1	(-)2,1	+	+	+	(+)4,2	
25325 Усть-Олой - (+)3,9 + + + - 1950,1950,1996 25372 Амгуема + + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + 20069 Визе (+)4.3 + + + + +	25173	М. Шмидта	(+)4,5	-	+	+	+	(+)4,3	
25372 Амгуема + + + + + + 1967,1970,1994 код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + + + 20069 Визе (+)4.3 + + + + +	25206		(+)3,7	+	-	+	+	(+)4,3	
код название д ф ст д ф ст д ф ст 20046 Кренкеля ГМО + + + + - + 20069 Визе (+)4.3 + + + + +	25325	Усть-Олой	-	(+)3,9	+	+	+	-	1950,1950,1996
код название д ф ст д ф ст 20046 Кренкеля ГМО + + + + - + 20069 Визе (+)4.3 + + + + +	25372	Амгуема	+		+	-			1967,1970,1994
20046 Кренкеля ГМО + + + + - + 20069 Визе (+)4.3 + + + + +	кол	название	п	_	ст	п			год
20069 Визе (+)4.3 + + + + +									
		•	(+)4.3	+	+	+	+	+	
	20087	Голомянный	+	+	+	+	+	+	

20107	Баренцбург	+	+	+	+	+	-	
20289	Русский	+	+	+	+	+	+	
20292	Им.Е.К.Федорова ГМО	+	+	+	+	+	+	
20667	Им.М.В.Попова	+	+	+	(+)4.5	+	+	1976,1989,1977
20674	Диксон	(-)2.9	+	+	+	+	+	
20744	Малые Кармакулы	+	+	+	+	+	+	
21432	0. Котельный	+	+	-	+	+	+	
21647	0. Шалаурова	+	+	-	+	+	+	
21802	Саскылах	+	+	-	+	+	+	
21824	Тикси	+	+	-	+	+	+	
21908	Жилинда	+	+	-	+	+	+	
21921	Кюсюр	+	+	-	+	+	+	
21946	Чокурдах	+	+	(+)3,7	+	+	-	2000,1961,1984
21982	0. Врангеля	+	+	+	+	+	+	
22003	Вайда-Губа	+	+	+	+	+	+	
22028	Териберка	+	+	+	+	+	+	
22095	Колгуев Северный	+	+	+	+	1	+	
22101	Виртаниеми	+	(+)4.7	+	+	-	+	
22113	Мурманск	+	+	+	(+)4.1	-	+	1965,2003,2019
22140	Гремиха Бухта	+	+	+	+	-	+	
22165	Канин Нос	+	(+)4.1	+	+	-	+	
22235	Краснощелье	(+)4.8	+	+	+	-	+	
22292	Индига	+	+	+	+	+	+	
22355	Сосновец остров	(+)4.9	+	+	+	+	+	
22520	Кемь-порт	(+)3.0	+	+	+	+	+	
22550	Архангельск	(+)3.4	(+)3.8	+	+	+	+	
22583	Койнас	+	+	+	+	+	+	
23022	Амдерма	-	+	+	+	+	+	1997,1987,1971
23032	Марресаля	+	+	+	+	+	+	
23074	Дудинка	+	-	-	+	+	+	
23205	Нарьян-Мар	+	-	-	-	+	+	202,1979,1949
23219	Хоседа-Хард	+	-	-	+	+	-	
23220	Елецкая	(+)4.3	+	+	+	+	+	
23242	Новый Порт	+	+	+	+	+	+	
23256	Тазовск	+	+	+	+	+	+	
24125	Оленек АМСГ	+	+	(+)3,3	+	-	+	
24136	Сухана	+	+	(-)2,3	+	-	+	
24266	Верхоянск, АМСГ	+	+	+	+	-	+	
24329	Шелагонцы	+	+	-	+	+	+	

24343	Жиганск	-	-	(+)3,2	+	+	+	1963,2006,1951
25042	0. Айон	(-)2,2	-	(+)3,04	+	+	-	
25138	Островное	+	-	(+)3,5	+	(+)3,8	(-)2,8	
25173	М. Шмидта	+	+	+	+	+	+	
25206	Среднеколымск	+	+	+	+	(+)4,0	+	
25325	Усть-Олой	+	+	(+)4,9	+	+	+	
25372	Амгуема	(+)3,1	+	+	+	+	+	

В таблице 2.1 знак "+" указывает на заключение о принятии гипотезы однородности и стационарности, а знак "-" указывает на отклонение. Если вычисленное значение статистики критерия близко к критическому, но превышает его, то в таблице также отображается уровень значимости, соответствующий вычисленному значению критерия. В этом случае вывод о принятии или отклонении гипотезы однородности и стационарности сомнителен и заключен в квадратные скобки. Знак "(+)" ставится, если уровень значимости, соответствующий вычисленному значению статистики критерия, составляет менее 5%, но больше или равен 3%. Знак "(-)", если уровень значимости составляет менее 3%, но более 1%. Знак "+" ставится, если уровень значимости, соответствующий вычисленному значению статистики критерия, равен или превышает 5%. Мы ставим знак "-", если он равен или меньше 1%, т.е. в этих случаях нулевая гипотеза либо достаточно надежно принимается, либо надежно отвергается. [1] Примеры нестационарных рядов показаны нарис.2.1

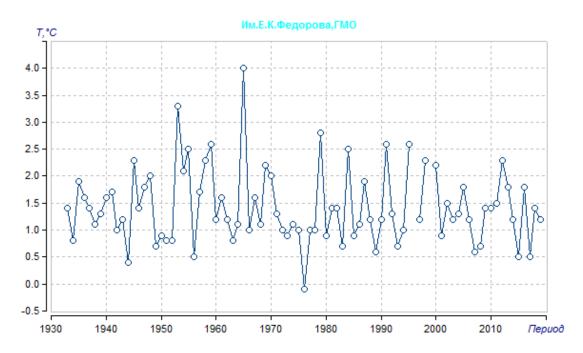


Рис.2.1. Примеры нестационарных рядов температуры воздуха в июле на метеостанциях Чокурдах в январе и Им.Е.К.Федорова,ГМО в июле Российской Арктики.

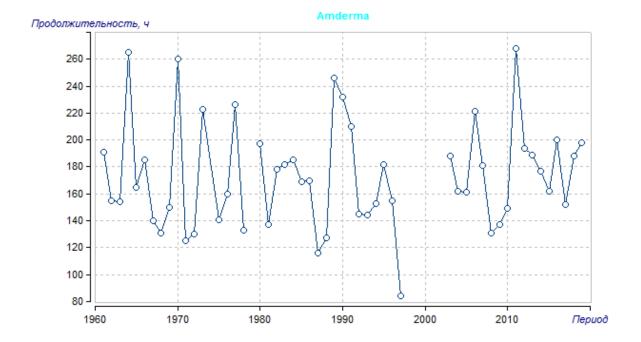
При анализе результатов оценки стационарности и однородности данных можно сделать вывод, что российский Арктический регион в основном содержит однородные ряды наблюдений, и выявленная нестационарность будет исследована в дальнейшем на основе статистических моделей временных рядов.

2.1.2 Оценка однородности и стационарности продолжительности солнечного сияния.

Для оценки теплового режима в работе также использовались данные о продолжительности солнечного сияния за три сезона года (январь, апрель, июль), которые также оценивались на однородность и стационарность.

Вывод о принятии гипотезы однородности и стационарности за три месяца (январь, апрель, июль) представлен в таблице 2.2.

Таблица 2.2. – Результаты оценки однородности и стационарности среднемесячной продолжительности солнечного сияния за три сезона года по критериям Диксона (д), Фишера (ф) и Стьюдента (ст) на метеостанциях Российской Арктики.


740 W	Waapayyya		январь		T0 T
код	название	Д	ф	ст	год
20046	Кренкеля ГМО	Н	ет данны	ЫX	
20069	Визе	+	+	+	
20087	Голомянный	+	+	+	
20107	Баренцбург	+	-	-	
20289	Русский	+	-	+	
20292	Им.Е.К.Федорова ГМО	+	+	+	
20667	Им.М.В.Попова	+	+	+	
20674	Диксон	+	(+)4.3	+	
20744	Малые Кармакулы	+	+	+	
21432	0. Котельный	+	+	+	
21647	0. Шалаурова	+	+	(-)2.9	
21802	Саскылах	+	+	(+)4.8	
21824	Тикси	+	+	+	
21908	Жилинда	+	+	+	
21921	Кюсюр	(+)3.5	(-)2.4	+	
21946	Чокурдах	+	+	+	
21982	0. Врангеля	+	+	+	
22003	Вайда-Губа	+	+	+	
22028	Териберка	+	+	+	
22095	Колгуев Северный	+	+	+	
22101	Виртаниеми	+	+	+	
22113	Мурманск	+	+	+	
22140	Гремиха Бухта	+	(-)2.2	+	
22165	Канин Нос	+	+	+	

Индига	T	Т	'				
Сосновец остров	+	+	+				
Кемь-порт	+	+	+				
Архангельск	+	+	+				
Койнас	+	+	+				
Амдерма	+	+	+				
	+	+	-				
Дудинка	+	+	+				
	+	+	+				
	+	+	+				
	+	+	+				
	+	+	+				
Тазовск	+	+	(+)3.6				
Оленек АМСГ	+	+	(+)3.2				
	+	+	+				
·	+	+	+				
	+	(+)4.5	+				
	+	+	(+)4.2				
	+	+	+				
	+	+	+				
·	+	+	+				
Среднеколымск	+	+	+				
Усть-Олой	+	+	+				
Амгуема	+	+	+				
		опропі		•	июль		БОЛ
HODBOHHA		апрель					
название	Д	ф	ст	Д	ф	СТ	год
название Кренкеля ГМО	+		ст +	Д +	ф -	+	ТОД
		ф					ТОД
Кренкеля ГМО Визе	+	ф +	+	+	-	+	ТОД
Кренкеля ГМО Визе Голомянный	+ (+)4.3	ф + +	+ +	+	+	+	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург	+ (+)4.3	ф + +	+ + +	+ + + +	+ +	+ + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский	+ (+)4.3 + +	ф + + + +	+ + + + +	+ + + + +	+ + +	+ + + + -	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО	+ (+)4.3 + + +	ф + + + + +	+ + + + + +	+ + + + + +	+ + + +	+ + + + - + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО Им.М.В.Попова	+ (+)4.3 + + + +	ф + + + + + +	+ + + + + + +	+ + + + + +	+ + + + +	+ + + + + + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО Им.М.В.Попова Диксон	+ (+)4.3 + + + +	ф + + + + + + +	+ + + + + + +	+ + + + + + (+)4.5	- + + + + +	+ + + + + + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО Им.М.В.Попова	+ (+)4.3 + + + + + (-)2.9	ф + + + + + + +	+ + + + + + + +	+ + + + + + (+)4.5	- + + + + +	+ + + + + + + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО Им.М.В.Попова Диксон Малые Кармакулы	+ (+)4.3 + + + + + (-)2.9	ф + + + + + + +	+ + + + + + + + + +	+ + + + + (+)4.5 +	+ + + + + + + +	+ + + - + + + +	ТОД
Кренкеля ГМО Визе Голомянный Баренцбург Русский Им.Е.К.Федорова ГМО Им.М.В.Попова Диксон Малые Кармакулы О. Котельный	+ (+)4.3 + + + + (-)2.9 + (+)4.2	ф + + + + + + + +	+ + + + + + + + +	+ + + + + (+)4.5 +	- + + + + + +	+ + + + + + + +	ТОД
	Сосновец остров Кемь-порт Архангельск Койнас Амдерма Марресаля Дудинка Нарьян-Мар Хоседа-Хард Елецкая Новый Порт Тазовск Оленек АМСГ Сухана Верхоянск, АМСГ Шелагонцы Жиганск О. Айон Островное М. Шмидта Среднеколымск Усть-Олой	Сосновец остров Кемь-порт Архангельск Койнас Амдерма Марресаля Дудинка Нарьян-Мар Хоседа-Хард Елецкая Новый Порт Тазовск Оленек АМСГ Сухана Верхоянск, АМСГ Шелагонцы Жиганск О. Айон Островное М. Шмидта Среднеколымск Усть-Олой +	Сосновец остров + + Кемь-порт + + Архангельск + + Койнас + + Амдерма + + Марресаля + + Дудинка + + Нарьян-Мар + + Хоседа-Хард + + Елецкая + + Новый Порт + + Тазовск + + Оленек АМСГ + + Сухана + + Верхоянск, АМСГ + + Шелагонцы + + Жиганск + + О. Айон + + Островное + + М. Шмидта + + Среднеколымск + + Усть-Олой + + Амгуема + +	Сосновец остров +	Сосновец остров +	Сосновец остров +	Сосновец остров +

Краснощелье

21908	Жилинда	+	+	+	+	+	+	
21921	Кюсюр	+	+	+	+	+	+	
21946	Чокурдах	+	+	+	(+)4.9	+	+	
21982	0. Врангеля	+	+	-	+	+	+	
22003	Вайда-Губа	+	+	+	+	+	+	
22028	Териберка	+	+	+	+	+	+	
22095	Колгуев Северный	+	+	+	+	+	+	
22101	Виртаниеми	+	(+)4.7	+	+	+	+	
22113	Мурманск	+	+	+	(+)4.1	+	+	
22140	Гремиха Бухта	+	+	+	+	+	+	
22165	Канин Нос	+	(+)4.1	+	+	+	+	
22235	Краснощелье	(+)4.8	+	+	+	+	+	
22292	Индига	+	+	+	+	+	+	
22355	Сосновец остров	(+)4.9	+	+	+	+	+	
22520	Кемь-порт	(+)3.0	+	+	+	+	+	
22550	Архангельск	(+)3.4	(+)3.8	+	+	+	+	
22583	Койнас	+	+	+	+	+	+	
23022	Амдерма	-	+	+	+	+	+	1997,1987,1971
23032	Марресаля	+	+	+	+	+	+	
23074	Дудинка	+	+	+	+	+	+	
23205	Нарьян-Мар	+	+	+	-	+	+	2002,1979,1949
23219	Хоседа-Хард	+	+	+	+	+	-	
23220	Елецкая	(+)4.3	+	+	-	+	-	
23242	Новый Порт	+	+	+	-	+	+	
23256	Тазовск	+	+	+	+	+	-	
24125	Оленек АМСГ	+	+	+	-	+	-	
24136	Сухана	+	+	+	-	+	+	
24266	Верхоянск, АМСГ	+	+	+	-	+	+	
24329	Шелагонцы	+	+	+	-	+	+	
24343	Жиганск	+	+	+	+	+	+	
25042	0. Айон	+	+	+	-	+	+	
25138	Островное	+	+	+	-	+	+	
25173	М. Шмидта	+	+	+	-	+	+	
25206	Среднеколымск	+	+	+	-	+	+	
25325	Усть-Олой	+	+	+	+	+	+	
25372	Амгуема	+	+	+	-	+	+	

В таблице 2.1 знак "+" указывает на заключение о принятии гипотезы однородности и стационарности, а знак "-" указывает на отклонение. Если вычисленное значение статистики критерия близко к критическому, но превышает его, то в таблице также отображается уровень значимости, соответствующий вычисленному значению критерия. В этом случае вывод о принятии или отклонении гипотезы однородности и стационарности сомнителен и заключен в квадратные скобки. Знак "(+)" ставится, если уровень значимости, соответствующий вычисленному значению статистики критерия, составляет менее 5%, но больше или равен 3%. Знак "(-)", если уровень значимости составляет менее 3%, но более 1%. Знак "+" ставится, если уровень значимости, соответствующий вычисленному значению статистики критерия, равен или превышает 5%. Мы ставим знак "-", если он равен или меньше 1%, т.е. в этих случаях нулевая гипотеза либо достаточно надежно принимается, либо надежно отвергается. [1] Примеры нестационарных рядов показаны нарис.2.2

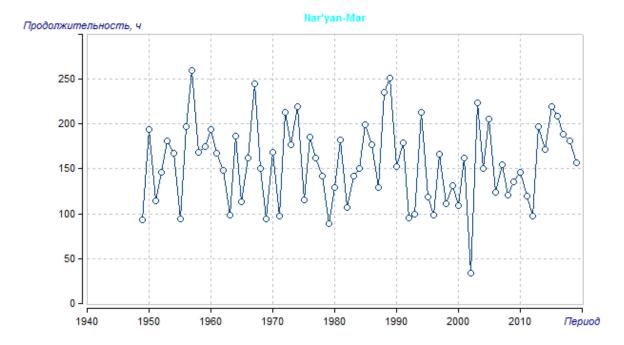


Рис.2.2. Примеры нестационарных рядов продолжительности солнечного сияния на метеостанциях Амдерма в апреле и Нарьян-Мар в июле Российской Арктики.

При анализе результатов оценки стационарности и однородности данных можно сделать вывод, что российский Арктический регион в основном содержит однородные ряды наблюдений по продолжительности солнечного сияния, и выявленная нестационарность будет исследована в дальнейшем на основе статистических моделей временных рядов.

2,2 Восстановление пропусков и приведение непродолжительных рядов к многолетнему периоду

Восстановление пропущенных наблюдений и сведение ряда к многолетнему периоду основано на построении уравнений регрессии в данном случае с тремя предполагаемыми аналогами, которые имеют как более длительный период наблюдения, так и данные наблюдений за те годы, которые были пропущены на рассматриваемой станции.

Последовательность приведения к многолетнему периоду следующая: все уравнения, удовлетворяющие условиям эффективности, располагаются в

порядке убывания коэффициентов корреляции, затем погодные значения метеорологических характеристик данной точки восстанавливаются за период совместных наблюдений в аналогичных точках по уравнению с наибольшим значение коэффициента корреляции, на следующем шаге используются уравнения регрессии, коэффициенты корреляции которых меньше, чем у предыдущего, но больше, чем у кого-либо другого. Постепенное восстановление типичных значений метеорологической характеристики продолжается до тех пор, пока не будут использованы все уравнения регрессии, удовлетворяющие условиям эффективности. Уравнение множественной линейной регрессии, по которому осуществляется восстановление, имеет следующий вид:

$$Y = k_0 + k_1 Y_1 + k_2 Y_2 + \dots + k_i Y_i + \dots + k_l Y_l$$
 (17)

где Y — значения метеорологической характеристики в приводимом пункте; Y_j — значения метеорологической характеристики в пунктах-аналогах; k_0 — свободный член; k_j — коэффициенты уравнения регрессии при $j=1,\,2,...,\,l;\,l$ — число пунктов-аналогов.

Для эффективного уравнения связи рассматриваемого пункта с аналогами использовались следующие условия:

$$n' \ge 6-10$$

n'— число совместных лет наблюдений в проводимом пункте и пунктах аналогах равно 10, т.к. количество пунктов аналогов было выбрано 3 (n' \geq 6 при одном пункте аналоге);

$$R \ge R_{\kappa p}$$

R — коэффициент парной или множественной корреляции между значениями гидрометеорологической величины в приводимом пункте и их значениями в пунктах-аналогах,; $R_{\kappa p}$ — критическое значение коэффициента парной или множественной корреляции (было взято значение равное 0,85);

$$k/\sigma_k \ge B_{\kappa p}$$

k — коэффициенты уравнения регрессии; σ_k — средняя квадратическая погрешность коэффициента уравнения регрессии; $B_{\kappa p}$ —критическое значение отношения k/σ_k , задается $\geq 2,0$. [1,8]

2.2.1 Восстановление и удлиннение кратковременных температурных рядов до многолетнего периода.

Серия температур воздуха, взятых в этой работе, имела пробелы и была недолговечной. После оценки однородности и стационарности температурные ряды для определенных месяцев каждого сезона пропускались через программу восстановления проходов и удлинения рядов в программном пакете ГИДРАВЛИЧЕСКИХ РАСЧЕТОВ.

Результаты восстановления данных и приведения кратковременных рядов температур воздуха к многолетнему периоду приведены в таблице 2.3 за 4 месяца (январь, апрель, июль, октябрь) для каждого сезона года.

Таблица 2.3 — Результаты восстановления и приведения кратковременных рядов температур воздуха к многолетнему периоду.

		январь			
Код	Наименование	факт.	восст.	к-т	кол-во
Код	Паименование	факт.	восст.	корреляции	аналогов
	Кренкеля ГМО	55	98	0.878-	16
20046	препкели пио			0.9810	
20060	Визе	74	102	0.855- 0.9609	13
20069				0.886-	
20087	Голомянный	80	102	0.0975	12
20107	Баренцбург	73	74	0.9056	3
	D	62	102	0.910-	11
20289	Русский	02	102	00.969	11
	Им.Е.К.Федорова	87	102	0.8905-	8
20292	ГМ0	07	102	0.9302	0
	Им.М.В.Попова	70	123	0.861-	15
20667	VIIVI.IVI.D.I IOIIOBa			0.0969	
20674	Диксон	102	111	0.9008	3
	Малые Кармакулы	118	123	0.885-	7
20744				00.952	
21432	0. Котельный	79	91	0,09-0,95	7
21647	0. Шалаурова	73	91	0,940-0,971	8
21802	Саскылах	81	87	0,904-0,976	9
	Тикси	85	102	0,8960-	4
21824			102	0,9330	'
21908	Жилинда	76	102	0,867-0,987	8

				0,938-	
21921	Кюсюр	99	102	0,9046	4
21946	Чокурдах	76	123	0,896- 00,969	4
21982	0. Врангеля	91	92	00,913	3
22003	Вайда-Губа	86	148	0.8560- 0.9780	15
22028	Териберка	127	164	0.888- 0.9085	12
22095	Колгуев Северный	82	125	0.862-0.973	10
22101	Виртаниеми	64	164	0.8903- 0.9808	11
22113	Мурманск	100	164	0.916- 0.0992	10
22140	Гремиха Бухта	117	204	0.8710- 0.9650	17
22165	Канин Нос	102	156	0.855- 0.9057	14
22235	Краснощелье	86	204	0.887- 0.9750	13
22292	Индига	127	164	0.888- 0.9085	12
22355	Сосновец остров	82	125	0.862-0.973	10
22520	Кемь-порт	64	164	0.893-0.988	11
22550	Архангельск	100	164	0.916-0.992	10
22583	Койнас	117	204	0.871-0.965	17
23022	Амдерма	84	125	0.853-0.976	15
23032	Марресаля	77	125	0.8570- 0.953	15
23074	Дудинка	99	112	0.856- 0.9702	12
23205	Нарьян-Мар	93	129	0.869- 0.0972	12
23219	Хоседа-Хард	85	125	0.8690- 0.985	15
23220	Елецкая	63	126	0.911- 0.9090	11
23242	Новый Порт	67	113	0.906-0.986	20
23256	Тазовск	82	113	0.868-0.975	15
24125	0ленек АМСГ	82	84	0,9305	3
24136	Сухана	79	102	0,888- 0,0969	11
24329	Верхоянск, АМСГ	75	87	0,8740-0,95	8
24343	Шелагонцы	83	91	0,893-0,896	5
25042	Жиганск	74	91	0,86-0,9720	8
25138	0. Айон	83	86	0,883-0,948	5
25173	0стровное	79	93	0,892-0,965	9

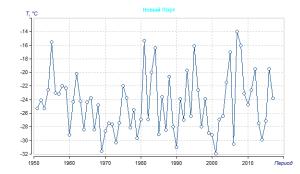
25206 М. Шмидта 122 123 0,898 3 25372 Усть-Олой 44 92 0,894-0,924 7 Кол Наименование факт. восст. к-т корреляции кол-во корреляции 20046 Кренкеля ГМО 55 95 0.893-0.973 10 20069 Визе 71 81 0.860-0.948 4 20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 20667 ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 21 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21802 О. Шалаурова 80 85 0,982-0.954			422	422	0.000	_
Тереворования Тереворован						
Код Наименование факт. восст. к-т корреляции кол-во аналогов аналогов 20046 Кренкеля ГМО 55 95 0.893-0.973 10 20069 Визе 71 81 0.860-0.948 4 20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 Им.Е.К.Федорова ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21647 О. Котельный 75 91 0.8520 12 21802 О. Шалаурова 80 85 0,889- 18 21804 Саскылах 76 85 0,97-0,984						
Код Наименование факт. восст. к-т корреляции корреляции корреляции ванлогов аналогов 20046 Кренкеля ГМО 55 95 0.893-0.973 10 20069 Визе 71 81 0.860-0.948 4 20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 им.Е.К.Федорова ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21802 О. Шалаурова 80 85 0.982-0.944 18 21802 О. Шалаурова 80 85 0.970-0.984 17 21908 Тикси 98 131 0.866-0.966<	25372	усть-илои		92	0,894-0,924	/
Код Наименование факт. восст. корреляции аналогов 20046 Кренкеля ГМО 55 95 0.893-0.973 10 20069 Визе 71 81 0.860-0.948 4 20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 им.Е.К.Федорова гМО 66 81 0.869-0.927 13 20674 Им.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21647 О. Котельный 75 91 0.8520 12 21802 О. Шалаурова 80 85 0.97-0.984 17 21908 Тикси 98 131 0.866-0.966 16 <td></td> <td></td> <td>Т</td> <td></td> <td></td> <td></td>			Т			
20069 Визе 71 81 0.860-0.948 4 20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 20674 Им.Е.К.Федорова ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0,8510 13 21647 О. Котельный 75 91 0,8520 12 21802 О. Шалаурова 80 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13	Код	Наименование	факт.	восст.		
20087 Голомянный 75 84 0.905-0.947 11 20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 Им.Е.К.Федорова ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21647 О. Котельный 75 91 0.8520 12 21802 О. Шалаурова 80 85 0,97-0,984 17 21802 О. Шалаурова 80 85 0,97-0,984 17 21908 Тикси 98 131 0.866-0,966 16 21921 Жилинда 76 125 0.884-0,951 15 21946 Кюсюр 81 84 0.85011 13 <t< td=""><td>20046</td><td>Кренкеля ГМО</td><td>55</td><td>95</td><td>0.893-0.973</td><td>10</td></t<>	20046	Кренкеля ГМО	55	95	0.893-0.973	10
20107 Баренцбург 72 86 0.861-0.875 15 20289 Русский 60 87 0.885-0.913 12 Им.Е.К.Федорова ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0.8510 13 21647 О. Котельный 75 91 0.8520 12 21802 О. Шалаурова 80 85 0,97-0.984 17 21802 О. Шалаурова 80 85 0,97-0.984 17 21908 Тикси 98 131 0.866-0.966 16 21921 Жилинда 76 125 0.884-0.951 15 21946 Кюсюр 81 84 0.85011 13 22003 Чокурдах 83 152 0.851-0.989 113 <t< td=""><td>20069</td><td>Визе</td><td>71</td><td>81</td><td>0.860-0.948</td><td>4</td></t<>	20069	Визе	71	81	0.860-0.948	4
20289 Русский 60 87 0.885-0.913 12 20667 ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0,8510 13 21647 О. Котельный 75 91 0,8520 12 21802 О. Шалаурова 80 85 0,889-0,9044 18 21802 О. Шалаурова 80 85 0,970-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11	20087	Голомянный	75	84	0.905-0.947	11
20667 ГМО 66 81 0.869-0.927 13 20674 Им.М.В.Попова 100 103 0.890-0.954 16 20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0,8510 13 21647 О. Котельный 75 91 0,8520 12 21802 О. Шалаурова 80 85 0,889-0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15	20107	Баренцбург	72	86	0.861-0.875	15
20667ГМО66810.869-0.9271320674Им.М.В.Попова1001030.890-0.9541620744Диксон1161210.872-0.9481121432Малые Кармакулы81840.85101321647О. Котельный75910.85201221802О. Шалаурова80850.9889- 0.90441821804Саскылах76850.97-0.9841721908Тикси981310.866-0.9661621921Жилинда761250.884-0.9511521946Кюсюр81840.850111322003Чокурдах831520.851-0.98911322028О. Врангеля1271540.860-0.9901122095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022155Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров <td< td=""><td>20289</td><td>Русский</td><td>60</td><td>87</td><td>0.885-0.913</td><td>12</td></td<>	20289	Русский	60	87	0.885-0.913	12
20674Им.М.В.Попова1001030.890-0.9541620744Диксон1161210.872-0.9481121432Малые Кармакулы81840.85101321647О. Котельный75910.85201221802О. Шалаурова80850,989- 0,90441821824Саскылах76850,97-0,9841721908Тикси981310,866-0,9661621921Жилинда761250,884-0,9511521946Кюсюр81840,850111322003Чокурдах831520.851-0.98911322028О. Врангеля1271540.860-0.9901122095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт<		Им.Е.К.Федорова				
20744 Диксон 116 121 0.872-0.948 11 21432 Малые Кармакулы 81 84 0,8510 13 21647 О. Котельный 75 91 0,8520 12 21802 О. Шалаурова 80 85 0,889-0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19	20667	ГМ0	66	81	0.869-0.927	13
21432 Малые Кармакулы 81 84 0,8510 13 21647 О. Котельный 75 91 0,8520 12 21802 О. Шалаурова 80 85 0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19 22140 Виртаниеми 113 158 0.869-0.959 10	20674	Им.М.В.Попова	100	103	0.890-0.954	16
21647 О. Котельный 75 91 О,8520 12 21802 О. Шалаурова 80 85 0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,850-11 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19 22140 Виртаниеми 113 158 0.869-0.959 10 22235 Гремиха Бухта 86 205 0.934-0.980 12 </td <td>20744</td> <td>Диксон</td> <td>116</td> <td>121</td> <td>0.872-0.948</td> <td>11</td>	20744	Диксон	116	121	0.872-0.948	11
21802 О. Шалаурова 80 85 0,889-0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19 22140 Виртаниеми 113 158 0.869-0.959 10 22165 Мурманск 102 136 0.870-0.987 11 22235 Гремиха Бухта 86 205 0.934-0.980	21432	Малые Кармакулы	81	84	0,8510	13
21802 О. Шалаурова 80 85 0,9044 18 21824 Саскылах 76 85 0,97-0,984 17 21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19 22140 Виртаниеми 113 158 0.869-0.959 10 22165 Мурманск 102 136 0.870-0.987 11 22235 Гремиха Бухта 86 205 0.934-0.980 12	21647	0. Котельный	75	91	0,8520	12
21908 Тикси 98 131 0,866-0,966 16 21921 Жилинда 76 125 0,884-0,951 15 21946 Кюсюр 81 84 0,85011 13 22003 Чокурдах 83 152 0.851-0.989 113 22028 О. Врангеля 127 154 0.860-0.990 11 22095 Вайда-Губа 81 136 0.872-0.978 15 22101 Териберка 62 164 0.873-0.996 14 22113 Колгуев Северный 100 164 0.9910 19 22140 Виртаниеми 113 158 0.869-0.959 10 22165 Мурманск 102 136 0.870-0.987 11 22235 Гремиха Бухта 86 205 0.934-0.980 12 22355 Краснощелье 123 130 0.867-0.954 12 22520 Индига 152 202 0.851-0.932	21802	0. Шалаурова	80	85	· ·	18
21921Жилинда761250,884-0,9511521946Кюсюр81840,850111322003Чокурдах831520.851-0.98911322028О. Врангеля1271540.860-0.9901122095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	21824	Саскылах	76	85	0,97-0,984	17
21946Кюсюр81840,850111322003Чокурдах831520.851-0.98911322028О. Врангеля1271540.860-0.9901122095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	21908	Тикси	98	131	0,866-0,966	16
22003Чокурдах831520.851-0.98911322028О. Врангеля1271540.860-0.9901122095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	21921	Жилинда	76	125	0,884-0,951	15
22028О. Врангеля127154О.860-0.9901122095Вайда-Губа81136О.872-0.9781522101Териберка62164О.873-0.9961422113Колгуев Северный100164О.99101922140Виртаниеми113158О.869-0.9591022165Мурманск102136О.870-0.9871122235Гремиха Бухта86205О.934-0.9801222292Канин Нос92136О.859-0.9811522355Краснощелье123130О.867-0.9541222520Индига152202О.851-0.932622550Сосновец остров204205О.90811322583Кемь-порт103205О.923-0.9631123022Архангельск84103О.854-0.937723032Койнас7488О.887-0.9511423074Амдерма98104О.925-0.9735	21946	Кюсюр	81	84	0,85011	13
22095Вайда-Губа811360.872-0.9781522101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22003	Чокурдах	83	152	0.851-0.989	113
22101Териберка621640.873-0.9961422113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22028	0. Врангеля	127	154	0.860-0.990	11
22113Колгуев Северный1001640.857- 0.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22095	Вайда-Губа	81	136	0.872-0.978	15
22113Колгуев Северный1001640.99101922140Виртаниеми1131580.869-0.9591022165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22101	Териберка	62	164	0.873-0.996	14
22165Мурманск1021360.870-0.9871122235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22113	Колгуев Северный	100	164		19
22235Гремиха Бухта862050.934-0.9801222292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22140	Виртаниеми	113	158	0.869-0.959	10
22292Канин Нос921360.859-0.9811522355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22165	Мурманск	102	136	0.870-0.987	11
22355Краснощелье1231300.867-0.9541222520Индига1522020.851-0.932622550Сосновец остров2042050.90811322583Кемь-порт1032050.923-0.9631123022Архангельск841030.854-0.937723032Койнас74880.887-0.9511423074Амдерма981040.925-0.9735	22235	Гремиха Бухта	86	205	0.934-0.980	12
22520 Индига 152 202 0.851-0.932 6 22550 Сосновец остров 204 205 0.9081 13 22583 Кемь-порт 103 205 0.923-0.963 11 23022 Архангельск 84 103 0.854-0.937 7 23032 Койнас 74 88 0.887-0.951 14 23074 Амдерма 98 104 0.925-0.973 5	22292	Канин Нос	92	136	0.859-0.981	15
22550 Сосновец остров 204 205 0.9081 13 22583 Кемь-порт 103 205 0.923-0.963 11 23022 Архангельск 84 103 0.854-0.937 7 23032 Койнас 74 88 0.887-0.951 14 23074 Амдерма 98 104 0.925-0.973 5	22355	Краснощелье	123	130	0.867-0.954	12
22583 Кемь-порт 103 205 0.923-0.963 11 23022 Архангельск 84 103 0.854-0.937 7 23032 Койнас 74 88 0.887-0.951 14 23074 Амдерма 98 104 0.925-0.973 5	22520	Индига	152	202	0.851-0.932	6
23022 Архангельск 84 103 0.854-0.937 7 23032 Койнас 74 88 0.887-0.951 14 23074 Амдерма 98 104 0.925-0.973 5	22550	Сосновец остров	204	205	0.9081	13
23032 Койнас 74 88 0.887-0.951 14 23074 Амдерма 98 104 0.925-0.973 5	22583	Кемь-порт	103	205	0.923-0.963	11
23074 Амдерма 98 104 0.925-0.973 5	23022	Архангельск	84	103	0.854-0.937	7
	23032	Койнас	74	88	0.887-0.951	14
23205 Марресаля 93 123 0.917-0.968 9	23074	Амдерма	98	104	0.925-0.973	5
	23205	Марресаля	93	123	0.917-0.968	9

20046 Кренкеля ГМО 39 4 0.856-0.867 16 20069 Визе 44 10 0.891-0.931 91 20087 Голомянный 41 12 0.941 11 20107 Баренцбург 56 2 0.883-0.931 16 20289 Русский 32 26 0.898-0.949 13 20292 ГМО 48 1 0.9050 13 20667 Им.М.В.Попова 37 25 0.863-0.959 12 20674 Диксон 55 2 0.856-0.891 6 20744 Малые Кармакулы 48 10 0.938 3 21432 О. Котельный 60 10 0.916 3 21647 О. Шалаурова 42 20 0.873-0.916 8 21802 Саскылах 52 60 0.871-0.955 10 21824 Тикси 31 28 0.868-0.964 8						
23242 Хоседа-Хард 67 86 0.855-0.944 14	23219	Дудинка	82	122	0.860-0.995	12
23256 Елецкая 80 104 0.888-0.947 9	23220	Нарьян-Мар	64	123	0.878-0.988	15
24125 Новый Порт 80 85 0,96-0,979 5 24136 Тазовск 80 99 0,865-0,98 7 24266 Оленек АМСГ 79 81 0,925-0,975 11 24329 Сухана 129 131 0,94-0,943 5 24343 Верхоянск, АМСГ 77 85 0,887-0,915 7 25042 Шелагонцы 76 84 0,892-0,908 8 25138 Жиганск 83 124 0,868-0,938 8 25206 О. Айон 124 125 0,903 3 25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 Код Наименование факт. восст. к-т корреляции аналогов 20046 Кренкеля ГМО 39 4 0.856-0.867 16 20069 Визе 44 10 0.891-0.931	23242	Хоседа-Хард	67	86	0.855-0.944	14
24136 Тазовск 80 99 0,865-0,98 7	23256	Елецкая	80	104	0.888-0.947	9
24266 Оленек АМСГ 79 81 0,925-0,975 11 24329 Сухана 129 131 0,94-0,943 5 24343 Верхоянск, АМСГ 77 85 0,887-0,915 7 25042 Шелагонцы 76 84 0,892-0,908 8 25138 Жиганск 83 124 0,868-0,938 8 25206 0. Айон 124 125 0,903 3 25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 Код Наименование факт. восст. к-т корреляции аналогов 20046 Кренкеля ГМО 39 4 0.856-0.867 16 20069 Визе 44 10 0.891-0.931 91 20074 Голомянный 41 12 0.941 11 20107 Баренцбург 56 2 0.883-	24125	Новый Порт	80	85	0,96-0,979	5
24329 Сухана 129 131 0,94-0,943 5 24343 Верхоянск, АМСГ 77 85 0,887-0,915 7 25042 Шелагонцы 76 84 0,892-0,908 8 25138 Жиганск 83 124 0,868-0,938 8 25206 О. Айон 124 125 0,903 3 25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 апрель Код Наименование факт. восст. к-т кол-во аналогов 20046 Кренкеля ГМО 39 4 0.856-0.867 16 2 206867 16 2 0.891-0.931 91 11 20107 Баренцбург 56 2 0.883-0.931 16 2 0.883-0.931 16 2 0.898-0.949 13 3 2 26 0.898-0.949 13 <	24136	Тазовск	80	99	0,865-0,98	7
24343 Верхоянск, АМСГ 77 85 0,887-0,915 7 25042 Шелагонцы 76 84 0,892-0,908 8 25138 Жиганск 83 124 0,868-0,938 8 25206 0. Айон 124 125 0,903 3 25325 0стровное 70 84 0,883-0,901 6 6 6 6 6 6 6 6 6	24266	0ленек АМСГ	79	81	0,925-0,975	11
25042 Шелагонцы 76 84 0,892-0,908 8	24329	Сухана	129	131	0,94-0,943	5
25138 Жиганск 83 124 0,868-0,938 8 25206 О. Айон 124 125 0,903 3 25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 апрель Код Наименование факт. восст. к-т корреляции аналогов аналог	24343	Верхоянск, АМСГ	77	85	0,887-0,915	7
25206 О. Айон 124 125 0,903 3 25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 жол варты выст. Код Наименование факт. восст. корреляции варты вар	25042	Шелагонцы	76	84	0,892-0,908	8
25325 Островное 70 84 0,883-0,901 6 25372 М. Шмидта 44 82 0,861-0,921 9 варень код к-т корреляции аналогов	25138	Жиганск	83	124	0,868-0,938	8
25372 М. Шмидта 44 82 0,861-0,921 9 9 1 1 1 1 1 1 1	25206	0. Айон	124	125	0,903	3
Код Наименование факт. восст. корреляции аналогов аналогов 20046 Кренкеля ГМО 39 4 0.856-0.867 16 20069 Визе 44 10 0.891-0.931 91 91 12 20087 Голомянный 41 12 0.941 11 11 20107 Баренцбург 56 2 0.883-0.931 16 16 20289 Русский 32 26 0.898-0.949 13 13 14 20292 ГМО 48 1 0.9050 13 16 20292 ГМО 48 1 0.9050 13 20667 Им.М.В.Попова 37 25 0.863-0.959 12 20674 Диксон 55 2 0.856-0.891 6 20744 Малые Кармакулы 48 10 0.938 3 21432 0. Котельный 60 10 0.916 3 21647 0. Шалаурова 42 20 0.873-0.916 8 21802 Саскылах 52 60 0.871-0.955 10 21824 Тикси 31 28 0.868-0.964 8 21908 Жилинда 54 5 0.932 3 21921 Кюсюр 40 17 0.873-0.884 9 21946 Чокурдах 51 4 0.909 3 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15 30 30 30 30 30 30 30 3	25325	Островное	70	84	0,883-0,901	6
Код Наименование факт. восст. к-т корреляции корреляции аналогов	25372	М. Шмидта	44	82	0,861-0,921	9
Код Наименование факт. восст. корреляции аналогов 20046 Кренкеля ГМО 39 4 0.856-0.867 16 20069 Визе 44 10 0.891-0.931 91 20087 Голомянный 41 12 0.941 11 20107 Баренцбург 56 2 0.883-0.931 16 20289 Русский 32 26 0.898-0.949 13 20292 ГМО 48 1 0.9050 13 20667 Им.М.В.Попова 37 25 0.863-0.959 12 20674 Диксон 55 2 0.856-0.891 6 20744 Малые Кармакулы 48 10 0.938 3 21432 О. Котельный 60 10 0.916 3 21802 Саскылах 52 60 0.871-0.955 10 21824 Тикси 31 28 0.868-0.964 8	1		апрель)		
20040Визе44100.891-0.9319120087Голомянный41120.9411120107Баренцбург5620.883-0.9311620289Русский32260.898-0.9491320292ГМО4810.90501320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.938321432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	Код	Наименование	факт.	восст.		кол-во аналогов
20087Голомянный41120.9411120107Баренцбург5620.883-0.9311620289Русский32260.898-0.94913Им.Е.К.Федорова ГМО4810.90501320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.938321432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20046	Кренкеля ГМО	39	4	0.856-0.867	16
20107Баренцбург5620.883-0.9311620289Русский32260.898-0.94913Им.Е.К.Федорова ГМО4810.90501320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.938321432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20069	Визе	44	10	0.891-0.931	91
20289Русский32260.898-0.9491320292Им.Е.К.Федорова ГМО4810.90501320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.9383214320. Котельный60100.9163216470. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.9093219820. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20087	Голомянный	41	12	0.941	11
20292Им.Е.К.Федорова ГМО4810.90501320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.9383214320. Котельный60100.9163216470. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.9093219820. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20107	Баренцбург	56	2	0.883-0.931	16
20292ГМО4810.90301320667Им.М.В.Попова37250.863-0.9591220674Диксон5520.856-0.891620744Малые Кармакулы48100.938321432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20289	Русский	32	26	0.898-0.949	13
20674 Диксон 55 2 0.856-0.891 6 20744 Малые Кармакулы 48 10 0.938 3 21432 0. Котельный 60 10 0.916 3 21647 0. Шалаурова 42 20 0.873-0.916 8 21802 Саскылах 52 60 0.871-0.955 10 21824 Тикси 31 28 0.868-0.964 8 21908 Жилинда 54 5 0.932 3 21921 Кюсюр 40 17 0.873-0.884 9 21946 Чокурдах 51 4 0.909 3 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15	20292	• • •	48	1	0.9050	13
20674Диксон5520.856-0.891620744Малые Кармакулы48100.938321432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415	20667	Им.М.В.Попова	37	25	0.863-0.959	12
20744Малые Кармакулы48100.9383214320. Котельный60100.9163216470. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.9093219820. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415		Диксон	55	2	0.856-0.891	6
21432О. Котельный60100.916321647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415		• •	48	10	0.938	3
21647О. Шалаурова42200.873-0.916821802Саскылах52600.871-0.9551021824Тикси31280.868-0.964821908Жилинда5450.932321921Кюсюр40170.873-0.884921946Чокурдах5140.909321982О. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415		· · · · · · · · · · · · · · · · · · ·	60	10	0.916	3
21824 Тикси 31 28 0.868-0.964 8 21908 Жилинда 54 5 0.932 3 21921 Кюсюр 40 17 0.873-0.884 9 21946 Чокурдах 51 4 0.909 3 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15		0. Шалаурова	42	20	0.873-0.916	8
21908 Жилинда 54 5 0.932 3 21921 Кюсюр 40 17 0.873-0.884 9 21946 Чокурдах 51 4 0.909 3 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15		Саскылах	52	60	0.871-0.955	10
21921 Кюсюр 40 17 0.873-0.884 9 21946 Чокурдах 51 4 0.909 3 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15		Тикси	31	28	0.868-0.964	8
21921Кюсюр40170.873-0.884921946Чокурдах5140.9093219820. Врангеля5610.918322003Вайда-Губа5620.909-0.943422028Териберка35340.886-0.9871122095Колгуев Северный43300.869-0.97415		Жилинда	54	5	0.932	3
21940 10курдих 21982 0. Врангеля 56 1 0.918 3 22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15	21921	Кюсюр	40	17	0.873-0.884	9
22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15	21946	Чокурдах	51	4	0.909	3
22003 Вайда-Губа 56 2 0.909-0.943 4 22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15	21982	0. Врангеля	56	1	0.918	3
22028 Териберка 35 34 0.886-0.987 11 22095 Колгуев Северный 43 30 0.869-0.974 15		Вайда-Губа	56	2	0.909-0.943	4
22095 Колгуев Северный 43 30 0.869-0.974 15			35	34	0.886-0.987	11
52 5 0.077.0.000		•	43	30	0.869-0.974	15
22101 виртаниеми 33 3 0.077-0.336 3	22101	Виртаниеми	53	5	0.877-0.938	9
22113 Мурманск 58 1 0.872 3		·	58	1	0.872	3

22140	Гремиха Бухта	26	43	0.883-0.974	13
22165	Канин Нос	49	20	0.864-0.936	15
22235	Краснощелье	57	11	0.874-0.918	9
22292	Индига	60	13	0.904-0.977	16
22355	Сосновец остров	59	12	0.871-0.948	18
22520	Кемь-порт	77	5	0.864-0.910	4
22550	Архангельск	67	13	0.877-0.911	8
23022	Койнас	48	11	0.886-0.944	15
23032	Амдерма	45	9	0.888-0.945	13
23074	Марресаля	46	14	0.853-0.942	11
23219	Дудинка	64	5	0.888-0.931	8
23220	Нарьян-Мар	57	13	0.872-0.923	17
23242	Хоседа-Хард	56	2	0.878-0.921	61
24125	Елецкая	57	18	0.881-0.912	15
24329	Новый Порт	62	4	0.850-0.917	17
24343	Тазовск	68	4	0.886-0.936	19
25173	Оленек АМСГ	33	26	0.974	14
25206	Сухана	36	17	0.951-0.980	5
25325	Верхоянск, АМСГ	27	32	0.974-0.985	9
25372	Шелагонцы	44	11	0.862-0.927	9
20072	27. 2	октябрі))		
Код	Наименование	факт.	восст.	к-т	кол-во
Код	Паименование	φακι.	восст.	корреляции	аналогов
20046	Кренкеля ГМО	39	4	0.856-0.867	6
20069	Визе	44	10	0.891-0.931	9
20087	Голомянный	41	12	0.941	11
20107	Баренцбург	56	2	0.883-0.931	6
20289	Русский	32	26	0.898-0.949	13
20292	Им.Е.К.Федорова ГМО	48	1	0.905	3
20667	Им.М.В.Попова	37	25	0.863-0.959	12
20674	Диксон	55	2	0.856-0.891	6
20744	Малые Кармакулы	48	1	0.938	3
21432	0. Котельный	60	1	0.916	3
21647	0. Шалаурова	42	20	0.873-0.916	8
21802	Саскылах	52	6	0.871-0.955	10
21824	Тикси	31	28	0.868-0.964	8
21908	Жилинда	54	5	0.932	3
21921	Кюсюр	40	17	0.873-0.884	9
21946	Чокурдах	51	4	0.909	3
	****	1	1		

		F.C	1	0.010	2
21982	0. Врангеля	56	1	0.918	3
22003	Вайда-Губа	56	2	0.909-0.943	4
22028	Териберка	35	34	0.886-0.987	11
22095	Колгуев Северный	43	30	0.869-0.974	15
22101	Виртаниеми	53	5	0.877-0.938	9
22113	Мурманск	58	1	0.872	3
22140	Гремиха Бухта	26	43	0.883-0.974	13
22165	Канин Нос	49	20	0.864-0.936	15
22235	Краснощелье	57	11	0.874-0.918	9
22292	Индига	60	13	0.904-0.977	16
22355	Сосновец остров	59	12	0.871-0.948	18
22520	Кемь-порт	77	5	0.864-0.910	4
22550	Архангельск	67	13	0.877-0.911	8
23022	Койнас	48	11	0.886-0.944	15
23032	Амдерма	45	9	0.888-0.945	13
23074	Марресаля	46	14	0.853-0.942	11
23219	Дудинка	64	5	0.888-0.931	18
23220	Нарьян-Мар	57	13	0.872-0.923	71
23242	Хоседа-Хард	56	2	0.878-0.921	6
24125	Елецкая	57	18	0.881-0.912	15
24329	Новый Порт	62	4	0.850-0.917	17
24343	Тазовск	68	4	0.886-0.936	19
25173	Оленек АМСГ	33	26	0.974	14
25206	Сухана	36	17	0.951-0.980	5
25325	Верхоянск, АМСГ	27	32	0.974-0.985	9
25372	Шелагонцы	44	11	0.862-0.927	9

Из данных таблицы 2.3 было выявлено, что с помощью процедуры восстановления проходов и приведения рядов температур воздуха к многолетнему периоду среднее количество лет наблюдений увеличилось:


В январе с 84 до 120, в течение 36 лет.

В апреле с 82 до 104 лет, в течение 22 лет.

В июле с 89 до 117, в течение 28 лет.

В октябре, с 77 по 97 год, в течение 20 лет.

Сравнение наблюдения и восстановления рядов показано на рис.2.3

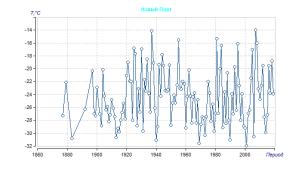


Рис 2.3. Исходный (левый) и восстановленный (правый) многолетние ряды температуры апреля на метеостанции Новый порт.

2.2.2 Восстановление пропусков и приведение непродолжительных рядов продолжительности солнечного сияния к многолетнему периоду.

Ряды продолжительности солнечного сияния, взятые для данной работы, также имели пропуски и были непродолжительными. После оценки однородности и стационарности ряды продолжительности солнечного сияния за определенные месяцы каждого сезона были пропущены через программу восстановления пропусков и удлинения рядов в программном комплексе ГИДРОРАСЧЕТЫ.

Результаты восстановления данных и удлиннения продолжительности коротких периодов солнечного сияния до многолетнего периода показаны в таблице 2.4 за 3 месяца (январь, апрель, июль).

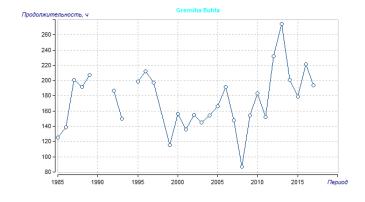
Таблица 2.4 — Результаты восстановления пропусков и приведения коротких рядов продолжительности солнечного сияния к многолетнему периоду.

	январь								
T.0	••	Кол-	Кол-	к-т	кол-во				
Код	Наименование	ВО	ВО	корреляции	аналогов				
		факт.	восст.						
20069	Кренкеля ГМО	48	14	0.766-0.870	12				
20087	Визе	36	25	0.711-0.926	17				
20107	Голомянный	49	10	0.803-0.934	12				

20289	Баренцбург	33	26	0.893-0.924	7
20292	Русский	38	23	0.705-0.940	14
20667	Им.Е.К.Федорова ГМ0	41	18	0.779-0.903	11
20674	Им.М.В.Попова	52	7	0.761-0.880	14
20744	Диксон	51	4	0.719-0.844	6
21432	Малые Кармакулы	54	5	0.773	6
21647	0. Котельный	40	20	0.794-0.930	14
21802	0. Шалаурова	53	7	0.702-0.935	11
21824	Саскылах	30	34	0.706-0.994	14
21908	Тикси	52	15	0.798-0.930	8
21921	Жилинда	39	23	0.702-0.917	12
21946	Кюсюр	55	3	0.814-0.896	5
22003	Чокурдах	54	5	0.736-0.926	9
22028	0. Врангеля	36	24	0.774-0.942	10
22095	Вайда-Губа	46	21	0.707-0.910	13
22101	Териберка	53	5	0.838-0.890	6
22113	Колгуев Северный	58	1	0.968	3
22140	Виртаниеми	31	32	0.785-0.984	13
22165	Мурманск	53	6	0.764-0.929	7
22235	Гремиха Бухта	58	12	0.824-0.856	6
22292	Канин Нос	61	11	0.908-0.945	11
22355	Краснощелье	55	11	0.806-0.888	11
22520	Индига	76	6	0.876-0.883	6
22550	Сосновец остров	69	10	0.775-0.854	6
22583	Кемь-порт	59	16	0.716-0.769	4
23022	Архангельск	52	17	0.746-0.952	11
23032	Койнас	48	11	0.779-0.874	10
23074	Амдерма	49	13	0.819-0.912	16
23205	Марресаля	66	9	0.723-0.892	19
23219	 Дудинка	66	3	0.895	30
23220	Нарьян-Мар	59	10	0.778	20
23242	Хоседа-Хард	58	11	0.707-0.871	80
23256	Елецкая	58	11	0.701-0.933	10
24125	Новый Порт	62	8	0.726-0.862	11
24136	Тазовск	59	3	0.738	12
24329	Оленек АМСГ	60	2	0.817-0.869	15
24343	Сухана	62	3	0.8740	13
25042	Верхоянск, АМСГ	48	11	0.820-0.865	14
25138	Шелагонцы	57	6	0.702-0.908	3
23130	шелагопцы	L	I -	L	

25173	Жиганск	33	37	0.709-0.962	13
25206	0. Айон	37	26	0.789-0.970	13
25325	Островное	29	35	0.783-0.964	15
25372	Амгуема	46	24	0.7960.952	9
		апрелн	•		
Код	Наименование	Кол-	Кол-	К-т	Кол-во
		BO	ВО	корреляции	аналого
20046	1/ FN40	факт 49	8	0.726.0.024	14
20046	Кренкеля ГМО			0.736-0.924	
20069	Визе	47	11	0.714-0.944	12
20087	Голомянный	39	29	0.778-0.962	13
20107	Баренцбург	58	1	0.710	3
20289	Русский	33	25	0.769-0.877	12
20292	Им.Е.К.Федорова	50	8	0.730-0.873	18
20667	rmo	39	20	0.813-0.947	16
20674	Им.М.В.Попова		4	0.813-0.947	9
20744	Диксон	55 52	5	0.830-0.921	9
	Малые Кармакулы 0. Котельный		_		
21432	0. Шалаурова	60	3	0.734-0.800	7
21647	Саскылах	41	21	0.728-0.937	8
21802 21824	Тикси	53 31	6	0.822-0.969	8
21908	Жилинда	54	28 6	0.896909	16 6
21908		40	31	0.739-0.903	19
21946	Кюсюр	47	13	0.724-0.901	19
21940	Чокурдах	55	10	0.714-0.909	13
	0. Врангеля				
22003	Вайда-Губа	58	10	0.939	13
22028	Териберка	36	31	0.747-0.943	13
22095	Колгуев Северный	44	24	0.806-0.955	15
22101	Виртаниеми	53	60	0.854-0.880	6
22113	Мурманск	58	10	0.968	3
22140	Гремиха Бухта	29	43	0.776-0.987	13
22165	Канин Нос	53	20	0.764-0.933	7
22235	Краснощелье	58	30	0.725-0.884	8
22292	Индига	62	11	0.876-0.971	9
22355	Сосновец остров	57	31	0.753-0.972	14
22520	Кемь-порт	76	12	0.831-0.922	8
23022	Архангельск	68	20	0.843-0.898	8
23032	Койнас	59	21	0.715-0.853	6
23074	Амдерма	52	7	0.917-0.947	6

23205	Марресаля	46	16	0.727-0.898	14
23219	Дудинка	48	14	0.806-0.937	12
23220	Нарьян-Мар	64	9	0.783-0.868	2
23242	Хоседа-Хард	64	6	0.775-0.963	8
23256	Елецкая	57	13	0.729-0.862	4
24125	Новый Порт	56	3	0.799-0.918	8
24136	Тазовск	59	17	0.815-0.877	11
24329	Оленек АМСГ	59	17	0.719-0.801	13
					13
24343	Сухана	71	20	0.767	
25042	Верхоянск, АМСГ	62	10	0.8040	3
25138	Шелагонцы	65	50	0.706-0.796	7
25173	Жиганск	47	12	0.803-0.961	6
25206	0. Айон	59	3	0.831-0.941	3
25325	Островное	33	27	0.726-0.951	8
25372	Амгуема	37	24	0.721-0.951	11
23022	Архангельск	27	36	0.841-0.933	13
23032	Койнас	44	25	0.851-0.920	8
		Июль			
		Кол-	Кол-	к-т	кол-во
Код	Наименование	ВО	ВО	корреляции	аналогов
20045	II DEIG ENG	факт.	восст. 4	0.856-0.867	6
20046	Им.Э.Т.Кренкеля,ГМО	44	10	0.830-0.867	9
20069	Визе	41	12	0.891-0.931	11
20087	Голомянный	56	2	0.883-0.931	6
20107 20289	Баренцбург	32	26	0.898-0.949	13
	Русский	48	1	0.905	3
20292 20667	Им.Е.К.Федорова,ГМО Им.М.В.Попова	37	25	0.863-0.959	12
20674	Диксон	55	2	0.856-0.891	6
20744	Малые Кармакулы	48	10	0.938	3
21432	О. Котельный	60	10	0.916	13
21647	О. Шалаурова	42	20	0.873-0.916	18
21802	Саскылах	52	6	0.871-0.955	10
21824	Тикси	31	28	0.868-0.964	8
21908	Жилинда	54	5	0.932	13
21921	Кюсюр	40	17	0.873-0.884	19
21946	Чокурдах	51	40	0.909	3
21982	О. Врангеля	56	10	0.918	3
22003	Вайда-Губа	56	20	0.909-0.943	4
22028	Териберка	35	34	0.886-0.987	11
22095	Колгуев Северный	43	30	0.869-0.974	15
22101	Виртаниеми	53	50	0.877-0.938	9


22113	Мурманск	58	10	0.8720	3
22140	Гремиха Бухта	26	43	0.883-0.974	13
22165	Канин Нос	49	20	0.864-0.936	15
22235	Краснощелье	57	11	0.874-0.918	9
22292	Индига	60	13	0.904-0.977	16
22355	Сосновец остров	59	12	0.871-0.948	18
22520	Кемь-порт	77	5	0.864-0.910	4
22550	Архангельск	67	13	0.877-0.911	8
23022	Амдерма	48	11	0.886-0.944	15
23032	Марресаля	45	9	0.888-0.945	13
23074	Дудинка	46	14	0.853-0.942	11
23219	Хоседа-Хард	64	5	0.888-0.931	18
23220	Елецкая	57	13	0.872-0.923	17
23242	Новый Порт	56	2	0.878-0.921	16
24125	Оленек, АМСГ	57	18	0.881-0.912	15
24329	Шелагонцы	62	40	0.850-0.917	17
24343	Жиганск	68	40	0.886-0.936	9
25173	М. Шмидта	33	26	0.9740	4
25206	Среднеколымск	36	17	0.951-0.980	5
25325	Усть-Олой	27	32	0.974-0.985	9
25372	Амгуема, 87км	44	11	0.862-0.927	9

Из данных таблицы 2.4 было выявлено, что при использовании процедуры восстановления пропусков и приведения ряда продолжительности солнечного сияния к многолетнему периоду среднее количество лет наблюдений увеличилось:

В январе с 50 до 63 лет, в течение 13 лет.

В апреле, с 51 до 65 лет, в течение 14 лет.

В июле, с 49 до 61 года, в течение 12 лет.

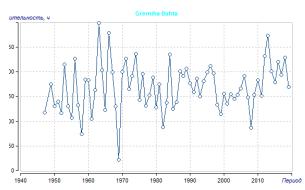


Рис 2.4 Исходный (первый график) и восстановленный (второй график) многолетние ряды продолжительности солнечного сияния апреля на метеостанции Гремиха Бухта.

2.3 Пространственные климатические закономерности температур воздуха.

Результатом расчетов в стационарных условиях является пространственная интерполяционная модель средней температуры для холодного и теплого сезонов года. Данные о средней температуре за январь, апрель, июль и октябрь на каждой станции представлены в таблице 2.5.

Таблица 2.5 – Среднемесячные температуры воздуха.

Код станции	Название	Широта	Долгота	Январь	Апрель	Июль	Октябрь
20046	Им.Э.Т.Кренкеля,ГМО	80,6	58,1	-23,6	-18,2	0,7	-10,0
20069	Визе	79,5	77	-25,2	-19,5	0,5	-10,1
20087	Голомянный	79,6	90,6	-27,7	-20,3	0,7	-11,1
20107	Баренцбург	78,1	14,2	-11,9	-10,0	5,9	-4,2
20289	Русский	77,2	96,6	-28,5	-20,8	1,3	-9,5
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	-28,7	-20,4	1,4	-11,1
20667	Им.М.В.Попова	73,3	70,1	-23,6	-16,6	4,4	-5,5
20674	Диксон	73,5	80,4	-25,7	-16,9	4,8	-7,3
20744	Малые Кармакулы	72,4	52,7	-14,0	-9,8	6,9	-2,3
21432	О. Котельный	76	137,9	-29,6	-20,3	2,8	-10,8
21647	О. Шалаурова	73,2	143,9	-30,5	-19,9	2,5	-9,7
21802	Саскылах	72	114,1	-34,6	-18,5	11,7	-12,6
21824	Тикси	71,6	128,9	-31,1	-18,2	7,5	-10,4
21908	Жилинда	70,1	114	-38,3	-14,0	13,9	-12,3
21921	Кюсюр	70,7	127,4	-37,6	-15,2	12,4	-11,4
21946	Чокурдах	70,6	147,9	-34,8	-18,6	9,7	-12,0
21982	О. Врангеля	71	-178,5	-22,6	-16,6	2,7	-6,6
22003	Вайда-Губа	69,9	32	-5,5	-1,6	10,3	2,1
22028	Териберка	69,2	35,1	-7,9	-2,1	11,3	1,3
22095	Колгуев Северный	69,1	49,2	-11,5	-6,9	7,2	-0,1
22101	Виртаниеми	68,9	28,4	-13,3	-2,5	13,6	-0,2
22113	Мурманск	69	33,1	-10,5	-1,6	12,7	0,6
22140	Гремиха Бухта	68,1	39,5	-7,6	-3,0	9,0	1,7

22165	Канин Нос	68,6	43,3	-8,7	-4,6	8,5	1,7
22235	Краснощелье	67,3	37,1	-13,6	-3,9	13,2	-0,7
22292	Индига	67,7	48,7	-14,6	-6,0	10,1	0,1
22355	Сосновец остров	66,5	40,7	-9,6	-3,6	8,5	1,7
22520	Кемь-порт	64,98	34,8	-10,8	-0,8	14,1	2,1
22550	Архангельск	64,4	40,7	-13,1	-0,6	15,8	1,5
22583	Койнас	64,8	47,6	-16,6	-1,3	15,6	-0,1
23022	Амдерма	69,8	61,7	-18,4	-11,2	7,0	-3,0
23032	Марресаля	69,7	66,8	-21,2	-12,8	7,2	-4,1
23074	Дудинка	69,4	86,2	-27,7	-14,6	13,5	-7,8
23205	Нарьян-Мар	67,6	53	-27,7	-6,40	12,9	-1,5
23219	Хоседа-Хард	67,1	59,4	-19,9	-7,80	13,2	-3,3
23220	Елецкая	67,8	64,8	-17,9	-9,20	13,2	-3,8
23242	Новый Порт	67,7	72,9	-24,5	-13,10	11,9	-4,8
23256	Тазовск	67,5	78,7	-26,3	-13,20	13,9	-6,30
24125	Оленек, АМСГ	68,5	112,4	-38,10	-11,90	14,90	-11,20
24136	Сухана	68,62	118,33	-41,70	-12,10	14,90	-11,50
24266	Верхоянск, АМСГ	67,55	133,38	-47,20	-12,70	15,50	-14,10
24329	Шелагонцы	66,25	114,28	-40,50	-11,50	14,90	-10,80
24343	Жиганск	66,77	123,4	-38,50	-10,40	16,10	-10,0
25042	О. Айон	69,8	168,7	-27,70	-18,30	5,00	-9,0
25138	Островное	68,12	164,16	-34.00	-13,40	13,40	-11,10
25173	М. Шмидта	68,9	-179,4	-24,80	-17,50	4,30	-7,60
25206	Среднеколымск	67,45	153	-36,80	-13,90	13,900	-10,80
25325	Усть-Олой	66,55	159,42	-33,50	-17,01	12,30	-13,10
25372	Амгуема, 87км	67	-178,9	-26,10	-17,81	10,50	-9,40

По данным о среднемесячной температуре строятся пространственные распределения, показанные на рисунках 2.5-2.8:

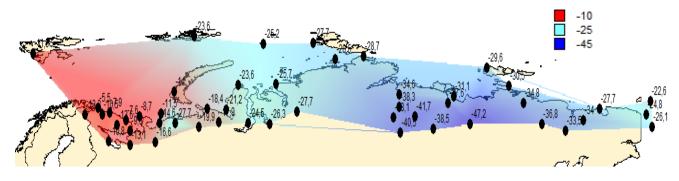


Рис 2.5 Пространственная модель средних многолетних температур в январе (MapInfo)

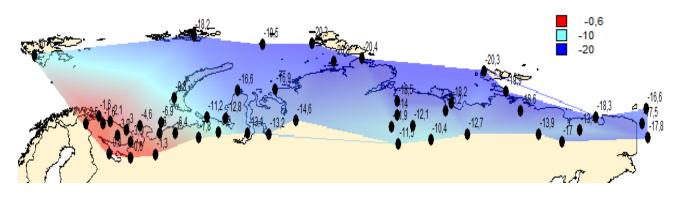
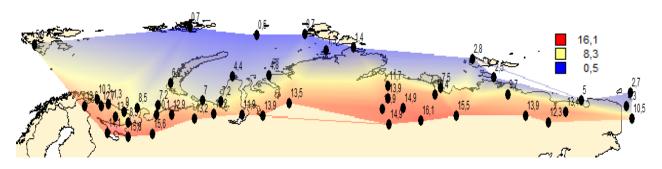
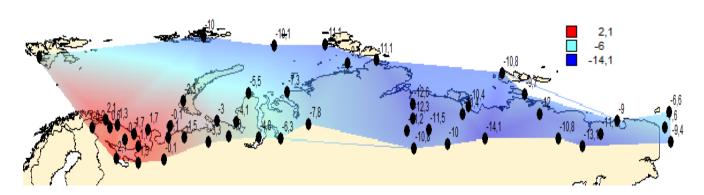




Рис.2,6 Пространственная модель средних многолетних температур в апреле (MapInfo)

Рис,2,7 Пространственная модель средних многолетних температур в июле (MapInfo)

Рис,2,8 Пространственная модель средних многолетних температур в октябре (MapInfo).

Из рисунков следует, что наиболее хорошо зональное распределение температур выражено в июле, когда тепло на юге, а холод на севере. В остальные месяцы четко прослеживается распределение, обусловленное западным переносом, тепло на западной части российской Арктики, а холод на востоке.

2.4 Пространственные климатические закономерности продолжительности солнечного сияния.

Результатом расчетов в стационарных условиях является пространственная интерполяционная модель средней продолжительности солнечного сияния для холодного и теплого сезонов года. Данные о средней продолжительности солнечного сияния за январь, апрель и июль на каждой станции представлены в таблице 2.6.

Таблица 2.6 – Среднемесячная продолжительность солнечного сияния.

Код	Название	Широта	Долгота	Январь	Апрель	Июль
20046	Им.Э.Т.Кренкеля,ГМО	80,6	58,1	0	229,6	99,3
20069	Визе	79,5	77	2,7	176,6	79,2
20087	Голомянный	79,6	90,6	2,6	265,1	114,8
20107	Баренцбург	78,1	14,2	11,1	198,2	127,6
20289	Русский	77,2	96,6	2,6	276,8	115,8
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	6,7	217,6	95,5
20667	Им.М.В.Попова	73,3	70,1	20,3	166,6	115,3
20674	Диксон	73,5	80,4	21,0	178,7	126,6
20744	Малые Кармакулы	72,4	52,7	21,8	185,8	148,5
21432	О. Котельный	76	137,9	7,4	198,8	109,5
21647	О. Шалаурова	73,2	143,9	20,2	198,6	124,9
21802	Саскылах	72	114,1	16,5	223,9	166,0
21824	Тикси	71,6	128,9	39,7	181,3	120,3
21908	Жилинда	70,1	114	38,1	276,5	194,8
21921	Кюсюр	70,7	127,4	51,2	330,6	221,5
21946	Чокурдах	70,6	147,9	38,4	274,0	175,7
21982	О. Врангеля	71	-178,5	54,2	179,3	119,3
22003	Вайда-Губа	69,9	32	21,1	186,6	155,0
22028	Териберка	69,2	35,1	40,8	182,0	174,2
22095	Колгуев Северный	69,1	49,2	29,0	164,6	121,9
22101	Виртаниеми	68,9	28,4	41,4	204,4	159,2
22113	Мурманск	69	33,1	38,5	195,0	158,9
22140	Гремиха Бухта	68,1	39,5	23,7	168,9	161,5
22165	Канин Нос	68,6	43,3	23,0	159,4	132,9
22235	Краснощелье	67,3	37,1	49,1	194,4	162,4
22292	Индига	67,7	48,7	42,2	190,8	154,3
22355	Сосновец остров	66,5	40,7	40,0	200,0	161,1
22520	Кемь-порт	64,98	34,8	57,2	255,2	216,1

			T			
22550	Архангельск	64,4	40,7	50,4	248,2	211,0
22583	Койнас	64,8	47,6	41,4	221,8	173,9
23022	Амдерма	69,8	61,7	39,9	169,9	128,7
23032	Марресаля	69,7	66,8	41,4	164,4	143,9
23074	Дудинка	69,4	86,2	31,4	237,4	193,6
23205	Нарьян-Мар	67,6	53	49,7	192,7	156,3
23219	Хоседа-Хард	67,10	59,4	51,0	196,8	154,5
23220	Елецкая	67,80	64,8	52,6	200,2	157,8
23242	Новый Порт	67,70	72,9	52,5	187,6	174,9
23256	Тазовск	67,50	78,70	54,8	208,5	197,8
24125	Оленек АМСГ	68,50	112,40	77,3	279,5	207,0
24136	Сухана	68,620	118,330	72,9	289,4	209,5
24266	Верхоянск АМСГ	67,550	133,380	82,4	306,0	227,8
24329	Шелагонцы	66,250	114,280	100,3	259,3	205,1
24343	Жиганск	66,770	123,40	91,6	303,4	234,3
25042	0. Айон	69,80	168,70	53,6	252,9	149,0
25138	Островное	68,120	164,160	54,7	327,1	212,3
25173	М. Шмидта	68,90	-179,40	57,6	204,3	127,1
25206	Среднеколымск	67,450	1530	71,0	357,6	224,7
25325	Усть-Олой	66,550	159,402	81,0	313,0	183,7
25372	Амгуема	670	-178,90	78,1	228,3	149,6

По расчетам о среднемесячной продолжительности солнечного сияния построены пространственные распределения, представленные на рисунках 2.9-2.11

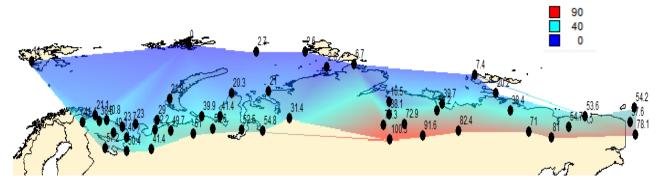


Рис2,9. Пространственная модель средней многолетней продолжительности солнечного сияния в январе (MapInfo)

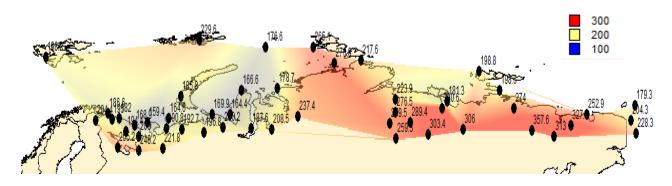


Рис 2,11 модель пространственная средней многолетней продолжительности солнечного сияния в апреле

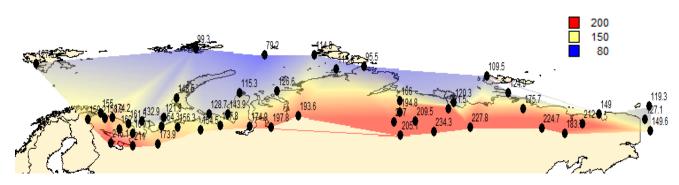


рис 2,12. Пространственная модель средней многолетней продолжительности солнечного сияния в июле

Как следует из рисунков, зональное распределение продолжительности солнечного сияния одинаково хорошо выражено как в холодное время года, в январе, так и в теплое, в июле. Наблюдается большая продолжительность солнечного сияния на юге территории, а на северной части меньше. В апреле месяце продолжительность солнечного сияния равномернее распределена по территории.

3.1 Теория

Климатическая система Земли, включая атмосферу, гидросферу, криосферу, биосферу и литосферу, нестабильна и постоянно меняется. Его изменчивость оценивается на основе большого набора показателей, который включает в себя как атмосферные характеристики (температура воздуха, осадки, давление и т.д.), так и показатели других природных сфер (уровень моря, речной сток, площадь морского льда, количество выделяемого органического углерода и т.д.), а также внешние факторы (например, колебания солнечной постоянной, параметры земной орбиты, геофизические характеристики). В то же время или период колебаний компонентов климатической значительно варьируется: от нескольких секунд для атмосферных микровихрей до сотен тысяч лет для параметров земной орбиты, что формирует сложный спектр колебаний климатических характеристик. На любом рассматриваемом временном интервале структура временного ряда может быть представлена двумя основными типами моделей: стационарными и нестационарными. В стационарной модели основные параметры временного ряда, такие как среднее значение и дисперсия, являются постоянными во времени или стационарными. Для такой ситуации можно рассчитать среднее значение за длительный период наблюдений, которое является климатической нормой. Даже в условиях современного изменения климата принято считать, что на определенных небольших отрезках временного ряда, например, продолжительностью 30 лет, колебания климатических характеристик являются квазистационарными.

Однако, помимо случайных колебаний во временных рядах климатических характеристик, могут также присутствовать нестационарные компоненты, обусловленные влиянием факторов климатической системы с большими

временными масштабами. В целом, существуют нестационарные модели трех основных типов:

- монотонные изменения в виде линейного тренда;
- циклические колебания;
- ступенчатые переходы из одного стационарного состояния в другое.

На самом деле все нестационарные изменения в природе носят циклический характер, и тренд является частью цикла процесса достаточно большого масштаба, который проявляется как линейная ветвь подъема или спада цикла на конечном рассматриваемом временном интервале.

Если предположить, что нестационарные компоненты являются реакцией климатической системы на внешние воздействия, то проявления этих воздействий могут быть двух основных типов: монотонные (трендовые или циклические колебания) и ступенчатые изменения. Механизм монотонных изменений имеет место в равновесной системе, которая почти мгновенно реагирует на направленные внешние воздействия. Механизм пошаговых изменений, или триггерный механизм, характеризует неравновесную систему, которая в течение определенного времени может нейтрализовать направленные внешние воздействия или противостоять им до тех пор, пока их совокупный эффект не выведет систему на новый уровень. Следовательно, стационарный временной ряд может быть частным случаем существования как равновесных, так и неравновесных систем. В первом случае это проявление случайных внешних воздействий, во втором – период стабильного существования, когда система еще достаточно инерционна, чтобы противостоять внешним воздействиям.

Модель линейного тренда характеризуется зависимостью рассматриваемой климатической характеристики (Y) от времени (t):

$$Y(t) = b_1 t + b_0 \tag{1}$$

где b_I , b_0 – коэффициенты уравнения регрессии, определяемые методом наименьших квадратов (МНК):

$$b_1 = \frac{\sum_{i=1}^{n} (Y_i - Y_{cp})(t_i - t_{cp})}{\sum_{i=1}^{n} (t_i - t_{cp})^2}$$
(2)

$$b_0 = Y_{cp} - b_1 t_{cp} \tag{3}$$

где Y_{cp} , t_{cp} — средние значения для рядов климатической характеристики и времени.

Статистическая значимость модели линейного тренда оценивается по статистической значимости коэффициента b1 или коэффициента корреляции R зависимости (1), который вычисляется по формуле:

$$R = \frac{\sum_{i=1}^{n} (Y_i - Y_{cp})(t_i - t_{cp})}{\sqrt{\sum_{i=1}^{n} (Y_i - Y_{cp})^2 \sum_{i=1}^{n} (t_i - t_{cp})^2}}$$
(4)

Модель пошаговых изменений аналогична двум (или нескольким) стационарным моделям для двух (или нескольких) частей временного ряда, которая характеризуется неизменностью во времени среднего значения и среднеквадратичного отклонения для каждой части ряда:

$$Sr_I(t_1) = const1, \ \sigma_I(t_1) = const1,$$
 (5)

$$Sr_2(t_2) = const2, \ \sigma_2(t_2) = const2,$$
 (6)

где Sr_1 , σ_1 — среднее значение и среднее квадратическое отклонение первой части ряда при изменении t_1 от 1 до t_n ; Sr_2 , σ_2 — среднее значение и среднее квадратическое отклонение второй части ряда при изменении t_2 от t_n +1 до n, n — объем ряда.

Момент ступеньки (*tn*) определяется визуально или на основе дополнительной информации о факторе и дате нарушения стационарности (например, изменение индекса атмосферной циркуляции, даты смены регистрирующих приборов), а также может быть определен итерациями при достижении минимального значения сумм квадратов отклонений двух частей временного ряда:

$$\sigma_1^2(n_1-1) + \sigma_2^2(n_2-1) = min,$$
 (7)

где $n_1 n_2$ – объемы каждой из двух частей временного ряда. [8]

3.2 Результаты моделирования временных рядов в пунктах наблюдений

. На основе методологии раздела 3.1 были рассчитаны характеристики стационарных и нестационарных моделей для среднемесячных температур за четыре месяца (январь, апрель, июль, октябрь) года на 49 метеостанциях с использованием программы ТІМОD. Эффективные отличия от модели стационарной выборки, статистически значимые значения критерия Фишера и коэффициенты линейной трендовой корреляции выделены в таблицах ярким цветом.

Результаты расчетов на основе моделей временных рядов за 4 месяца каждого сезона (январь, апрель, Июль, Октябрь) приведены в таблицах 3.1- 3.4, где приведены случаи нестационарных моделей при Δ>10% и статистики по критерию Фишера (Ftr. и Fst.) с уровнем значимости 5% выделены ярким цветом, а также статистически значимые коэффициенты уравнений линейного тренда R. В таблицах 3.1-3.4 также указаны: Год ст. - год перехода от одной стационарной части ряда к другой согласно модели пошаговых изменений; Год N., Год К. – годы начала и окончания наблюдений, n — количество лет наблюдений; R - коэффициент корреляции модели линейного тренда

Таблица 3.1 — Результаты расчетов по моделям временных рядов для температуры января.

	Им.Э.Т.Кренкеля,ГМО			- .	- .			Год		,
Код		Δтр	Δст	Ftr	Fst	Год ст	Год Н	К	n	R
20046	Визе	2.3	8.6	1.05	1.20	2005	1877	2019	127	0.21
20069	Голомянный	2.3	9.2	1.05	1.21	2005	1877	2019	124	0.21
20087	Баренцбург	3.2	9.6	1.07	1.22	2005	1877	2019	124	0.25
20107	Русский	0.6	9.1	1.01	1.21	2005	1921	2019	99	0.11
20289	им.Е.К.Федорова,ГМ0	3.8	7.3	1.08	1.16	2005	1877	2019	125	0.27
20292	Им.М.В.Попова	3.9	7.9	1.08	1.18	2005	1892	2019	121	0.28
20667	Диксон	2.4	5.6	1.05	1.12	1919	1877	2019	125	0.22
20674	Малые Кармакулы	2.8	6.0	1.06	1.13	1920	1877	2019	126	0.24
20744	0. Котельный	1.2	6.1	1.03	1.13	1919	1877	2019	125	0.16
21432	0. Шалаурова	2.1	6.5	1.04	1.15	2006	1929	2019	91	0.20
21647	Саскылах	1.5	4.3	1.03	1.09	2009	1929	2019	91	0.17

21802 Тикси 0.0 4.2 1.00 1.09 2005 1933 2019 8 21824 Жилинда 2.9 4.8 1.06 1.10 2005 1910 2019 10 21908 Кюсюр 1.4 5.2 1.03 1.11 2005 1910 2019 10 21921 Чокурдах 1.1 3.0 1.02 1.06 2005 1910 2019 10 21946 0. Врангеля 10.2 11.5 1.24 1.28 1920 1887 2019 12 21982 Вайда-Губа 3.4 3.8 1.07 1.08 1950 1927 2019 9 22003 Териберка 0.6 1.8 1.01 1.04 1922 1856 2019 16	2 0.24 2 0.17 2 0.15
21908 Кюсюр 1.4 5.2 1.03 1.11 2005 1910 2019 10 21921 Чокурдах 1.1 3.0 1.02 1.06 2005 1910 2019 10 21946 0. Врангеля 10.2 11.5 1.24 1.28 1920 1887 2019 12 21982 Вайда-Губа 3.4 3.8 1.07 1.08 1950 1927 2019 9	2 0.17
21921 Чокурдах 1.1 3.0 1.02 1.06 2005 1910 2019 10 21946 0. Врангеля 10.2 11.5 1.24 1.28 1920 1887 2019 12 21982 Вайда-Губа 3.4 3.8 1.07 1.08 1950 1927 2019 9	2 0.15
21946 0. Врангеля 10.2 11.5 1.24 1.28 1920 1887 2019 12 21982 Вайда-Губа 3.4 3.8 1.07 1.08 1950 1927 2019 9	
21982 Вайда-Губа 3.4 3.8 1.07 1.08 1950 1927 2019 9	3 0.44
22003 Териберка 0.6 1.8 1.01 1.04 1922 1856 2019 16	2 0.26
	4 0.11
22028 Колгуев Северный 0.9 1.8 1.02 1.04 1922 1814 2019 20	4 0.13
22095 Виртаниеми 0.3 1.8 1.01 1.04 1920 1814 2019 20	4 0.07
22101 Мурманск 0.0 1.2 1.00 1.03 1869 1856 2019 16	4 0.02
22113 Гремиха Бухта 0.2 0.6 1.00 1.01 1922 1814 2019 20	4 0.06
22140 Канин Нос 1.7 3.5 1.03 1.07 1992 1814 2019 20	4 0.18
22165 Краснощелье 0.5 1.9 1.01 1.04 1921 1814 2019 20	4 0.10
22235 Индига 0.2 0.8 1.00 1.02 1922 1814 2019 20	4 0.07
22292 Сосновец остров 0.1 0.8 1.00 1.02 1921 1814 2019 20	4 0.04
22355 Кемь-порт 0.8 1.8 1.02 1.04 1993 1814 2019 20	4 0.13
22520 Архангельск 0.8 1.5 1.02 1.03 1992 1814 2019 20	4 0.13
22550 Койнас 0.4 1.0 1.01 1.02 1993 1814 2019 20	4 0.09
22583 Амдерма 0.3 0.7 1.01 1.01 1839 1814 2019 20	4 0.07
23022 Марресаля 0.5 3.5 1.01 1.07 1920 1863 2019 12	9 0.10
23032 Дудинка 0.7 4.2 1.01 1.09 1920 1877 2019 12	6 0.12
23074 Нарьян-Мар 0.1 1.7 1.00 1.03 1917 1907 2019 11	3 0.04
23205 Хоседа-Хард 0.1 1.7 1.00 1.03 1917 1907 2019 11	3 0.04
23219 Елецкая 0.0 0.6 1.00 1.01 1963 1814 2019 20	4 0.02
23220 Новый Порт 1.8 4.1 1.04 1.09 1940 1868 2019 15	- 2 0.19
23242 Тазовск 0.4 2.9 1.01 1.06 1920 1877 2019 12	6 0.08
23256 Оленек АМСГ 0.2 1.6 1.00 1.03 1920 1877 2019 12	6 0.06
24125 Сухана 7.9 8.6 1.18 1.20 2005 1936 2019 8	4 0.39
24136 Верхоянск, АМСГ 1.4 5.4 1.03 1.12 2005 1910 2019 10	2 0.17
24266 Шелагонцы 14.7 12.7 1.37 1.31 1916 1886 2019 13	0 .52
24329 Жиганск 0.9 5.3 1.02 1.11 2005 1933 2019 8	7 0.14
24343 0. Айон 2.9 5.0 1.06 1.11 1991 1929 2019 9	1 0.24
25042 Островное 0.4 1.8 1.01 1.04 2009 1929 2019 9	1 0.09
25138 М. Шмидта 0.1 1.3 1.00 1.03 1950 1933 2018 8	6 0.05
	3 0.13
25206 Усть-Олой 6.5 7.0 1.14 1.16 1920 1887 2019 12	3 0.35
25325 Амгуема, 87км 0.7 3.3 1.01 1.07 1986 1933 2018 8	- 6 0.12
25372 Им.Э.Т.Кренкеля,ГМО 1.5 3.4 1.03 1.07 1950 1927 2019 9	2 0.17

Из результатов таблицы 3.1 следует, что из 49 серий наблюдений январских температур 2 серии с линейной моделью тренда и 2 серии с моделью ступенчатых изменений являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет. Статистически значимые коэффициенты корреляции со значением R > 0,26 составляют 7 строк.

Примеры графиков временных рядов нестационарных моделей показаны на рисунке 3.1.

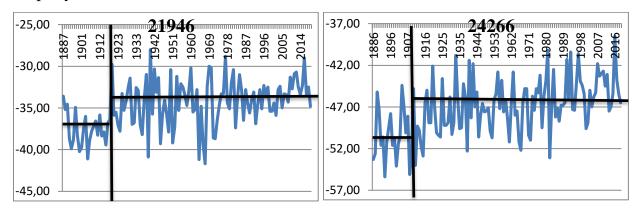


Рис 3.1 Графики временных рядов нестационарных моделей

Таблица 3.2 — Результаты расчетов по моделям временных рядов для температуры апреля.

	FN40	Δт				Год	Год	Год		
Код	Кренкеля,ГМО	р	Δст	Ftr	Fst	st	Н	К	n	R
2004	D			1.0	1.1				15	
6	Визе	1.9	6.6	4	5	1897	1868	2019	2	0.19
2006	F •			1.1	1.3					
9	Голомянный	6.2	13.6	4	4	2006	1931	2019	89	0.35
2008	5 6			1.2	1.3					
7	Баренцбург	9.3	13.9	2	5	2007	1931	2019	89	0.42
2010	D 2			1.0	1.1					
7	Русский	3.7	7.7	8	7	2002	1940	2019	80	0.27
2028	Им.Е.К.Федорова,Г			1.2	1.4				10	
9	M0	8.6	15.4	0	0	2007	1917	2019	2	0.41
2029				1.1	1.4					
2	Им.М.В.Попова	7.3	17.0	6	5	2007	1931	2019	89	0.37
2066	_			1.0	1.1				12	
7	Диксон	2.7	7.6	6	7	2007	1877	2019	6	0.23
2067	NA 1/			1.0	1.2			_	11	
4	Малые Кармакулы	2.4	9.3	5	2	2007	1907	2019	3	0.22

2074				1.0	1.1				12	
4	0. Котельный	2.7	6.9	6	5	2007	1877	2019	5	0.23
2143			0.0	1.1	1.6					
2	0. Шалаурова	7.9	22.0	8	4	2007	1929	2019	91	0.39
2164			_	1.1	1.5					
7	Саскылах	7.2	18.9	6	2	2007	1929	2019	91	0.37
2180	_			1.0	1.2					
2	Тикси	2.1	10.6	4	5	2007	1933	2019	87	0.20
2182	117			1.0	1.1				10	
4	Жилинда	1.8	7.8	4	8	2007	1910	2019	2	0.19
2190				1.1	1.3					
8	Кюсюр	4.8	12.9	0	2	2007	1933	2019	87	0.31
2192				1.0	1.2				13	
1	Чокурдах	3.4	10.4	7	5	2007	1887	2019	0	0.26
2194				1.0	1.2				12	
6	0. Врангеля	3.8	10.7	8	5	2009	1887	2019	3	0.27
2198				1.0	1.2					
2	Вайда-Губа	2.9	9.5	6	2	1988	1927	2019	93	0.24
2200	_			1.0	1.1				20	
3	Териберка	3.9	5.6	8	2	1989	1816	2019	3	0.28
2202				1.0	1.0				20	
8	Колгуев Северный	2.0	4.2	4	9	1999	1816	2019	3	0.20
2209				1.0	1.0				13	
5	Виртаниеми	0.5	4.0	1	9	2007	1863	2019	6	0.10
2210				1.1	1.1				16	
1	Мурманск	7.8	6.1	8	3	1999	1856	2019	4	0.39
2211	_			1.0	1.0				20	
3	Гремиха Бухта	2.8	3.7	6	8	1989	1814	2019	5	0.24
2214				1.0	1.1				20	
0	Канин Нос	3.0	5.9	6	3	2000	1814	2019	5	0.24
2216	.,			1.0	1.1				15	
5	Краснощелье	0.9	4.9	2	1	2000	1863	2019	7	0.14
2223	.,			1.0	1.0				20	
5	Индига	2.2	4.2	4	9	1999	1814	2019	5	0.21
2229				1.0	1.0				15	
5	Сосновец остров	0.1	2.8	0	6	2000	1863	2019	7	0.05
2235				1.0	1.0				20	
5	Кемь-порт	1.6	3.8	3	8	2000	1814	2019	5	0.18
2252	Ληνουσο στ. στ.			1.0	1.0				20	
0	Архангельск	0.9	2.6	2	6	1999	1816	2019	3	0.13
2255	Vayuaa			1.0	1.0				20	
0	Койнас	2.6	3.5	5	7	1989	1814	2019	5	0.23
2258	A			1.0	1.0				20	
3	Амдерма	0.9	1.6	2	3	1989	1814	2019	5	0.14
2302	Ma::::::::::::::::::::::::::::::::::::			1.0	1.0				12	
2	Марресаля	1.0	4.2	2	9	2007	1877	2019	6	0.14
2303	Пипиша			1.0	1.0				12	
2	Дудинка	0.9	4.0	2	9	2007	1877	2019	6	0.13

2207			1	1.0	4.2				4.4	
2307	Нарьян-Мар	2.0	0.0	1.0	1.2	2007	1007	2010	11	0.20
4	' '	2.0	9.0	4	1	2007	1907	2019	3	0.20
2320	Хоседа-Хард	0.0		1.0	1.0	2007	4060	2010	14	0.00
5		0.3	2.9	1	6	2007	1863	2019	7	0.08
2321	Елецкая			1.0	1.0				14	
9	Елецкал	0.3	3.1	1	6	2007	1876	2019	4	0.08
2322	Новый Порт			1.0	1.0				12	
0	Повый Порт	1.8	3.3	4	7	2007	1877	2019	7	0.19
2324	Тазовск			1.0	1.1				11	
2	Tasober	2.5	4.6	5	0	2007	1877	2019	5	0.22
2325	Оленек АМСГ			1.0	1.1				11	
6	Oliehek Alvici	1.3	6.3	3	4	2007	1907	2019	3	0.16
2412	Converse			1.1	1.2					
5	Сухана	6.0	11.9	3	9	2007	1936	2019	84	0.34
2413	Danis ANACE			1.1	1.2				10	
6	Верхоянск, АМСГ	4.8	12.0	0	9	2007	1910	2019	2	0.31
2426				1.0	1.2				13	
6	Шелагонцы	3.5	8.9	7	1	2009	1887	2019	0	0.26
2432				1.1	1.2					
9	Жиганск	5.2	11.3	1	7	2007	1933	2019	87	0.32
2434				1.1	1.2				10	
3	0. Айон	4.9	12.1	1	9	2007	1910	2019	2	0.31
2504	_			1.1	1.2					
2	Островное	4.8	9.7	0	3	2007	1927	2019	93	0.31
2513				1.0	1.1				11	
8	М. Шмидта	1.9	6.6	4	5	2000	1887	2018	9	0.19
2517	•			1.0	1.1					
3	Среднеколымск	2.7	7.0	6	6	1989	1927	2019	93	0.23
2520	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	1.0	1.2				12	
6	Усть-Олой	4.1	10.3	9	4	2009	1887	2019	3	0.28
2532		† <u>-</u>		1.0	1.1					
5	Амгуема, 87км	1.0	5.1	2	1	1990	1933	2018	86	0.14
		1.0	3.1			1330	1000	2010	30	0.17
2537	Им.Э.Т.Кренкеля,ГМ	1 1	4.0	1.0	1.1	1000	1027	2010	03	047
2	0	1.4	4.9	3	1	1989	1927	2019	93	0.17

Из результатов таблицы 3.2 следует, что из 49 серий наблюдений апрельских температур 15 серий с моделью пошаговых изменений и ни одна с моделью линейного тренда не являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет. Статистически значимые коэффициенты корреляции со значением R >0,26 составляют 19 строк. Примеры графиков временных рядов нестационарных моделей показаны на рисунке 3.2.



Рис 3.2 Графики временных рядов нестационарных моделей

Таблица 3.3 — Результаты расчетов по моделям временных рядов для температуры июля.

		1	1	1					1	
Код	Им.Э.Т.Кренкеля,ГМО	∆тр	Δст	Ftr	Fst	Год st	Год Н	Год К	n	R
20046	Визе	0.7	2.8	1.01	1.06	1951	1917	2019	98	0.11
20069	Голомянный	0.0	0.7	1.00	1.02	2004	1931	2019	84	0.00
20087	Баренцбург	0.1	0.5	1.00	1.01	1972	1931	2019	84	-0.03
20107	Русский	1.8	6.8	1.04	1.15	1998	1931	2018	86	0.19
20289	им.Е.К.Федорова,ГМ0	0.4	2.2	1.01	1.05	1972	1933	2019	87	-0.08
20292	Им.М.В.Попова	0.3	1.4	1.01	1.03	1971	1933	2019	85	-0.07
20667	Диксон	6.0	8.8	1.13	1.20	2004	1917	2019	103	0.34
20674	Малые Кармакулы	1.9	6.9	1.04	1.15	2006	1917	2019	102	0.20
20744	0. Котельный	4.0	4.0	1.09	1.09	1952	1879	2019	122	0.28
21432	0. Шалаурова	3.2	4.5	1.07	1.10	1991	1933	2019	84	0.25
21647	Саскылах	0.5	1.9	1.01	1.04	1987	1929	2019	91	0.10
21802	Тикси	0.1	0.9	1.00	1.02	1972	1935	2019	85	-0.05
21824	Жилинда	1.3	4.0	1.03	1.08	1988	1933	2018	86	0.16
21908	Кюсюр	0.1	1.1	1.00	1.02	1991	1935	2019	85	0.05
21921	Чокурдах	1.4	2.3	1.03	1.05	1931	1887	2019	131	0.17
21946	0. Врангеля	2.7	4.0	1.06	1.09	1987	1887	2019	125	0.23
21982	Вайда-Губа	14.3	20.7	1.36	1.59	1999	1927	2019	89	0.52
22003	Териберка	2.5	3.2	1.05	1.07	1957	1890	2019	129	0.22
22028	Колгуев Северный	1.1	2.2	1.02	1.04	1999	1890	2019	129	0.15
22095	Виртаниеми	5.4	6.9	1.12	1.15	1952	1862	2019	127	0.32
22101	Мурманск	1.5	4.5	1.03	1.10	1913	1876	2019	143	0.17
22113	Гремиха Бухта	1.3	2.5	1.03	1.05	1913	1890	2019	129	0.16
22140	Канин Нос	1.9	3.1	1.04	1.06	1952	1862	2019	134	0.19
22165	Краснощелье	4.5	6.3	1.10	1.14	1952	1862	2019	128	0.30
22235	Индига	0.3	1.9	1.01	1.04	1998	1814	2019	205	0.08

	_		_		_					
22292	Сосновец остров	5.2	7.2	1.11	1.16	1952	1862	2019	127	0.32
22355	Кемь-порт	1.5	5.7	1.03	1.12	2000	1856	2019	156	0.17
22520	Архангельск	0.7	3.7	1.01	1.08	1999	1866	2018	153	0.12
22550	Койнас	0.3	2.4	1.01	1.05	1998	1814	2019	205	0.08
22583	Амдерма	0.7	3.1	1.01	1.07	1998	1814	2019	205	0.12
23022	Марресаля	4.8	6.1	1.10	1.14	1951	1934	2018	85	0.31
23032	Дудинка	3.3	3.7	1.07	1.08	1953	1917	2019	102	0.25
23074	Нарьян-Мар	3.3	4.9	1.07	1.11	1953	1907	2017	101	0.26
23205	Хоседа-Хард	3.9	5.5	1.08	1.12	1952	1913	2019	107	0.28
23219	Елецкая	3.3	4.1	1.07	1.09	1952	1927	2019	93	0.25
23220	Новый Порт	2.3	4.1	1.05	1.09	1952	1927	2019	93	0.21
23242	Тазовск	4.3	5.5	1.09	1.12	2004	1933	2018	80	0.29
23256	Оленек АМСГ	6.0	7.5	1.13	1.17	1953	1907	2019	106	0.34
24125	Сухана	0.2	1.1	1.00	1.02	1996	1935	2019	85	0.06
24136	Верхоянск, АМСГ	0.8	1.9	1.02	1.04	1931	1910	2019	99	0.12
24266	Шелагонцы	2.0	3.9	1.04	1.08	1991	1887	2019	131	0.20
24329	Жиганск	0.5	2.8	1.01	1.06	1991	1935	2019	85	0.10
24343	0. Айон	0.6	2.3	1.01	1.05	1931	1910	2019	99	0.11
25042	Островное	5.6	6.0	1.12	1.13	1971	1934	2017	84	0.33
25138	М. Шмидта	3.2	5.8	1.07	1.13	1987	1887	2018	124	0.25
25173	Среднеколымск	5.9	6.4	1.13	1.14	1953	1933	2013	80	0.34
25206	Усть-Олой	3.1	5.5	1.07	1.12	1987	1887	2019	125	0.25
25325	Амгуема, 87км	8.8	11.9	1.20	1.29	1971	1933	2017	84	0.41
25372	Им.Э.Т.Кренкеля,ГМ0	8.4	9.4	1.19	1.22	1972	1933	2014	82	0.40

Из результатов таблицы 3.3 следует, что из 49 серий наблюдений июльских температур 1 серия с линейной моделью тренда и 2 серии с моделью ступенчатых изменений являются нестационарными при $\Delta>10\%$. Статистически значимых по критерию Фишера при уровне значимости 5% нет. Статистически значимые коэффициенты корреляции со значением R>0.26 составляют 14 строк. Примеры графиков временных рядов нестационарных моделей показаны на рисунке 3.3.

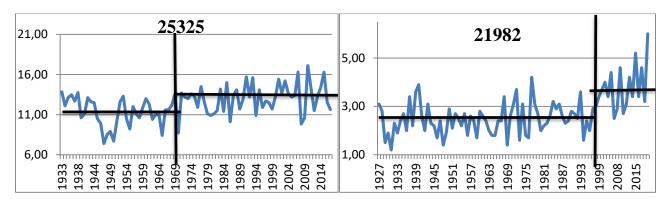


Рис 3.3 Графики временных рядов нестационарных моделей

Таблица 3.4 — Результаты расчетов по моделям временных рядов для температуры октября.

1				,						
	Им.Э.Т.Кренкеля,ГМ					Год	Год	Год		
Код	0	∆тр	Δст	Ftr	Fst	СТ	Н	К	n	R
2004	Divas		20.	1.0						
6	Визе	4.4	5	9	1.58	2007	1940	2018	74	0.29
2006	F		16.	1.0						
9	Голомянный	1.0	6	2	1.44	2007	1930	2018	89	0.14
2008	F		15.	1.0						
7	Баренцбург	0.6	1	1	1.39	2005	1930	2018	89	0.11
2010	9			1.0						
7	Русский	1.0	5.8	2	1.13	2007	1940	2018	73	0.14
2028	Им.Е.К.Федорова,ГМ		12.	1.0						
9	0	0.2	0	0	1.29	2007	1916	2018	94	0.06
2029			12.	1.0						
2	Им.М.В.Попова	0.2	9	0	1.32	2005	1930	2018	89	0.07
2066	_			1.0					12	
7	Диксон	1.5	6.2	3	1.14	2007	1876	2018	5	0.17
2067				1.0					11	
4	Малые Кармакулы	0.5	6.0	1	1.13	2007	1906	2018	3	0.10
2074	0. Котельный			1.0					13	
4	о. котельный	3.2	6.9	7	1.15	2007	1876	2018	3	0.25
2143	0 1112 #22/2002		16.	1.0						
2	0. Шалаурова	2.3	2	5	1.43	2005	1929	2018	90	0.21
2164	Саскылах		16.	1.0						
7	Саскылах	2.3	9	5	1.45	2005	1929	2018	89	0.21
2180	Тикси			1.0						
2	TURCU	0.0	5.1	0	1.11	2007	1932	2018	87	0.00
2182	Жилинда			1.0					10	
4	лмлипда	0.0	4.5	0	1.10	2007	1909	2018	2	0.03
2190				1.0					10	
8	Кюсюр	0.0	4.2	0	1.09	2007	1909	2018	2	0.02
2192	Hamma and			1.0					10	
1	Чокурдах	0.0	3.8	0	1.08	2007	1909	2018	2	-0.01

2194			12.	1.0					12	
6	0. Врангеля	3.5	4	7	1.30	2005	1887	2018	6	0.26
2198			19.	1.1						
2	Вайда-Губа	7.9	9	8	1.56	2002	1926	2018	93	0.39
2200				1.1					16	
3	Териберка	5.7	6.3	3	1.14	1999	1856	2018	3	0.33
2202				1.0					20	
8	Колгуев Северный	2.6	4.4	5	1.09	1999	1813	2018	5	0.22
2209	D			1.0					16	
5	Виртаниеми	2.6	4.8	6	1.10	1999	1856	2018	3	0.23
2210	N. 4			1.0					20	
1	Мурманск	1.8	2.6	4	1.05	1996	1816	2018	2	0.19
2211	Francisco Francis			1.0					20	
3	Гремиха Бухта	1.6	3.0	3	1.06	1996	1816	2018	2	0.18
2214	Изини Нос			1.0					20	
0	Канин Нос	3.8	7.9	8	1.18	1980	1813	2018	5	0.27
2216	Vnacuouionio			1.0					20	
5	Краснощелье	1.2	5.1	2	1.11	1999	1813	2018	5	0.15
2223	Индига			1.0					20	
5	индина	1.5	3.1	3	1.07	1998	1813	2018	5	0.17
2229	Сосновец остров			1.0					20	
2	сосновец остров	0.7	3.3	1	1.07	1999	1813	2018	5	0.12
2235	Кемь-порт			1.0					20	
5	пемь-порт	2.1	4.4	4	1.09	1995	1813	2018	5	0.21
2252	Архангельск			1.0					20	
0		2.5	3.8	5	1.08	1929	1813	2018	5	0.22
2255	Койнас			1.0	_				20	_
0	Nomice	0.7	2.5	1	1.05	1994	1813	2018	5	0.12
2258	Амдерма			1.0					20	
3	тищерии	0.5	2.7	1	1.06	1994	1813	2018	5	0.10
2302	Марресаля			1.0	_				12	
2		2.2	4.6	5	1.10	1999	1876	2018	5	0.21
2303	Дудинка			1.0					12	
2	н унтич	1.9	3.9	4	1.08	2001	1876	2018	5	0.20
2307	Нарьян-Мар			1.0			400-	0015	11	0.0=
4	Taleston mak	0.3	3.2	1	1.07	2007	1906	2018	3	0.07
2320	Хоседа-Хард		2.6	1.0	4.05	4000	4040	2040	20	0.07
5		0.2	2.6	0	1.05	1999	1813	2018	5	0.07
2321	Елецкая			1.0	4.00	4000	40=0	2215	13	0.15
9		1.6	3.0	3	1.06	1999	1876	2018	3	0.18
2322	Новый Порт		2.2	1.0	1.07	1001	1000	2040	15	0.04
0	···- r ·	0.1	3.2	0	1.07	1891	1868	2018	1	-0.04
2324	Тазовск		2.4	1.0	1.07	2007	4000	2040	13	0.05
2		0.1	3.1	0	1.07	2007	1868	2018	5	0.05
2325	Оленек АМСГ		2.0	1.0	1.00	2002	1000	2040	11	0.11
6		0.6	3.0	1	1.06	2002	1906	2018	3	0.11
2412	Сухана		2.0	1.0	1.00	2007	1000	2040	10	0.00
5	- ,	0.2	3.8	0	1.08	2007	1909	2018	2	0.06

2413	Danie allar ANACE			1.0					10	
6	Верхоянск, АМСГ	0.1	2.4	0	1.05	1955	1909	2018	2	-0.04
2426				1.0					13	
6	Шелагонцы	1.0	5.0	2	1.11	2005	1887	2019	1	0.14
2432				1.0						
9	Жиганск	0.3	3.1	1	1.07	2007	1935	2018	84	0.08
2434	0 1 V			1.0					10	
3	0. Айон	0.2	2.8	0	1.06	1952	1909	2018	2	-0.07
2504		10.	21.	1.2						
2	Островное	2	6	4	1.63	2002	1926	2018	93	0.44
2513			11.	1.1						
8	М. Шмидта	5.7	8	2	1.28	2003	1934	2018	85	0.33
2517	Среднеколымск		17.	1.1						
3	среднеколымск	6.8	5	5	1.47	2002	1926	2018	93	0.36
2520	Усть-Олой			1.0					12	
6	усть-Олои	3.4	9.9	7	1.23	2002	1887	2018	6	0.26
2532	AA51/0442 97//44		10.	1.0						
5	Амгуема, 87км	1.4	4	3	1.24	2002	1934	2016	83	0.17
2537	Им.Э.Т.Кренкеля,ГМ		12.	1.0					_	
2	0	3.0	0	6	1.29	2002	1932	2014	83	0.24

Из результатов таблицы 3.4 следует, что из 49 серий наблюдений октябрьских температур 1 серия с линейной моделью тренда и 14 серий с моделью ступенчатых изменений являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет. Статистически значимые коэффициенты корреляции со значением R > 0,26 составляют 9 строк.Примеры графиков временных рядов нестационарных моделей показаны на рис. 3.4

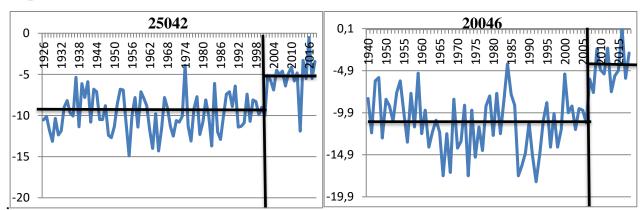


Рис 3.4. Графики временных рядов нестационарных моделей

При анализе данных таблиц за эти месяцы можно сделать вывод, что модель пошаговых изменений намного лучше модели линейного тренда, поскольку она имеет большие значения нестационарности Δ и более правильно отражает характер нестационарности, связанный с переходом от одного стационарного режима к другому.

3.3 Пространственные обобщения показателей нестационарности

Для оценки показателей нестационарности моделей линейных трендов и пошаговых изменений с использованием программы ТІМЕО 1 были взяты значения с 1960 года по последний год измерений. Именно этот период в российском Арктическом регионе связан с современным потеплением и не учитывает естественное потепление середины 20-го века.

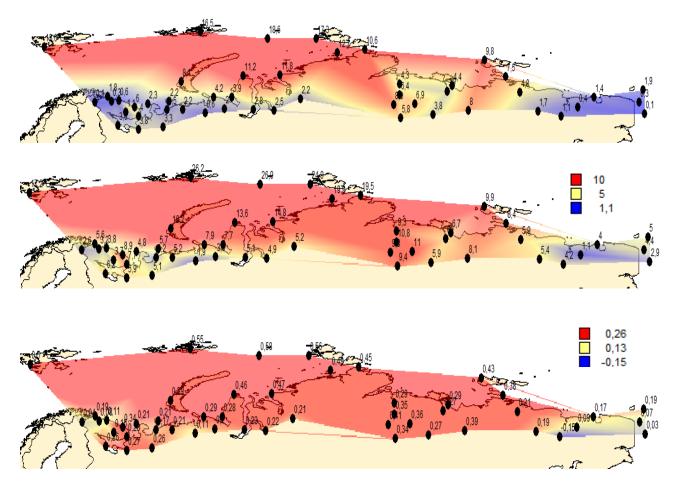
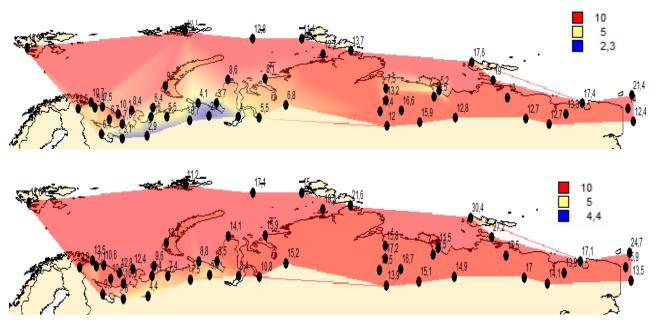

В таблице 3.5 приведены результаты расчетов с использованием моделей временных рядов с линейным трендом (Dtr) и пошаговыми изменениями (Dst) за четыре месяца Январь (i), апрель (a), июль (i), октябрь (o). Для обобщения рассчитанных параметров были построены пространственные распределения отклонений нестационарных моделей от модели стационарной выборки в процентах (Dtr. и Dst.) и коэффициент корреляции температуры за четыре месяца, показанные на рисунках 3.5–3.8.

Таблица 3.5 - показатели нестационарности за четыре месяца.


коп		ота	долг ота		Δтј	0,%			Δст	7,%		К-	г кор	реляц	ии
код	название	а Га	III	Я	a	И	o	Я	a	И	0	Я	a	И	o
20046	Им.Э.Т.Кренкеля,ГМО	80,6	58,1	16.5	10.1	0.5	18.7	26.2	11.2	2.1	27.9	0.55	0.44	-0.10	0.58
20069	Визе	79,5	77	18.6	12.8	0.0	18.6	26.9	17.1	1.1	29.0	0.58	0.49	0.00	0.58
20087	Голомянный	79,6	90,6	17.3	11.4	0.0	19.0	24.9	15.0	1.0	29.6	0.56	0.46	-0.02	0.59
20107	Баренцбург	78,1	14,2	13.6	10.9	12.8	6.4	17.2	12.6	12.5	9.1	0.50	0.45	0.49	0.35
20289	Русский	77,2	96,6	12.7	12.7	0.3	15.0	19.9	19.2	3.0	24.8	0.49	0.49	-0.08	0.53
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	10.6	13.7	0.1	18.4	19.5	21.6	1.5	28.4	0.45	0.51	-0.05	0.58
20667	Им.М.В.Попова	73,3	70,1	11.2	8.6	10.9	11.4	13.6	14.1	13.4	13.5	0.46	0.40	0.45	0.46
20674	Диксон	73,5	80,4	11.8	8.1	8.7	9.4	14.8	15.9	12.3	14.0	0.47	0.40	0.41	0.42
20744	Малые Кармакулы	72,4	52,7	8.1	9.7	0.5	11.1	16.2	13.7	2.8	12.7	0.39	0.43	0.10	0.46
21432	0. Котельный	76	137,9	9.8	17.6	1.8	20.9	9.9	30.4	3.2	27.6	0.43	0.57	0.19	0.61
21647	0. Шалаурова	73,2	143,9	7.5	19.0	0.3	22.7	8.4	27.2	2.0	31.0	0.38	0.59	0.08	0.63

21802	Саскылах	72	114,1	4.3	7.5	0.0	4.3	9.3	15.8	1.2	11.7	0.29	0.38	0.00	0.29
21824	Тикси	71,6	128,9	4.4	5.2	2.1	7.7	6.7	11.5	5.4	12.8	0.29	0.32	0.00	0.23
21908	Жилинда	70,1	114	6.4	13.2	0.5	5.4	10.8	17.2	1.9	9.3	0.25	0.50	0.10	0.32
21921	Кюсюр	70,7	127,4	3.7	11.5	0.6	6.5	6.0	17.5	2.5	12.3	0.27	0.47	0.11	0.36
21946	Чокурдах	70,6	147,9	4.8	13.0	0.8	21.6	5.9	17.5	3.8	22.8	0.31	0.49	0.12	0.62
21982	О. Врангеля	71	182,5	1.9	21.4	19.3	21.7	5.0	24.7	22.0	26.8	0.19	0.62	0.59	0.62
22003	Вайда-Губа	69,9	32	1.8	10.7	0.1	7.0	5.6	12.5	2.0	8.7	0.19	0.45	0.04	0.37
22028	Териберка	69,2	35,1	0.6	7.5	0.1	4.5	3.8	10.6	2.3	6.7	0.11	0.38	0.05	0.30
22095	Колгуев Северный	69,1	49,2	2.2	6.4	1.0	9.2	5.7	9.6	4.7	13.3	0.21	0.35	0.14	0.42
22101	Виртаниеми	68,9	28,4	0.1	6.5	0.9	3.6	2.6	9.9	2.6	5.0	0.04	0.36	0.14	0.27
22113	Мурманск	69	33,1	0.3	5.4	0.3	3.2	3.2	7.1	2.1	5.3	0.08	0.32	0.08	0.25
22140	Гремиха Бухта	68,1	39,5	6.0	10.1	0.0	6.7	8.9	12.8	2.9	9.1	0.34	0.44	0.02	0.36
22165	Канин Нос	68,6	43,3	2.3	8.4	0.2	6.0	4.8	12.4	3.4	11.0	0.21	0.40	0.06	0.34
22235	Краснощелье	67,3	37,1	1.1	6.7	0.6	3.3	3.7	10.5	4.0	5.2	0.15	0.36	0.11	0.26
22292	Индига	67,7	48,7	1.5	4.6	0.9	7.2	3.2	8.4	4.1	10.1	0.17	0.30	0.13	0.37
22355	Сосновец остров	66,5	40,7	4.0	7.6	3.0	3.8	7.7	10.3	8.4	6.8	0.28	0.38	0.24	0.27
22520	Кемь-порт	64,98	34,8	3.6	6.4	2.1	2.7	6.2	9.3	7.1	4.8	0.26	0.35	0.21	0.23
22550	Архангельск	64,4	40,7	3.8	3.1	1.2	2.7	5.9	6.0	5.8	5.4	0.27	0.25	0.15	0.23
22583	Койнас	64,8	47,6	3.3	2.9	1.6	4.9	5.1	4.4	5.4	7.8	0.26	0.24	0.18	0.31
23022	Амдерма	69,8	61,7	4.2	4.1	2.8	7.8	7.9	8.8	5.4	9.0	0.29	0.28	0.24	0.39
23032	Марресаля	69,7	66,8	3.9	3.7	3.1	8.3	7.7	8.5	4.3	8.9	0.28	0.27	0.25	0.40
23074	Дудинка	69,4	86,2	2.2	6.8	1.1	5.3	5.2	15.2	3.5	6.9	0.21	0.36	0.15	0.32
23205	Нарьян-Мар	67,6	53	2.2	5.5	0.2	5.6	5.2	7.4	2.0	7.4	0.21	0.33	0.07	0.33
23219	Хоседа-Хард	67,1	59,4	0.6	3.7	1.1	6.3	1.9	7.5	3.3	9.0	0.11	0.27	0.15	0.35
23220	Елецкая	67,8	64,8	2.0	2.3	0.4	6.7	3.8	5.5	1.7	9.7	0.20	0.21	0.09	0.36
23242	Новый Порт	67,7	72,9	2.8	4.0	5.6	8.4	5.1	8.4	6.7	8.5	0.23	0.28	0.33	0.40
23256	Тазовск	67,5	78,7	2.5	5.5	1.7	6.8	4.9	10.8	3.8	7.7	0.22	0.33	0.19	0.36
24125	0ленек АМСГ	68,5	112,4	8.9	10.4	0.5	5.3	9.8	14.5	1.5	9.0	0.41	0.44	0.10	0.32
24136	Сухана	68,62	118,33	6.9	16.6	0.5	1.8	11.0	16.7	1.8	6.3	0.36	0.55	0.10	0.19
24266	Верхоянск АМСГ	67,55	133,38	8.0	12.8	2.2	6.9	8.1	14.9	4.6	9.0	0.39	0.49	0.21	0.36
24329	Шелагонцы	66,25	114,28	5.8	12.0	1.3	2.2	9.4	13.9	3.8	5.2	0.34	0.48	0.16	0.21
24343	Жиганск	66,77	123,4	3.8	15.9	0.6	2.0	5.9	15.1	2.0	7.6	0.27	0.54	0.11	0.20
25042	0. Айон	69,8	168,7	1.4	17.4	4.2	22.4	4.0	17.1	4.4	28.8	0.17	0.56	0.29	0.63
25138	Островное	68,12	164,16	0.4	13.3	3.6	14.9	1.1	13.9	5.2	14.6	0.09	0.50	0.27	0.52
25173	М. Шмидта	68,9	181,4	0.3	14.0	1.5	19.0	4.4	15.9	3.4	24.4	0.07	0.51	0.17	0.59
25206	Среднеколымск	67,45	153	1.7	12.7	2.4	18.7	5.4	17.0	5.3	16.7	0.19	0.49	0.22	0.58
25325	Усть-Олой	66,55	159,42	1.1	12.7	7.3	14.4	4.2	14.1	8.5	18.7	-0.15	0.49	0.38	0.52
25372	Амгуема	67	182,9	0.1	12.4	4.2	15.3	2.9	13.5	5.7	18.4	0.03	0.48	0.29	0.53

Рис
3,5 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в % , Δ ст. в % и коэффициент корреляции для температуры января.

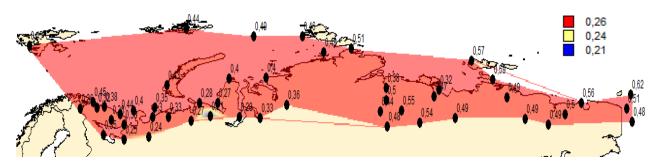


Рис3,6 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в %, Δ ст. в % и коэффициента корреляции (нижний) для температуры апреля.

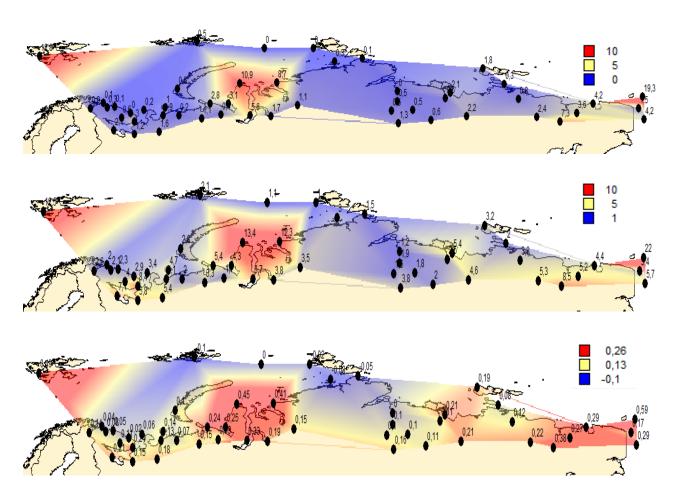


Рис3,7 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в %, Δ ст. и коэффициента корреляции для температуры июля.

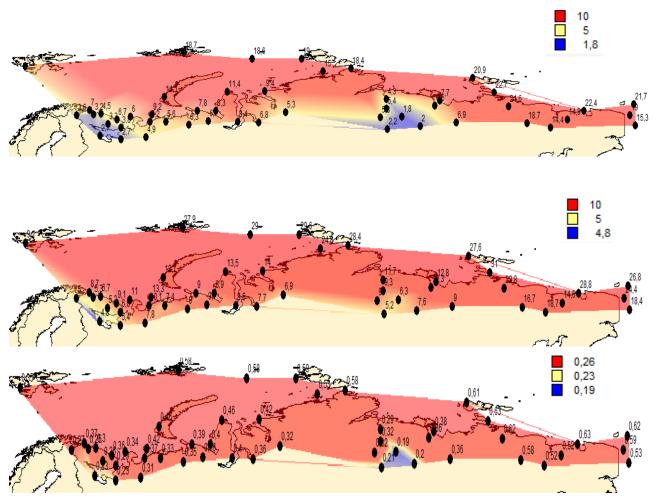


Рис3,8 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в %, Δ ст. и коэффициента корреляции для температуры октября.

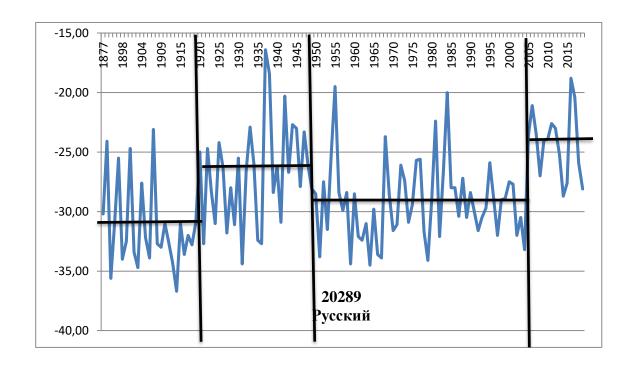
Исходя из данных таблицы и анализируя пространственные распределения видно, что температура на всей территории российской Арктики проявляет нестационарность во все месяцы. Также видно, что нестационарность, определенная по модели ступенчатых изменений, имеет большие по величине показатели Δ , чем по модели линейного тренда.

В январе месяце нестационарность проявляется на северной части данной территории, то есть на островах, а по побережью с западной и восточной стороны данные стационарны. Коэффициент корреляции ведет себя аналогично, высокие значения (>0.26) проявляются на всей северной и центральной части территории. Станция Визе (20069) имеет самый высокий показатель нестационарности по

модели ступенчатых изменений 26,9%, а также коэффициент корреляции равный 0,59.

В апреле наблюдается самая высокая нестационарность, которая распределяется по всей территории. Стационарность с минимальным значением 4.4% наблюдается на станции Койнас (22583), на западной части российской Арктики. Максимум наблюдается на станции о. Котельный (21432) — 30,4. Распределение значимых (>0.26) коэффициентов корреляции наблюдается также по всей территории, с максимальным значением 0.62 на станции о. Врангеля (21982). Минимальные, но близкие к значимому коэффициенты на восточной части территории в частности на станции Елецкая (23220) — 0.21.

Температура в июле месяце наиболее стационарна, нестационарность проявляется только на 4 станциях, при этом показатели невысокие. Максимальные значения наблюдаются на востоке территории — 22.0% на станции о. Врангеля (21982). Коэффициент корреляции также имеет максимальное значение на станции о. Врангеля (21982) 0.59 и распределение аналогичное показателям нестационарности.


В октябре месяце, как и в апреле, нестационарность наблюдается также по всей территории, с минимальными значениями на восточном побережье 4.4% на станции Кемь-Порт (22520), а максимум — 29,6% на станции Голомянный (20087). Коэффициент корреляции имеет высокие значения, которые равномерно распределены по всей территории. Минимальные, но близкие к значимому (0.26) коэффициенты наблюдаются на юго-западе территории. Максимум — 0.63 на станции о. Шалаурова (21647).

Исходя из таких распределений в разные сезоны года, можно прийти к выводу, что современное потепление сильнее всего проявляется в переходные месяцы, то есть в апреле и октябре. В эти периоды идет перестроение с зимней циркуляции атмосферы к летней и наоборот. Также видно, что в эти месяцы меньше откликаются на потепление станции, расположенные на восточном побережье территории, это может быть связано с тем, что горы находящиеся на скандинавском полуострове препятствуют прохождению западного переноса.

В летний период современное потепление отмечается только на островах западной и восточной части региона. В зимний период потепление наблюдается также на островах западной и северной части территории российской Арктики. Причины разного локального потепления зимой и летом будут разные . Зимой — это продолжение потепления всей западной части Арктики за счет усиления западного переноса. Летом причиной может быть потепление с Тихого океана.

3.5 Сравнение современного потепления Арктики с потеплением 1920-50 годов

Чтобы определить естественное потепление 1920-50-х годов, ряды распределения среднемесячной температуры за январь, апрель, июль и октябрь были урезаны до 1960 года, так что линейные трендовые модели и пошаговые изменения не выявили современного потепления. Также для сравнения были взяты данные о современном потеплении, без учета естественного, то есть периода с 1960 года до окончания измерений. Результаты моделирования приведены в Приложении 1.

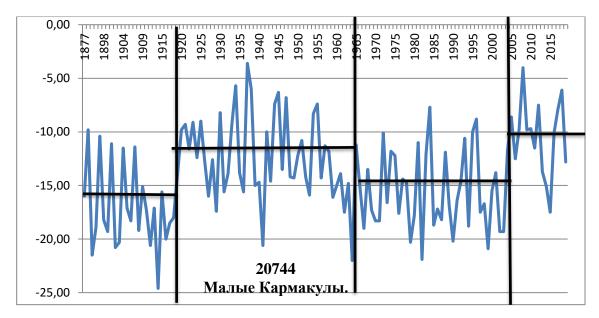


Рис3,9 графики температуры января на станциях.

Оценка раницы современного потепления и естественного потепления 1920-40 произведен расчет разницы температур по следующим формулам:

$$\Delta_{\rm I} = \bar{t}_{1920-50} - \bar{t}_{1950-2000} \tag{8}$$

$$\Delta_{\rm II} = \bar{t}_{2000-19} - \bar{t}_{1950-2000} \tag{9}$$

$$\Delta' = \Delta_{\rm II} - \Delta_{\rm I},\tag{10}$$

Где ΔI - разница между средними температурами естественного потепления Арктики 20-50-х годов и средними температурами стационарного периода, ΔII - разница между средними температурами современного потепления и средними температурами стационарного периода, Δ' - разница температур современного потепления и естественно.

Результаты расчетов представлены в таблице 3.7 за январь. Также на основе табличных данных строятся пространственные распределения ΔI , ΔII , Δ' .

Во-первых, представлено пространственное распределение различий между средними температурами естественного потепления Арктики в 20-50-е годы и средними температурами стационарного периода похолодания, т.е. ΔI . Затем пространственное распределение различий между средними

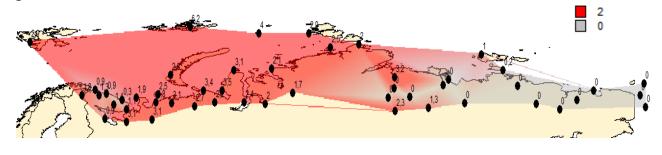

температурами современного потепления и средними температурами стационарного периода похолодания, т.е. ΔII . А на третьем рисунке показаны различия ΔII и ΔI . Предполагается, что вклад природного компонента в современное потепление такой же, как и при предыдущем естественном потеплении, и поэтому можно сделать вывод, что результирующая разница температур характеризует минимальный антропогенный вклад в современное потепление.

Таблица 3.7 — Сравнение текущего потепления Арктики в январе с потеплением 1920-40 годов.

код	название	широта	долгота	$\Delta_{ m I}$	$\Delta_{ m II}$	Δ'
20046	Им.Э.Т.Кренкеля,ГМО	80,6	58,1	6,2	9,7	3,5
20069	Визе	79,5	77	4,0	8,6	4,6
20087	Голомянный	79,6	90,6	2,9	6,0	3,1
20107	Баренцбург	78,1	14,2	2,9	6,2	3,3
20289	Русский	77,2	96,6	2,5	5,0	2,5
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	2,0	4,8	2,9
20667	Им.М.В.Попова	73,3	70,1	3,1	5,1	2,0
20674	Диксон	73,5	80,4	2,1	4,2	2,1
20744	Малые Кармакулы	72,4	52,7	2,8	4,3	1,4
21432	О. Котельный	76	137,9	1	2,7	1,7
21647	О. Шалаурова	73,2	143,9	0,2	2	1,8
21802	Саскылах	72	114,1	3,2	4,2	1
21824	Тикси	71,6	128,9	0	2,5	0
21908	Жилинда	70,1	114	0	4,3	0
21921	Кюсюр	70,7	127,4	0	2,6	0
21946	Чокурдах	70,6	147,9	0	1,8	0
21982	О. Врангеля	71	182,5	0	2	0
22003	Вайда-Губа	69,9	32	0,9	0,9	0,0
22028	Териберка	69,2	35,1	0,9	0,9	0
22095	Колгуев Северный	69,1	49,2	2,5	2,6	0,1
22101	Виртаниеми	68,9	28,4	1,8	1,2	-0,5
22113	Мурманск	69	33,1	1,3	1,0	-0,2
22140	Гремиха Бухта	68,1	39,5	0,3	1,6	1,3
22165	Канин Нос	68,6	43,3	1,9	1,7	-0,2
22235	Краснощелье	67,3	37,1	1,4	1,0	-0,4
22292	Индига	67,7	48,7	2,8	2,1	-0,7
22355	Сосновец остров	66,5	40,7	1,1	1,8	0,7

22520	Кемь-порт	64,98	34,8	0,9	1,8	1,0
22550	Архангельск	64,4	40,7	3,1	3,3	0,2
22583	Койнас	64,8	47,6	3,1	3,3	0,2
23022	Амдерма	69,8	61,7	3,4	3,9	0,4
23032	Марресаля	69,7	66,8	3,5	3,9	0,4
23074	Дудинка	69,4	86,2	1,7	2,2	0,5
23205	Нарьян-Мар	67,6	53	3,1	2,9	-0,2
23219	Хоседа-Хард	67,1	59,4	2,7	1,2	-1,5
23220	Елецкая	67,8	64,8	2,2	1,9	-0,3
23242	Новый Порт	67,7	72,9	2,4	2,6	0,2
23256	Тазовск	67,5	78,7	2,0	2,4	0,3
24125	0ленек АМСГ	68,5	112,4	0	5,5	0
24136	Сухана	68,62	118,33	0	3,6	0
24266	Верхоянск АМСГ	67,55	133,38	0	2,5	0
24329	Шелагонцы	66,25	114,28	2,3	4,1	1,8
24343	Жиганск	66,77	123,4	1,3	2,6	1,3
25042	0. Айон	69,8	168,7	0	1,8	0
25138	Островное	68,12	164,16	0	1	0
25173	М. Шмидта	68,9	181,4	0	1,9	0
25206	Среднеколымск	67,45	153	0	1,7	0
25325	Усть-Олой	66,55	159,42	0	0,5	0
25372	Амгуема	67	182,9	0	3,2	0

Исходя из того, что естественного потепления в январе почти не наблюдалось, значения ΔI оказались очень малыми и близкими к 0°. Для удобства построения на таких станциях мы примем их равными 0. Также, при построении Δ' , на станциях, где не наблюдалось естественного потепления, разница между современным и естественным потеплением учитываться не будет, и значения также принимаются равными 0, поскольку ясно, что современное потепление отражает эту разницу. Результаты пространственного распределения показаны на рис. 3.10.

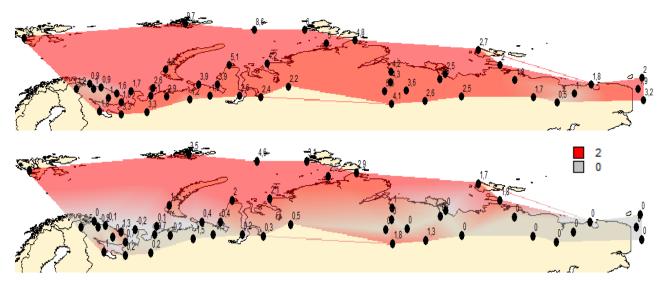
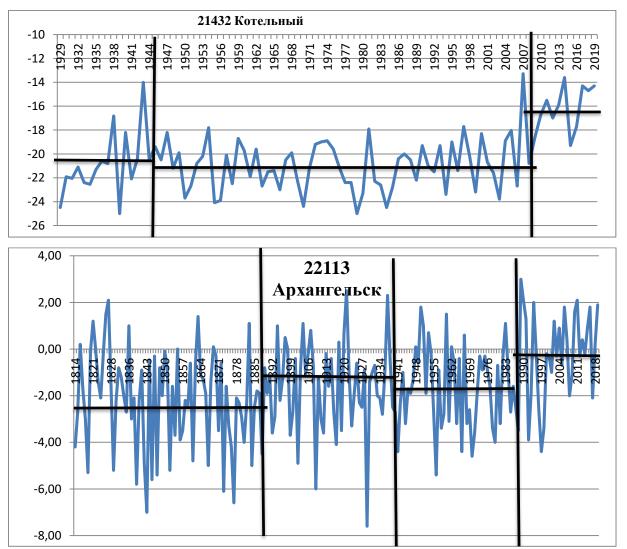



рис3,10. Пространственное распределение $\Delta_{\rm I}, \Delta_{\rm II}, \Delta'$ для температур января.

Аналогичные результаты для температуры апреля приведены в Приложении 2 и на рис.3.11 и 3.12.

Рис,11 Временные графики температуры апреля на станциях.

Таблица 3.9 — Сравнение современного потепления Арктики в апреле с потеплением прошлого века относительно холодного периода.

код	название	широта	долгота	$\Delta_{ m I}$	$\Delta_{ m II}$	Δ'
20046	Им.Э.Т.Кренкеля,ГМО	80,6	58,1	3,28	2.6	-0,67
20069	Визе	79,5	77	0	4,6	0
20087	Голомянный	79,6	90,6	0	4,2	0
20107	Баренцбург	78,1	14,2	0,6	2,6	2,0
20289	Русский	77,2	96,6	0,1	4,5	4,4
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	0,8	4,8	4,0
20667	Им.М.В.Попова	73,3	70,1	0	4,2	0
20674	Диксон	73,5	80,4	0	4,4	0
20744	Малые Кармакулы	72,4	52,7	0	3,4	0
21432	0. Котельный	76	137,9	0,5	4,9	4,4
21647	0. Шалаурова	73,2	143,9	0,5	4,5	4,0
21802	Саскылах	72	114,1	1,4	4,6	3,2
21824	Тикси	71,6	128,9	0,9	4,6	3,7
21908	Жилинда	70,1	114	1,0	4,7	3,7
21921	Кюсюр	70,7	127,4	0,3	4,6	4,3
21946	Чокурдах	70,6	147,9	0,1	4,7	4,6
21982	0. Врангеля	71	182,5	1,2	2,7	1,5
22003	Вайда-Губа	69,9	32	0	1,7	0
22028	Териберка	69,2	35,1	0	1,8	0
22095	Колгуев Северный	69,1	49,2	0	1,8	0
22101	Виртаниеми	68,9	28,4	0	1,8	0
22113	Мурманск	69	33,1	0,2	1,6	1,4
22140	Гремиха Бухта	68,1	39,5	0	2,0	0
22165	Канин Нос	68,6	43,3	0	2.1	0
22235	Краснощелье	67,3	37,1	0,1	2,3	2,2
22292	Индига	67,7	48,7	0	2,4	0
22355	Сосновец остров	66,5	40,7	0	1,8	0
22520	Кемь-порт	64,98	34,8	0	1,9	0
22550	Архангельск	64,40	40,7	0	1,4	0
22583	Койнас	64,80	47,6	0	1,1	0
23022	Амдерма	69,80	61,7	0	3,6	0
23032	Марресаля	69,70	66,8	0	3,4	0
23074	Дудинка	69,40	86,2	0	5,2	0
23205	Нарьян-Мар	67,60	53	0,1	2,1	2,0
23219	Хоседа-Хард	67,10	59,4	0	3,5	0
23220	Елецкая	67,80	64,8	0	2,9	0
23242	Новый Порт	67,70	72,9	0	3,6	0
23256	Тазовск	67,50	78,7	0,7	5,0	4,3

24125	0ленек	68,50	112,4	1,1	4,5	3,4
24136	Сухана	68,62	118,33	0,6	4,3	3,8
24266	Верхоянск	67,550	133,38	0,2	4,7	4,5
24329	Шелагонцы	66,250	114,28	1,1	4,2	3,1
24343	Жиганск	66,770	123,4	0,6	4,5	3,8
25042	0. Айон	69,80	168,7	0,5	3,9	3,5
25138	Островное	68,120	164,16	1,1	3,4	2,2
25173	М. Шмидта	68,90	181,4	0,5	3,2	2,7
25206	Среднеколымск	67,450	153	0,1	5,0	4,9
25325	Усть-Олой	66,550	159,42	2,3	2,5	0,2
25372	Амгуема,	67.0	182,9	1,7	2,8	1,2

Результаты пространственного распределения на основе данной таблицы

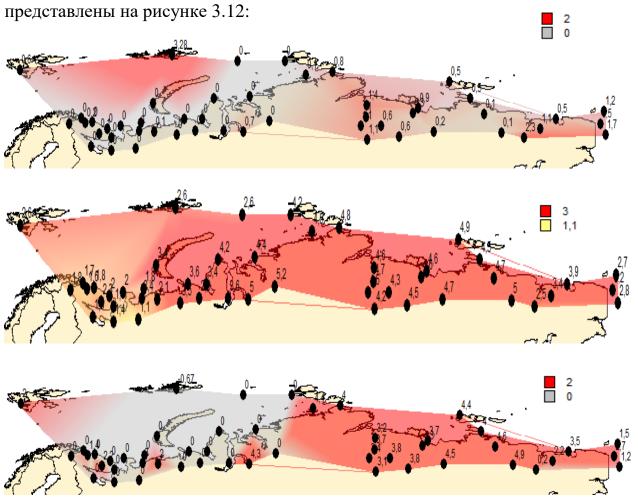


Рис3,12. Пространственное распределение $\Delta_{\rm I},~\Delta_{\rm II},~\Delta'$ для температур апреля.

Аналогичные результаты для температуры июля приведены в Приложении 3 и на рис.3.13 и 3.14.

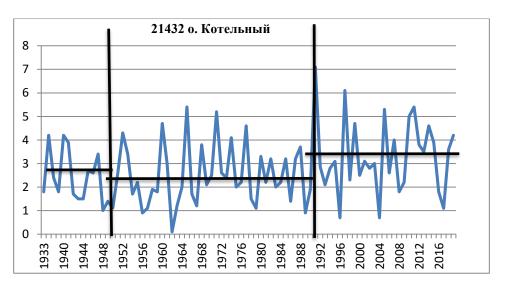


Рис3,13 Временные графики температуры июля на станциях.

Таблица 3.11 — Сравнение современного потепления Арктики в июле с потеплением прошлого века относительно холодного периода.

код	название	широта	долгота	$\Delta_{ m I}$	$\Delta_{ m II}$	Δ'
20046	.Кренкеля	80,6	58,1	0,1	0,1	0,0
20069	Визе	79,5	77	0,0	0,1	0,0
20087	Голомянный	79,6	90,6	0,1	0,1	0,0
20107	Баренцбург	78,1	14,2	0,7	1,0	0,3
20289	Русский	77,2	96,6	0,0	0,1	0,0
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	0,1	0,1	0,0
20667	Им.М.В.Попова	73,3	70,1	0	1,1	0
20674	Диксон	73,5	80,4	0,3	2,0	1,7
20744	Малые Кармакулы	72,4	52,7	0	0,4	0
21432	0. Котельный	76	137,9	0,2	0,9	0,7
21647	0. Шалаурова	73,2	143,9	0,6	0,5	0
21802	Саскылах	72	114,1	0	0	0
21824	Тикси	71,6	128,9	1	1,2	0,2
21908	Жилинда	70,1	114	0,5	0,7	0,2
21921	Кюсюр	70,7	127,4	0	0,7	0
21946	Чокурдах	70,6	147,9	0	1	0
21982	0. Врангеля	71	182,5	0	1,3	0
22003	Вайда-Губа	69,9	32	0	0,9	0
22028	Териберка	69,2	35,1	0,7	1,3	0,6
22095	Колгуев Северный	69,1	49,2	0	1,2	0
22101	Виртаниеми	68,9	28,4	1,3	1,0	-0,3
22113	Мурманск	69	33,1	0,3	1,1	0,8
22140	Гремиха Бухта	68,1	39,5	0	1,0	0
22165	Канин Нос	68,6	43,3	0	1,2	0

22235	Краснощелье	67,3	37,1	0,0	1,3	0
22292	Индига	67,7	48,7	0	1,6	0,6
22355	Сосновец остров	66,5	40,7	0	1,3	0
22520	Кемь-порт	64,98	34,8	0	1,2	0
22550	Архангельск	64,4	40,7	0,1	1,6	1,5
22583	Койнас	64,8	47,6	0	1,4	0
23022	Амдерма	69,8	61,7	0	1,4	0
23032	Марресаля	69,7	66,8	0	0,8	0
23074	Дудинка	69,4	86,2	0	1,2	0
23205	Нарьян-Мар	67,6	53	0	1,6	0
23219	Хоседа-Хард	67,1	59,4	0	1,3	0
23220	Елецкая	67,8	64,8	0	0,4	0
23242	Новый Порт	67,7	72,9	0,0	1,7	0
23256	Тазовск	67,5	78,7	0	0,5	0
24125	Оленек, АМСГ	68,5	112,4	0,7	0,8	0,1
24136	Сухана	68,62	118,33	0	0,6	0
24266	Верхоянск, АМСГ	67,55	133,38	0,4	1,7	1,3
24329	Шелагонцы	66,25	114,28	0,9	1,1	0,2
24343	Жиганск	66,77	123,4	0	0,6	0
25042	0. Айон	69,8	168,7	0	1,4	0
25138	0стровное	68,12	164,16	0,8	1,6	0,8
25173	М. Шмидта	68,9	181,4	0	0,9	0
25206	Среднеколымск	67,45	153	0	1,4	0
25325	Усть-Олой	66,55	159,42	1,9	2,4	0,5
25372	Амгуема	67	182,9	0	1,1	0

Исходя из того, что естественного потепления в январе почти не наблюдалось, значения ΔI оказались очень малыми и близкими к 0°. Для удобства построения на таких станциях мы примем их равными 0. Также, при построении Δ' , на станциях, где не наблюдалось естественного потепления, разница между современным и естественным потеплением учитываться не будет, и значения также принимаются равными 0, поскольку ясно, что современное потепление отражает эту разницу. Результаты пространственного распределения показаны на рис. 3.14:

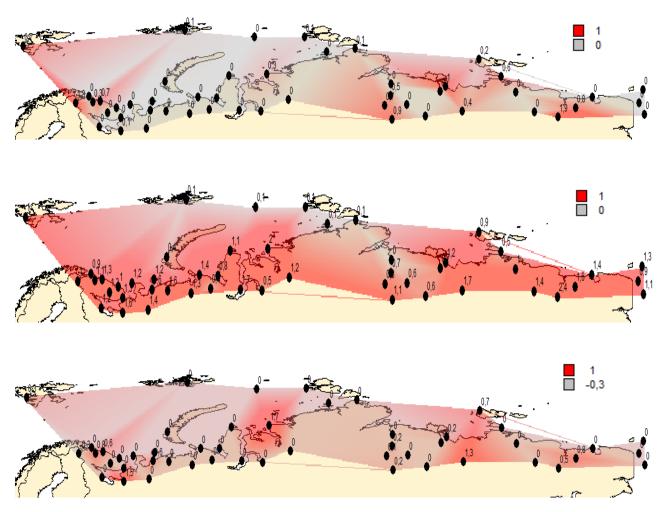
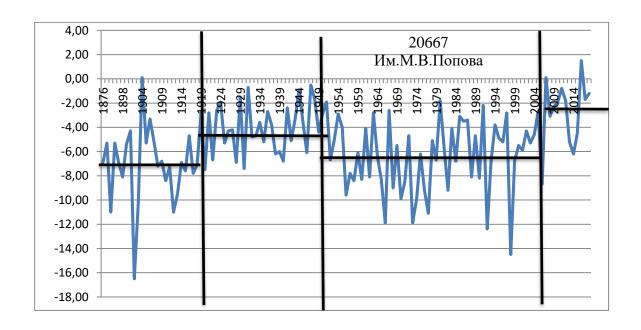
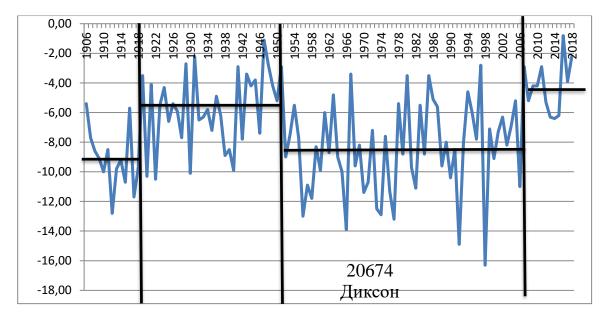



Рис3,14. распределение $\Delta_{I},\,\Delta_{II},\,\Delta'$ для температур июля.

Аналогичные результаты для температуры октября приведены в Приложении 4 и на рис.3.15 и 3.16.



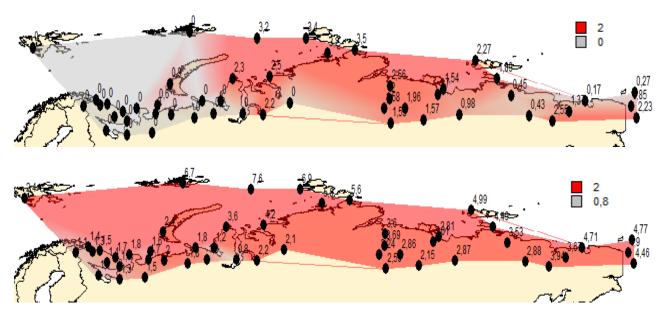

Рис 3,14графики температуры октября на станциях.

Таблица 3.13 — Сравнение современного потепления Арктики в октябре с потеплением прошлого века относительно холодного периода.

код	название	широта	долгота	$\Delta_{ m I}$	$\Delta_{ m II}$	Δ'
20046	Кренкеля,	80,6	58,1	0	6,7	0
20069	Визе	79,5	77	3,2	7,6	4,4
20087	Голомянный	79,6	90,6	3,4	6,9	3,6
20107	Баренцбург	78,1	14,2	0	2,4	0
20289	Русский	77,2	96,6	3,2	5,8	2,6
20292	Им.Е.К.Федорова,ГМО	77,7	104,3	3,5	5,6	2,1
20667	Им.М.В.Попова	73,3	70,1	2,3	3,6	1,3
20674	Диксон	73,5	80,4	2,5	4,2	1,6
20744	Малые Кармакулы	72,4	52,7	0,9	2,4	1,5
21432	0. Котельный	76	137,9	2,27	4,99	2,72
21647	0. Шалаурова	73,2	143,9	1,89	4,49	2,6
21802	Саскылах	72	114,1	2,56	3,60	1,04
21824	Тикси	71,6	128,9	1,54	2,81	1,27
21908	Жилинда	70,1	114	2,00	3,69	1,69
21921	Кюсюр	70,7	127,4	1,70	3,01	1,31
21946	Чокурдах	70,6	147,9	0,45	3,53	3,08
21982	0. Врангеля	71	182,5	0,27	4,77	4,5
22003	Вайда-Губа	69,9	32	0	1,4	0
22028	Териберка	69,2	35,1	0	1,5	0
22095	Колгуев Северный	69,1	49,2	0,6	1,6	1,0
22101	Виртаниеми	68,9	28,4	0	1,1	0
22113	Мурманск	69	33,1	0	1,3	0

				•	,	•
22140	Гремиха Бухта	68,1	39,5	0	1,7	0
22165	Канин Нос	68,6	43,3	0	1,8	0
22235	Краснощелье	67,3	37,1	0	1,4	0
22292	Индига	67,7	48,7	0	1,7	0
22355	Сосновец остров	66,5	40,7	0	1,4	0
22520	Кемь-порт	64,98	34,8	0	1,1	0
22550	Архангельск	64,4	40,7	0	1,3	0
22583	Койнас	64,8	47,6	0	1,5	0
23022	Амдерма	69,8	61,7	0	1,8	0
23032	Марресаля	69,7	66,8	0	1,2	0
23074	Дудинка	69,4	86,2	0	2,1	0
23205	Нарьян-Мар	67,6	53	0	2,0	0
23219	Хоседа-Хард	67,1	59,4	0	1,8	0
23220	Елецкая	67,8	64,8	0,2	1,8	1,6
23242	Новый Порт	67,7	72,9	0	0,8	0
23256	Тазовск	67,5	78,7	2,2	2,2	0
24125	Оленек,	68,5	112,4	1,58	3,24	1,66
24136	Сухана	68,62	118,33	1,96	2,86	0,9
24266	Верхоянск	67,55	133,38	0,98	2,87	1,89
24329	Шелагонцы	66,25	114,28	1,53	2,59	1,06
24343	Жиганск	66,77	123,4	1,57	2,15	0,58
25042	0. Айон	69,8	168,7	0,17	4,71	4,54
25138	Островное	68,12	164,16	1,37	3,67	2,3
25173	М. Шмидта	68,9	181,4	0,85	4,90	4,05
25206	Среднеколымск	67,45	153	0,43	2,88	2,45
25325	Усть-Олой	66,55	159,42	2,55	3,94	1,39
25372	Амгуема	67	182,9	2,23	4,46	2,23
D	·	<u> </u>	·			2 16.

Результаты пространственного распределения представлены на рисунке 3.16:

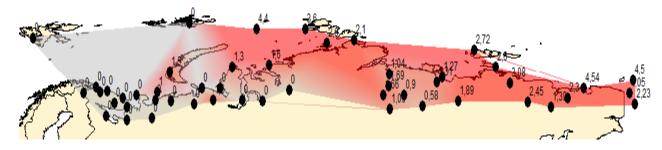


Рис3,14распределение $\Delta_{\rm I}$, $\Delta_{\rm II}$, Δ' для температур октября.

Проанализировав расчеты и пространственные распределения температуры за 4 месяца, можно сделать вывод о том, что современное потепление наблюдается по всей территории во все сезоны года. Естественное потепление 1920-40 годов наблюдается также во все месяцы, но оно менее выражено.

В январе естественное потепление наблюдается на западной территории региона с максимумом разницы 6,2° на станции Им.Э.Т.Кренкеля,ГМО (20046), значения на остальных станциях изменяются в пределах 2-3°. Современное потепление наблюдается уже на всей территории с максимальным значением равным 9,7° на станции Им.Э.Т.Кренкеля,ГМО (20046). Также можно увидеть, что значения распределяются с запада на восток, с максимальными значениями на западе. Разница между естественным и современным потеплением видна также на западе данной территории с максимальным значением 4,6 на станции Визе (20069).

В апреле естественное потепление наблюдается в основном на северозападе региона, на островах и побережья, а также на островах восточной части. Максимальная разница наблюдается на станшии Им.Э.Т.Кренкеля,ГМО (20046) со значением 3,3°, при этом остальные значения варьируются В пределах 1-2°. Современное потепление распространяется уже на всей территории со значениями от 2° на восточной части до 5° на западной. Максимальное значение 5° наблюдается на нескольких станциях – Тазовск(23256), Среднеколымск (25206). Разница между потеплениями хорошо выражена на восточной части территории с максимумом 4,9 на станции Среднеколымск (25206).

В июле месяце естественное потепление почти не проявлялось, значения меньше 1°, максимум 1,3° на станции Виртаниеми (22101). Современной потепление распространяется по всей территории, на значения также в пределах 1-2°, максимум на станции Усть-Олой (25325) - 2,4°. Разница между потеплениями также плохо выражена, значения меньше 1°.

В октябре естественное потепление наблюдается на восточной части, с максимумом 3,5° на станции Им.Е.К.Федорова,ГМО (20292), значения разницы варьируются в пределах 1-2°. Современное потепление наблюдается на всей территории, причем высокие значения в пределах 5° находятся на восточной части и убывают к западу и составляют 1-2°. Максимум 7,6° на станции Визе (20069). Разница между потеплениями хорошо выражена на восточной части региона, изменяется в пределах 2-4°, с максимумом 4,5° на станции о. Врангеля (21982).

Видно, что распределение потеплений по территории в выбранные месяцы не одинаково. Зимой, в январе, потепление хорошо выражено на западной части, а в переходные месяцы, в апреле и октябре, потепление наблюдается на востоке территории. Также можно отметить, что потепление в зимний период распространилось дальше на восток, по сравнению с естественным, это говорит об усилении западного переноса, который влияет уже на более восточные территории. В апреле и октябре наблюдались высокие значения как естественного, так и современного потепления, в эти периоды происходит перестроение циркуляции атмосферы от зимнего периода к летнему и наоборот. Можно прийти к выводу, что в этот период атмосфера неустойчива и сильнее подвержена изменениям температурного режима. В летние месяцы изменения не так заметны, так как в этот период данный регион находится под воздействием стационарного сибирского антициклона.

Также можно сделать вывод, оценив различия между современным и естественным потепление 1920-40г, о том, что эта разница является

минимальным антропогенным вкладом в современное потепление. И в среднем составляет 2-4°.

Глава 4. Оценка проявлений климатических изменений продолжительности солнечного сияния

4.1. Результаты моделирования временных рядов в пунктах наблюдений

На основе методологии раздела 3.1 были рассчитаны характеристики стационарных и нестационарных моделей для среднемесячной продолжительности солнечного сияния в течение трех месяцев (январь, апрель, июль) года на 49 метеостанциях с использованием программы ТІМОD. Эффективные отличия от модели стационарной выборки, статистически значимые значения критерия Фишера и коэффициенты линейной трендовой корреляции выделены в таблицах ярким цветом.

Результаты расчетов на основе моделей временных рядов за 3 месяца каждого сезона (январь, апрель, июль) показаны в таблицах 4.1- 4.4, где приведены случаи нестационарных моделей при △>10% и статистики по критерию Фишера (Ftr. и Fst.) при уровне значимости 5% выделены ярким цветом, а также статистически значимые коэффициенты уравнений линейного тренда R. В таблицах 4.1-4.4 также указаны: Год ст. - год перехода от одной стационарной части ряда к другой согласно модели пошаговых изменений; Год N., Год К. — годы начала и окончания наблюдений, п — количество лет наблюдений; R - коэффициент корреляции модели линейного тренда.

Таблица 4.1 — Результаты расчетов по моделям временных рядов для продолжительности солнечного сияния в январе.

Код	Им.Э.Т.Кренкеля,ГМ 0	Δтр	Δст	Ftr	Fst	Год ст	Год Н	Год К	n	R
2004	Визе	1.0	5.9	1.0	1.13	1985	1958	2019	6 2	-0.14
2006 9	Голомянный	0.1	2.8	1.0 0	1.06	1969	1958	2019	6 1	0.03
2008	Баренцбург	6.0	8.1	1.8 3	3.71	1985	1961	2019	5 9	-0.67
2010	Русский	0.6	3.8	1.0 1	1.08	1971	1961	2019	5 9	0.11

2028	Им.Е.К.Федорова,ГМ	1.2	1.6	1.0	1 10	1005	1050	2010	6	0.16
2029	0	1.3	4.6	1.0	1.10	1985	1958	2019	5	-0.16
2	Им.М.В.Попова	0.8	2.4	2	1.05	2008	1961	2019	9	0.13
2066 7	Диксон	0.1	2.8	1.0 0	1.06	1971	1961	2019	5 9	-0.04
2067 4	Малые Кармакулы	1.7	3.6	1.0	1.08	1984	1962	2019	5 5	-0.18
2074	0. Котельный	0.2	5.9	1.0 0	1.13	1967	1940	2019	5 9	-0.06
2143	0. Шалаурова	4.7	11. 8	1.1 0	1.28	1979	1939	2019	6 0	-0.30
2164 7	Саскылах	5.8	19. 6	1.1	1.55	1973	1960	2019	6 0	-0.34
2180	Тикси	11. 9	18. 9	1.2 9	1.52	1999	1948	2019	6 4	0.47
2182	Жилинда	4.3	13. 6	1.0	1.34	2008	1952	2019	6 7	0.29
2190 8	Кюсюр	12. 9	25. 2	1.3	1.79	1999	1958	2019	6 2	0.49
2192	Чокурдах	0.2	4.4	1.0	1.10	2003	1961	2019	5 8	0.06
2194	0. Врангеля	3.6	5.7	1.0	1.12	2005	1961	2019	5	-0.27
2198	Вайда-Губа	3.2	7.1	1.0	1.16	1996	1961	2019	5 9	0.25
2200	Териберка	3.2	7.1	1.0	1.10	1770	1701	2017	6	0.23
3	Териоерка	0.2	3.0	0	1.06	1999	1960	2019	0	0.07
2202 8	Колгуев Северный	2.6	3.6	1.0	1.08	1991	1952	2019	6 7	-0.23
2209 5	Виртаниеми	0.4	4.1	1.0	1.09	2005	1961	2019	5 8	0.09
2210 1	Мурманск	10. 2	12. 8	1.2 4	1.32	1979	1961	2019	5 9	0.44
2211	Гремиха Бухта	3.8	5.3	1.0 8	1.11	1995	1955	2019	6	0.27
2214	Канин Нос	1.6	6.4	1.0	1.14	1980	1961	2019	5 9	0.18
2216 5	Краснощелье	0.4	2.1	1.0 1	1.04	1962	1950	2019	7 0	0.09
2223 5	Индига	2.3	9.1	1.0	1.21	2001	1948	2019	7 2	0.22
2229	Сосновец остров	0.3	2.8	1.0	1.06	2005	1951	2019	6	-0.07
2235	Кемь-порт	0.3	3.8	1.0	1.08	1953	1931	2019	8 2	0.08
2252	Архангельск	1.3	4.4	1.0	1.09	1963	1931	2019	7 9	0.16
2255	Койнас	0.0	2.0	1.0	1.04	1962	1931	2019	7 5	0.01

2258	Амдерма	0.0	1.1	1.0	1.02	2009	1951	2019	6 9	0.01
2302	N 4	0.0	1.1	1.0	1.02	2009	1931	2019	5	0.01
2	Марресаля	0.9	4.2	2	1.09	1994	1961	2019	9	0.13
2303	Дудинка	0.4	3.8	1.0 1	1.08	1972	1958	2019	6 2	-0.09
2307 4	Нарьян-Мар	5.4	9.9	1.1	1.23	1997	1931	2019	7 5	0.32
2320 5	Хоседа-Хард	0.0	1.3	1.0 0	1.03	1997	1951	2019	6 9	-0.03
2321	Елецкая	0.1	2.3	1.0	1.05	2007	1951	2019	6 9	0.03
2322	Новый Порт	0.2	4.1	1.0	1.09	1997	1951	2019	6 9	0.07
2324	Тазовск	2.8	12. 0	1.0	1.29	1997	1951	2019	6	0.24
2325	Оленек АМСГ	1.5	4.0	1.0	1.08	1983	1942	2018	7	0.17
2412	Сухана	6.9	18. 9	1.1	1.52	2004	1958	2019	6 2	0.36
2413	Верхоянск, АМСГ	0.2	2.9	1.0	1.06	1972	1934	2019	7 2	0.07
2426	Шелагонцы	3.5	7.9	1.0	1.18	2009	1958	2019	6 2	0.26
2432	Жиганск	6.1	13. 1	1.1	1.32	1999	1955	2019	6	0.34
2434	0. Айон	0.1	2.0	1.0	1.04	1977	1961	2019	5	-0.04
2504 2	Островное	0.7	1.9	1.0	1.04	1966	1943	2019	6 3	-0.12
2513 8	М. Шмидта	0.7	2.3	1.0	1.05	1967	1950	2019	7 0	-0.08
2517	Среднеколымск	0.2	1.8	1.0	1.04	1986	1943	2019	6	0.06
2520	Усть-Олой	3.3	6.8	1.0	1.15	1967	1943	2019	6 4	-0.25
2532	Амгуема, 87км			1.0					7	
2537	Им.Э.Т.Кренкеля,ГМ	0.1	2.7	1.0	1.06	2000	1950	2019	6	0.05
2337	0	1.0	5.9	2	1.13	1985	1958	2019	2	-0.14

Из результатов таблицы 4.1 следует, что из 49 серий наблюдений продолжительности январского солнечного сияния 2 серии с линейной моделью тренда и 9 серий с моделью ступенчатых изменений являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет.

Примеры графиков временных рядов нестационарных моделей показаны на рис. 4.1.

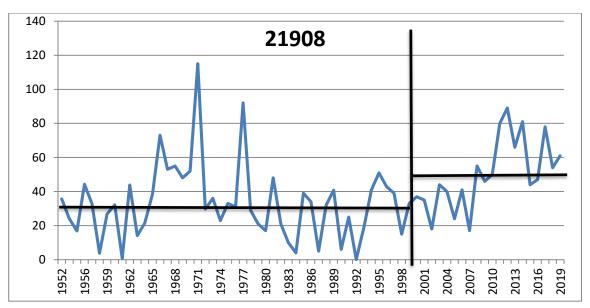


Рис4,1 График временного ряда нестационарной модели

Таблица 4.2 — Результаты расчетов по моделям временных рядов для продолжительности солнечного сияния в апреле.

	T						1			
Код	Им.Э.Т.Кренкеля,ГМ0	∆тр	Δст	Ftr	Fst	Год ст	Год Н	Год К	n	R
20046	Визе	0.7	2.2	1.01	1.04	2004	1961	2019	57	-0.12
20069	Голомянный	2.0	5.8	1.04	1.13	1979	1961	2019	58	0.20
20087	Баренцбург	0.5	3.3	1.01	1.07	1985	1950	2019	68	0.10
20107	Русский	0.0	2.2	1.00	1.05	2007	1961	2019	59	-0.02
20289	Им.Е.К.Федорова,ГМО	0.1	1.4	1.00	1.03	2009	1961	2019	58	0.04
20292	Им.М.В.Попова	4.9	10.8	1.10	1.26	1999	1961	2019	58	-0.31
20667	Диксон	4.5	7.7	1.10	1.17	1971	1961	2019	59	-0.30
20674	Малые Кармакулы	1.4	5.0	1.03	1.11	2000	1961	2019	59	-0.16
20744	0. Котельный	0.0	1.4	1.00	1.03	1994	1961	2019	57	0.00
21432	0. Шалаурова	1.0	3.4	1.02	1.07	2009	1940	2019	63	-0.14
21647	Саскылах	3.9	4.6	1.08	1.10	1973	1939	2019	62	0.28
21802	Тикси	8.1	9.4	1.18	1.22	1994	1961	2019	59	-0.39
21824	Жилинда	0.6	2.7	1.01	1.06	1996	1961	2019	59	0.11
21908	Кюсюр	0.0	5.0	1.00	1.11	2006	1947	2019	60	0.01
21921	Чокурдах	0.5	1.5	1.01	1.03	1979	1941	2019	71	-0.10
21946	0. Врангеля	0.3	3.4	1.01	1.07	1971	1960	2019	60	0.07
21982	Вайда-Губа	7.7	9.2	1.17	1.21	2008	1961	2019	56	-0.38
22003	Териберка	0.1	3.4	1.00	1.07	1979	1961	2019	59	-0.05
22028	Колгуев Северный	1.2	4.5	1.03	1.10	1963	1953	2019	67	0.16
22095	Виртаниеми	3.7	7.0	1.08	1.16	1975	1952	2019	68	-0.27
22101	Мурманск	0.1	1.9	1.00	1.04	1982	1961	2019	59	-0.04

Гремиха Бухта	1.6	6.5	1.03	1.14	2009	1961	2019	59	0.18
Канин Нос	1.7	3.7	1.03	1.08	2009	1947	2019	72	0.18
Краснощелье	0.6	4.3	1.01	1.09	1998	1947	2019	73	-0.11
Индига	1.4	3.7	1.03	1.08	1959	1931	2019	88	0.16
Сосновец остров	0.0	0.6	1.00	1.01	1960	1947	2019	73	0.02
Кемь-порт	2.9	4.2	1.06	1.09	1953	1931	2019	88	0.24
Архангельск	1.6	4.4	1.03	1.09	1959	1931	2019	88	0.18
Койнас	2.4	5.5	1.05	1.12	1959	1931	2019	88	0.22
Амдерма	0.9	2.7	1.02	1.06	1953	1931	2019	80	0.13
Марресаля	0.0	1.2	1.00	1.02	2006	1961	2019	59	-0.02
Дудинка	0.0	0.8	1.00	1.02	1975	1958	2019	62	0.00
Нарьян-Мар	6.8	9.3	1.15	1.22	1989	1958	2019	62	-0.36
Хоседа-Хард	2.4	3.5	1.05	1.07	2003	1947	2019	73	0.22
Елецкая	0.1	1.1	1.00	1.02	1975	1950	2019	70	-0.04
Новый Порт	0.4	2.1	1.01	1.04	1995	1950	2019	70	0.09
Тазовск	4.8	6.0	1.10	1.13	1974	1961	2019	59	-0.31
Оленек АМСГ	0.4	2.0	1.01	1.04	1960	1941	2019	76	0.09
Сухана	2.2	3.6	1.05	1.08	1963	1941	2019	76	0.21
Верхоянск, АМСГ	0.2	1.9	1.00	1.04	1959	1934	2019	73	0.06
Шелагонцы	1.8	3.8	1.04	1.08	1999	1957	2019	63	0.19
Жиганск	0.1	2.2	1.00	1.04	1960	1943	2019	70	0.05
0. Айон	0.8	2.8	1.02	1.06	1986	1960	2019	59	-0.13
Островное	0.8	1.2	1.02	1.02	1984	1943	2019	62	-0.13
М. Шмидта	0.0	0.4	1.00	1.01	1990	1960	2019	60	0.03
Среднеколымск	0.8	3.8	1.02	1.08	1988	1943	2019	61	0.13
Усть-Олой	1.0	4.5	1.02	1.10	1981	1943	2019	63	0.14
Амгуема, 87км	0.2	1.2	1.00	1.02	1961	1950	2019	69	0.06
Им.Э.Т.Кренкеля,ГМО	0.7	2.2	1.01	1.04	2004	1961	2019	57	-0.12
	Канин Нос Краснощелье Индига Сосновец остров Кемь-порт Архангельск Койнас Амдерма Марресаля Дудинка Нарьян-Мар Хоседа-Хард Елецкая Новый Порт Тазовск Оленек АМСГ Сухана Верхоянск, АМСГ Шелагонцы Жиганск О. Айон Островное М. Шмидта Среднеколымск Усть-Олой Амгуема, 87км	Канин Нос 1.7 Краснощелье 0.6 Индига 1.4 Сосновец остров 0.0 Кемь-порт 2.9 Архангельск 1.6 Койнас 2.4 Амдерма 0.9 Марресаля 0.0 Дудинка 0.0 Нарьян-Мар 6.8 Хоседа-Хард 2.4 Елецкая 0.1 Новый Порт 0.4 Тазовск 4.8 Оленек АМСГ 0.4 Сухана 2.2 Верхоянск, АМСГ 0.2 Шелагонцы 1.8 Жиганск 0.1 Ф. Айон 0.8 Островное 0.8 М. Шмидта 0.0 Среднеколымск 0.8 Усть-Олой 1.0 Амгуема, 87км 0.2	Канин Нос1.73.7Краснощелье0.64.3Индига1.43.7Сосновец остров0.00.6Кемь-порт2.94.2Архангельск1.64.4Койнас2.45.5Амдерма0.92.7Марресаля0.01.2Дудинка0.00.8Нарьян-Мар6.89.3Хоседа-Хард2.43.5Елецкая0.11.1Новый Порт0.42.1Тазовск4.86.0Оленек АМСГ0.42.0Сухана2.23.6Верхоянск, АМСГ0.21.9Шелагонцы1.83.8Жиганск0.12.20. Айон0.82.8Островное0.81.2М. Шмидта0.00.4Среднеколымск0.83.8Усть-Олой1.04.5Амгуема, 87км0.21.2	Канин Нос 1.7 3.7 1.03 Краснощелье 0.6 4.3 1.01 Индига 1.4 3.7 1.03 Сосновец остров 0.0 0.6 1.00 Кемь-порт 2.9 4.2 1.06 Архангельск 1.6 4.4 1.03 Койнас 2.4 5.5 1.05 Амдерма 0.9 2.7 1.02 Марресаля 0.0 1.2 1.00 Дудинка 0.0 0.8 1.00 Нарьян-Мар 6.8 9.3 1.15 Хоседа-Хард 2.4 3.5 1.05 Елецкая 0.1 1.1 1.00 Новый Порт 0.4 2.1 1.01 Тазовск 4.8 6.0 1.10 Оленек АМСГ 0.4 2.0 1.01 Сухана 2.2 3.6 1.05 Верхоянск, АМСГ 0.2 1.9 1.00 Шелагонцы 1.8 3.8 1.04 Жиганск 0.1 2.2 1.00 О. Айон 0.8 2.8 1.02 М. Шмидта 0.0 0.4 1.00 Среднеколымск 0.8 3.8 1.02 Усть-Олой 1.0 4.5 1.02 Амгуема, 87км 0.2 1.2 1.00	Канин Нос 1.7 3.7 1.03 1.08 Краснощелье 0.6 4.3 1.01 1.09 Индига 1.4 3.7 1.03 1.08 Сосновец остров 0.0 0.6 1.00 1.01 Кемь-порт 2.9 4.2 1.06 1.09 Архангельск 1.6 4.4 1.03 1.09 Койнас 2.4 5.5 1.05 1.12 Амдерма 0.9 2.7 1.02 1.06 Марресаля 0.0 1.2 1.00 1.02 Дудинка 0.0 0.8 1.00 1.02 Нарьян-Мар 6.8 9.3 1.15 1.22 Хоседа-Хард 2.4 3.5 1.05 1.07 Елецкая 0.1 1.1 1.00 1.02 Новый Порт 0.4 2.1 1.01 1.04 Тазовск 4.8 6.0 1.10 1.04 Сухана 2.2 <	Канин Нос 1.7 3.7 1.03 1.08 2009 Краснощелье 0.6 4.3 1.01 1.09 1998 Индига 1.4 3.7 1.03 1.08 1959 Сосновец остров 0.0 0.6 1.00 1.01 1960 Кемь-порт 2.9 4.2 1.06 1.09 1953 Архангельск 1.6 4.4 1.03 1.09 1959 Койнас 2.4 5.5 1.05 1.12 1959 Амдерма 0.9 2.7 1.02 1.06 1953 Марресаля 0.0 1.2 1.00 1.02 2006 Дудинка 0.0 0.8 1.00 1.02 1975 Нарьян-Мар 6.8 9.3 1.15 1.22 1989 Хоседа-Хард 2.4 3.5 1.05 1.07 2003 Елецкая 0.1 1.1 1.00 1.02 1975 Новый Порт	Канин Нос 1.7 3.7 1.03 1.08 2009 1947 Краснощелье 0.6 4.3 1.01 1.09 1998 1947 Индига 1.4 3.7 1.03 1.08 1959 1931 Сосновец остров 0.0 0.6 1.00 1.01 1960 1947 Кемь-порт 2.9 4.2 1.06 1.09 1953 1931 Архангельск 1.6 4.4 1.03 1.09 1959 1931 Койнас 2.4 5.5 1.05 1.12 1959 1931 Амдерма 0.9 2.7 1.02 1.06 1953 1931 Марресаля 0.0 1.2 1.00 1.02 2006 1961 Дудинка 0.0 0.8 1.00 1.02 1975 1958 Нарьян-Мар 6.8 9.3 1.15 1.22 1989 1958 Хоседа-Хард 2.4 3.5 1.05	Канин Нос 1.7 3.7 1.03 1.08 2009 1947 2019 Краснощелье 0.6 4.3 1.01 1.09 1998 1947 2019 Индига 1.4 3.7 1.03 1.08 1959 1931 2019 Сосновец остров 0.0 0.6 1.00 1.01 1960 1947 2019 Кемь-порт 2.9 4.2 1.06 1.09 1953 1931 2019 Архангельск 1.6 4.4 1.03 1.09 1959 1931 2019 Койнас 2.4 5.5 1.05 1.12 1959 1931 2019 Марерма 0.9 2.7 1.02 1.06 1953 1931 2019 Марресаля 0.0 1.2 1.00 1.02 2006 1961 2019 Дудинка 0.0 0.8 1.00 1.02 1975 1958 2019 Коседа-Хард 2.4	Канин Нос 1.7 3.7 1.03 1.08 2009 1947 2019 72 Краснощелье 0.6 4.3 1.01 1.09 1998 1947 2019 73 Индига 1.4 3.7 1.03 1.08 1959 1931 2019 88 Сосновец остров 0.0 0.6 1.00 1.01 1960 1947 2019 73 Кемь-порт 2.9 4.2 1.06 1.09 1953 1931 2019 88 Архангельск 1.6 4.4 1.03 1.09 1959 1931 2019 88 Койнас 2.4 5.5 1.05 1.12 1959 1931 2019 88 Амдерма 0.9 2.7 1.02 1.06 1953 1931 2019 89 Дудинка 0.0 0.8 1.00 1.02 2006 1961 2019 59 Дудинка 0.0 0.8

Из результатов таблицы 4.2 следует, что из 49 серий наблюдений продолжительности апрельского солнечного сияния 1 серия с моделью пошаговых изменений, а также 3 серии с аналогичным значением, и ни одна в соответствии с моделью линейного тренда, не являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет.

Примеры графиков временных рядов нестационарных моделей показаны на рис. 4.2.

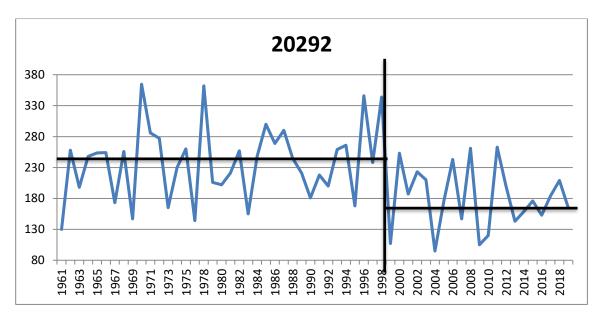


Рис4,2График временного ряда нестационарной модели

Таблица 4.3 — Результаты расчетов по моделям временных рядов для продолжительности солнечного сияния в июле.

Код	Им.Э.Т.Кренкеля,ГМО	Δтр	Δст	Ftr	Fst	Год st	Год Н	Год К	n	R
20046	Визе	1.9	3.7	1.04	1.08	1996	1966	2018,00	43	0.19
20069	Голомянный	0.5	2.8	1.01	1.06	2005	1961	2018,00	54	-0.10
20087	Баренцбург	0.6	2.8	1.01	1.06	2004	1961	2018,00	53	-0.11
20107	Русский	8.3	15.4	1.19	1.40	1992	1961	2019,00	58	-0.40
20289	Им.Е.К.Федорова,ГМО	0.0	0.8	1.00	1.02	1989	1961	2019,00	58	-0.01
20292	Им.М.В.Попова	0.2	4.7	1.00	1.10	2001	1961	2018,00	49	-0.07
20667	Диксон	1.7	3.1	1.04	1.07	2001	1957	2019,00	62	-0.19
20674	Малые Кармакулы	2.9	4.8	1.06	1.10	2004	1961	2019,00	57	-0.24
20744	0. Котельный	0.4	3.1	1.01	1.07	1990	1964	2018,00	49	-0.09
21432	0. Шалаурова	0.2	1.4	1.00	1.03	1995	1940	2019,00	61	0.06
21647	Саскылах	1.1	1.6	1.02	1.03	1995	1939	2019,00	62	0.15
21802	Тикси	8.0	10.6	1.18	1.25	1991	1961	2019,00	58	-0.39
21824	Жилинда	6.1	9.8	1.13	1.23	1991	1961	2019,00	59	0.34
21908	Кюсюр	1.1	4.0	1.02	1.09	1976	1961	2019,00	59	-0.15
21921	Чокурдах	2.1	7.5	1.04	1.17	1984	1961	2018,00	57	-0.21
21946	0. Врангеля	0.8	1.2	1.02	1.03	1971	1959	2013,00	55	0.13
21982	Вайда-Губа	1.1	3.2	1.02	1.07	2005	1961	2018,00	57	-0.15
22003	Териберка	0.2	1.4	1.00	1.03	2001	1961	2019,00	58	-0.06
22028	Колгуев Северный	2.7	5.6	1.06	1.12	1992	1951	2019,00	69	-0.23
22095	Виртаниеми	0.8	3.9	1.02	1.08	1992	1947	2019,00	73	-0.12
22101	Мурманск	0.0	1.2	1.00	1.02	1999	1961	2019,00	58	-0.01
22113	Гремиха Бухта	1.5	2.4	1.03	1.05	1979	1961	2019,00	59	0.17
22140	Канин Нос	4.2	7.2	1.09	1.16	1992	1951	2019,00	69	-0.29
22165	Краснощелье	3.8	6.7	1.08	1.15	1992	1950	2019,00	69	-0.27

22235	Индига	0.1	1.2	1.00	1.02	1998	1951	2019,00	68	-0.04
22292	Сосновец остров	0.4	3.4	1.01	1.07	1992	1947	2019,00	73	-0.09
22355	Кемь-порт	0.9	2.1	1.02	1.04	1977	1943	2019,00	71	-0.13
22520	Архангельск	0.0	1.4	1.00	1.03	1994	1930	2019,00	82	0.02
22550	Койнас	3.4	4.5	1.07	1.10	1977	1934	2019,00	80	-0.26
22583	Амдерма	0.0	1.9	1.00	1.04	2003	1961	2019,00	59	-0.01
23022	Марресаля	0.0	1.2	1.00	1.02	1992	1961	2019,00	59	-0.03
23032	Дудинка	0.0	2.0	1.00	1.04	1992	1961	2019,00	54	-0.02
23074	Нарьян-Мар	0.5	1.3	1.01	1.03	1997	1957	2018,00	60	0.10
23205	Хоседа-Хард	0.0	1.1	1.00	1.02	1992	1949	2019,00	71	-0.03
23219	Елецкая	9.0	11.7	1.21	1.28	1991	1950	2019,00	69	-0.41
23220	Новый Порт	6.0	7.7	1.13	1.17	1992	1950	2019,00	70	-0.34
23242	Тазовск	1.5	2.8	1.03	1.06	1980	1961	2019,00	58	-0.17
23256	Оленек АМСГ	0.4	1.7	1.01	1.03	1978	1961	2019,00	59	-0.08
24125	Сухана	0.1	3.9	1.00	1.08	1954	1941	2019,00	75	-0.04
24136	Верхоянск, АМСГ	1.7	3.2	1.03	1.07	1984	1957	2019,00	63	-0.18
24266	Шелагонцы	0.8	2.6	1.02	1.05	2007	1934	2019,00	69	0.12
24329	Жиганск	2.6	5.6	1.05	1.12	2002	1943	2019,00	66	-0.23
24343	0. Айон	3.6	5.1	1.08	1.11	2004	1943	2019,00	72	-0.27
25042	Островное	0.0	1.4	1.00	1.03	1983	1969	2019,00	48	-0.01
25138	М. Шмидта	0.7	2.4	1.01	1.05	2002	1959	2019,00	58	0.11
25173	Среднеколымск	2.0	3.5	1.04	1.07	1985	1961	2019,00	59	-0.20
25206	Усть-Олой	0.0	0.8	1.00	1.02	1980	1943	2012,00	53	-0.01
25325	Амгуема, 87км	0.0	1.1	1.00	1.02	1980	1943	2019,00	59	0.01
25372	Им.Э.Т.Кренкеля,ГМО	1.5	3.2	1.03	1.07	1984	1950	2018,00	55	-0.17

Из результатов таблицы 4.3 следует, что из 49 серий наблюдений продолжительности июльского солнечного сияния 3 серии с моделью пошаговых изменений, а также 1 серия с близким значением, и ни одна в соответствии с моделью линейного тренда, не являются нестационарными при Δ >10%.Статистически значимых по критерию Фишера при уровне значимости 5% нет.

Примеры графиков временных рядов нестационарных моделей показаны на рис. 4.3.

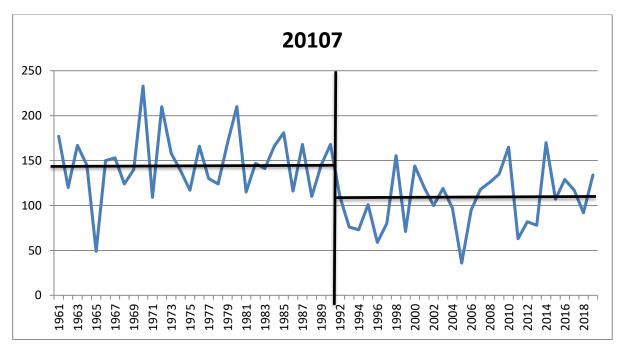


Рис 4,2 График временного ряда нестационарной модели

При анализе данных таблиц за выбранные месяцы можно сделать вывод, что модель пошаговых изменений намного лучше, чем модель линейного тренда, поскольку она имеет большие значения нестационарности Δ и более правильно отражает характер нестационарности, связанный с переходом от одного стационарного режима к еще одному.

4.2. Пространственные обобщения показателей нестационарности

Для оценки показателей нестационарности моделей линейных трендов и пошаговых изменений с использованием программы ТІМОD1 были взяты значения с 1960 года по последний год измерений. Именно этот период в российском Арктическом регионе связан с современным потеплением и не учитывает естественное потепление середины 20-го века.

В таблице 4.4 приведены результаты расчетов с использованием моделей временных рядов с линейным трендом (Dtr) и пошаговыми изменениями (Dst) за три месяца январь (я), апрель (а), июль (и). Для обобщения рассчитанных

параметров были построены пространственные распределения отклонений нестационарных моделей от модели стационарной выборки в процентах (Dtr. и Dst.) и коэффициент корреляции температуры за четыре месяца, показанные на рисунках 4.3–4.5.

Таблица 4.4 - показатели нестационарности за три месяца

		1	1	_									
код	название	широта	долгота		∆tr,%	ó	4	∆st,%	•	кот	К-т реляі	ІИИ	
		та	та	Я	a	И	Я	a	И	Я	a	и	
20046	.Кренкеля	80,6	58,1	0	0.7	1.9	0	2.2	3.7	0	-0.12	0.19	
20069	Визе	79,5	77	0.4	2.0	0.5	5.0	5.8	2.8	-0.09	0.20	-0.10	
20087	Голомянный	79,6	90,6	0.1	4.0	0.6	2.7	7.6	2.8	0.04	0.28	-0.11	
20107	Баренцбург	78,1	14,2	6.0	0.0	8.3	8.1	2.2	15.4	-0.67	-0.02	-0.40	
20289	Русский	77,2	96,6	0.6	0.1	0.0	3.8	1.4	0.8	0.11	0.04	-0.01	
20292	.Федорова	77,7	104,3	0.8	4.9	0.2	4.0	10.8	4.7	-0.13	-0.31	-0.07	
20667	.Попова	73,3	70,1	0.8	4.5	0.5	2.4	7.7	2.5	0.13	-0.30	-0.10	
20674	Диксон	73,5	80,4	0.1	1.4	2.9	2.8	5.0	4.8	-0.04	-0.16	-0.24	
20744	Малые Кармакулы	72,4	52,7	1.7	0.0	0.4	3.6	1.4	3.1	-0.18	0.00	-0.09	
21432	0. Котельный	76	137,9	0.6	0.8	1.0	4.1	3.6	2.4	-0.11	-0.12	0.14	
21647	0. Шалаурова	73,2	143,9	8.5	0.6	0.8	15.1	1.7	1.4	-0.40	0.11	0.12	
21802	Саскылах	72	114,1	5.8	8.1	8.0	19.6	9.4	10.6	-0.34	-0.39	-0.39	
21824	Тикси	71,6	128,9	22.1	0.6	6.1	22.3	2.7	9.8	0.63	0.11	0.34	
21908	Жилинда	70,1	114	2.8	0.1	1.1	13.2	4.8	4.0	0.24	-0.04	-0.15	
21921	Кюсюр	70,7	127,4	13.6	0.0	2.1	25.5	1.3	7.5	0.50	-0.03	-0.21	
21946	Чокурдах	70,6	147,9	0.2	0.3	0.4	4.4	3.9	0.9	0.06	0.08	0.09	
21982	0. Врангеля	71	182,5	3.6	7.7	1.1	5.7	9.2	3.2	-0.27	-0.38	-0.15	
22003	Вайда-Губа	69,9	32	3.2	0.1	0.2	7.1	3.4	1.4	0.25	-0.05	-0.06	
22028	Териберка	69,2	35,1	0.2	0.1	4.8	3.0	2.4	7.2	0.07	-0.05	-0.31	
22095	Колгуев Северный	69,1	49,2	1.0	1.5	0.9	3.1	5.2	4.6	-0.14	-0.17	-0.13	
22101	Виртаниеми	68,9	28,4	0.4	0.1	0.0	4.1	1.9	1.2	0.09	-0.04	-0.01	
22113	Мурманск	69	33,1	10.2	1.6	1.5	12.8	6.5	2.4	0.44	0.18	0.17	
22140	Гремиха Бухта	68,1	39,5	2.0	0.2	6.5	4.2	3.4	8.3	0.20	0.07	-0.35	
22165	Канин Нос	68,6	43,3	1.6	2.0	4.1	6.4	5.6	6.8	0.18	-0.20	-0.28	
22235	Краснощелье	67,3	37,1	0.2	0.1	0.0	3.5	1.7	1.1	-0.06	-0.05	0.00	
22292	Индига	67,7	48,7	2.2	0.0	0.3	9.9	0.5	3.6	0.21	-0.01	-0.08	
22355	Сосновец остров	66,5	40,7	1.4	0.3	0.7	4.0	2.6	1.9	-0.17	0.07	-0.12	
22520	Кемь-порт	64,98	34,8	2.3	0.2	1.4	4.3	2.5	3.8	-0.21	-0.07	0.17	
22550	Архангельск	64,4	40,7	0.5	0.0	0.9	1.4	2.2	2.8	-0.10	0.00	-0.13	
22583	Койнас	64,8	47,6	2.9	0.0	0.0	7.4	1.5	1.9	-0.24	-0.02	-0.01	
23022	Амдерма	69,8	61,7	0.7	0.0	0.0	1.8	1.2	1.2	0.12	-0.02	-0.03	
23032	Марресаля	69,7	66,8	0.9	0.2	0.0	4.2	2.0	2.0	0.13	-0.06	-0.02	
23074	Дудинка	69,4	86,2	0.3	5.2	0.9	3.9	8.9	1.6	-0.08	-0.32	0.13	
23205	Нарьян-Мар	67,6	53	4.4	2.3	0.0	9.5	4.1	1.1	0.29	0.21	0.00	
23219	Хоседа-Хард	67,1	59,4	0.3	0.2	11.0	2.5	1.6	12.6	0.08	0.06	-0.46	

23220	Елецкая	67,8	64,8	1.2	2.4	6.4	3.5	4.1	7.7	0.16	0.22	-0.35
23242	Новый Порт	67,7	72,9	1.9	4.8	1.5	6.5	6.0	2.8	0.19	-0.31	-0.17
23256	Тазовск	67,5	78,7	4.6	1.1	0.4	13.9	1.2	1.7	0.30	0	-0.08
24125	Оленек	68,5	112,4	0.0	0.0	5.9	2.2	1.3	6.9	0.03	0.00	-0.34
24136	Сухана	68,62	118,33	4.3	0.7	2.3	19.3	3.6	3.9	0.29	0.12	-0.21
24266	Верхоянск	67,55	133,38	0.4	0.2	1.7	4.5	1.5	3.6	0.09	-0.06	0.18
24329	Шелагонцы	66,25	114,28	1.7	1.1	3.8	7.9	3.6	6.1	0.18	0.15	-0.27
24343	Жиганск	66,77	123,4	4.3	0.1	4.4	12.0	1.6	5.6	0.29	-0.05	-0.29
25042	0. Айон	69,8	168,7	0.1	0.7	0.0	2.0	2.7	1.4	-0.04	-0.12	-0.01
25138	Островное	68,12	164,16	0.3	0.1	0.4	0.8	1.0	2.2	-0.07	-0.05	0.08
25173	М. Шмидта	68,9	181,4	0.0	0.0	2.0	1.2	0.9	3.5	0.00	-0.02	-0.20
25206	Среднеколымск	67,45	153	0.4	5.3	0.2	2.2	6.7	1.4	0.09	0.32	0.06
25325	Усть-Олой	66,55	159,42	2.9	2.6	0.5	4.7	6.3	2.3	-0.24	0.23	0.10
25372	Амгуема	67	182,9	0.2	0.1	2.4	3.2	1.0	3.8	0.07	-0.05	-0.22

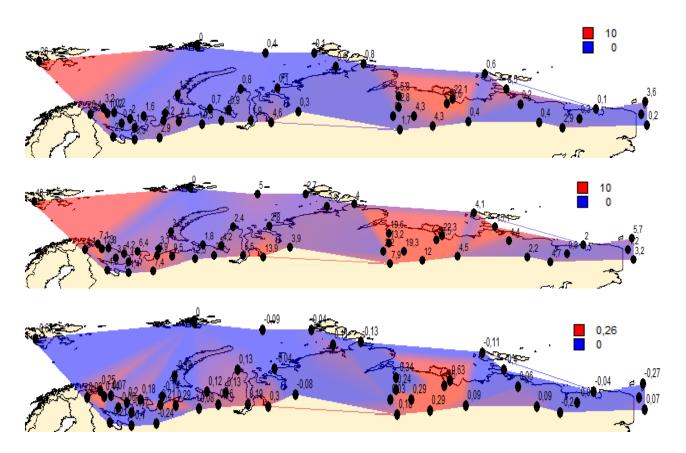


Рис4,3 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в % Δ ст. в % и коэффициента корреляции для продолжительности солнечного сияния января.

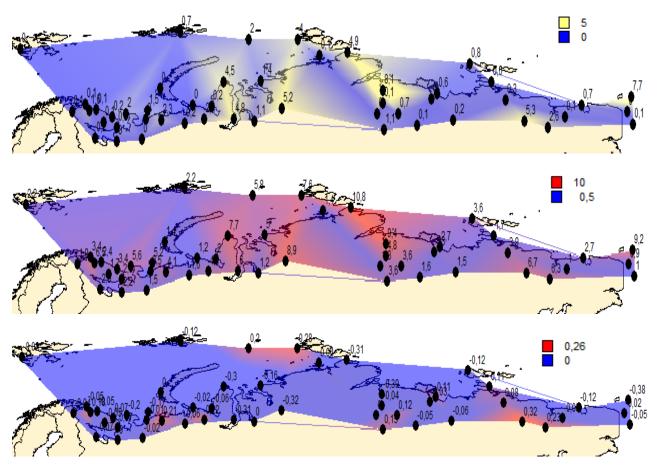
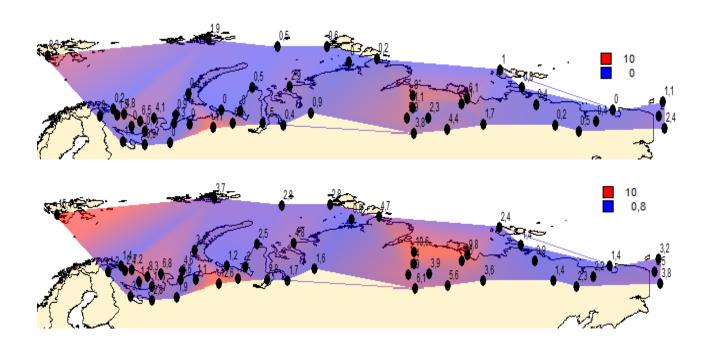
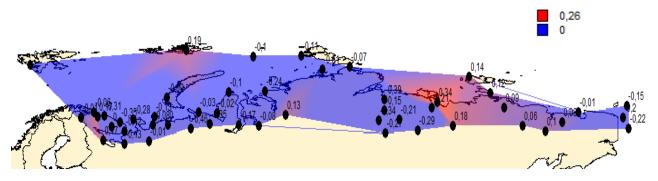




Рис 4,4 Пространственные распределения отклонений нестационарных моделей от модели стационарной выборки Δ тр. в % Δ ст. в % и коэффициента корреляции для продолжительности солнечного сияния апреля.

Анализируя данные расчетов и пространственных распределений продолжительности солнечного сияния, можно прийти к выводу, что эта характеристика ведет себя стационарно и зависит в основном от местных изменений. Это можно увидеть из пространственных распределений, где нестационарность наблюдается в выбранные месяцы над одним и тем же районом. Причем в зимние месяцы продолжительность солнечного сияния имеет тенденцию увеличения, что говорит о более ясном небе, а в весенний и летний периоды наоборот идет уменьшение продолжительности солнечного сияния, что может быть связано увеличением количества облачности над данным регионом. В целом значения нестационарности не высокие в пределах 10% за все месяцы. Распределение коэффициента корреляции повторяет распределение показателей нестационарности, и показывает значимые коэффициенты над одним районом, на северо-востоке региона за все три месяца.

По результатам проделанной работы можно сделать следующие основные выводы:

- 1. Сформирована база данных многолетних рядов среднемесячной температуры воздуха на 49 метеостанциях в российском Арктическом регионе. Станции расположены как в глубине континента, так и на побережье и островах. Такое распределение станций позволяет качественно оценить всю территорию российской Арктики. Сформирована база многолетних рядов продолжительности солнечного сияния на тех же 49 метеостанциях региона российской Арктики.
- 2. Для выбранных станций была проведена оценка качества, единообразия информации и восстановления пробелов в наблюдениях, в результате чего были получены практически непрерывные многолетние ряды температур воздуха со средней продолжительностью 90-100 лет с последним 2019 годом наблюдений, а для продолжительности солнечный свет со средним значением 60 лет.
- 3. Для холодного полугодия была проведена оценка проявлений современных климатических изменений, из которой следует, что в январе неустойчивость проявляется только на станциях, расположенных в западной части региона, в то время как в апреле неустойчивость наблюдается по всему российскому Арктическому региону. Более того, сравнивая две модели для выявления нестационарности, было обнаружено, что модель пошаговых изменений аппроксимирует временные ряды лучше, чем модель линейного тренда.

Сравнивая нынешнее потепление российской Арктики с естественным потеплением 1920-50-х годов, можно сделать вывод, что в январе повышение температуры наблюдалось только в западной части территории как раньше, так и сейчас. Более того, современное потепление занимает большую площадь, и если во время предыдущего потепления средняя температура повысилась максимум на 3°, то при современном повышении она достигает 5,5°, а разницу между ними в 2° можно отнести к минимальному антропогенному вкладу в это потепление. В апреле предыдущее потепление практически не проявило себя и

наибольшее повышение температуры составило 1° , однако нынешнее потепление затронуло всю территорию (чуть меньше, чем самый восток) и дало повышение температуры до $4,5-4,7^{\circ}$.

4. Для теплого полугодия была проведена оценка проявлений современных климатических изменений, из которой следует, что в июле месяце неустойчивость появляется только на станциях, расположенных в восточной части региона, что можно считать полностью противоположным распределение неустойчивости в январе месяце. В октябре месяце неустойчивость наблюдается в восточной части и на побережье всего региона. Также установлено, что для аппроксимации временных рядов модель пошаговых изменений более эффективна, чем трендовая модель.

Сравнивая нынешнее потепление российской Арктики с естественным потеплением 1920-50 годов, можно сделать вывод, что в июле месяце температура незначительно изменилась как при предыдущем потеплении 1920-40-50 годов, так и в наше время и максимум на 1,5 °C В октябре проявилось предыдущее потепление в западной части региона с повышением средних температур до 3 °C. Повышение средних октябрьских температур при современном потеплении уже достигает 4-5°C и наблюдается в основном на севере.

- 5. Сравнение потепления в разные сезоны также позволяет нам сделать вывод, что наибольшее современное потепление происходит в переходные сезоны года. Зимой это не так заметно в российской Арктике из-за ее самых низких температур и большой инерции местной довольно мощной криосферы. Летом потепление также не столь значительное и малозаметное, что связано с достаточно высоким континентальным нагревом континента в течение этого сезона.
- 6. Продолжительность солнечного сияния ведет себя стационарно и зависит в основном от местных изменений. Это можно увидеть из пространственных распределений, где нестационарность наблюдается в выбранные месяцы над одним и тем же районом. Причем в зимние месяцы

продолжительность солнечного сияния имеет тенденцию увеличения, что говорит о более ясном небе, а в весенний и летний периоды наоборот идет уменьшение продолжительности солнечного сияния, что может быть связано увеличением количества облачности над данным регионом. В целом значения нестационарности не высокие в пределах 10% за все месяцы.

Литература

- 1. Лобанов В. А., Методические указания по выполнению курсовой работы "Оценка современных региональных изменений климатических характеристик". Направление подготовки 280200 Прикладная гидрометеорология Профиль подготовки Магистранты. СПб.: Изд. РГГМУ, 2018. 91 с.
- 2. Дашко Н. А. Курс лекций по синоптической метеорологии, Владивосток: ДВГУ, 2005
- 3. Лобанов В.А. Лекции по климатологии. Часть 1. Общая климатология: Книга 1.: учебник. – СПб, РГГМУ, 2019. – 378 с
- 4. БЭС, статья Арктика, Большая Российская энциклопедия, 2002. 1456с.
- 5. Анисимов А. Арктика и Антарктика, А.В.К.-Тимошка, 2010. 96с.
- 6. Алисов Б.П., Берлин И.А., Михель В.М. Курс климатологии. Часть 3 Климаты земного шара, Ленинград, Гидрометеорологическое изд-во, 1954, 321 с.
- 7. Шмыркова О.О. Анализ термического режима Арктического побережья // Материалы XIV Международной студенческой научной конференции «Студенческий научный форум»
- 8. В.А. Лобанов, И.А. Смирнов, А .Е. Шадурский. Практикум по климатологии. Часть І. Учебное пособие. СПб.: РГГМУ, 2011. 145 с.
- Лобанов В.А., Смирнов И.А., Шадурский А.Е. Практикум по климатологии. Часть 2. Учебное пособие. СПб.: изд. РГГМУ, 2012 180 с.
- 10. Лобанов, В.А. Лекции по климатологии. Ч. 2. Динамика климата. Кн. 1. В 2 кн.: учебник. СПб.: РГГМУ, 2016. 332 с.
- 11. Руководитель Росгидромета А.В. Фролов. Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации., Росгидромет, 2014 г. 1008с.

Таблица 3.6 – Сравнение современного потепления Арктики с потеплением 1920-40 годов для января месяца

Код станц ии	Период	Δτρ,%	Δст,%	Год ступенчатых изменений	Год начала измерений	Год окончания наблюден ий	Число лет	к-т корреля ции
20046	до 1960	1.0	7.4	1919	1877	1960	68	0.14
20046	c 1960	16.5	26.2	2005	1960	2019	60	0.55
20069	до 1960	3.2	7.6	1919	1877	1960	65	0.25
20069	c 1960	18.6	26.9	2005	1960	2019	60	0.58
20087	до 1960	3.6	7.6	1919	1877	1960	65	0.27
20087	c 1960	17.3	24.9	2005	1960	2019	60	0.56
20107	до 1960	2.1	4.9	1943	1921	1960	40	-0.20
20107	c 1960	13.6	17.2	2005	1960	2019	60	0.50
20289	до 1960	5.3	10.4	1920	1877	1960	66	0.32
20289	c 1960	12.7	19.9	2005	1960	2019	60	0.49
20292	до 1960	5.0	10.2	1919	1892	1960	62	0.31
20292	c 1960	10.6	19.5	2005	1960	2019	60	0.45
20667	до 1960	5.7	12.5	1920	1877	1960	66	0.33
20667	c 1960	11.2	13.6	2005	1960	2019	60	0.46
20674	до 1960	6.1	12.0	1920	1877	1960	67	0.34
20674	c 1960	11.8	14.8	2005	1960	2019	60	0.47
20744	до 1960	8.0	17.4	1919	1877	1960	66	0.39
20744	c 1960	8.1	16.2	2004	1960	2019	60	0.39
21432	до 1960	0.0	2.0	1945	1929	1960	32	-0.02
21432	c 1960	9.8	9.9	2006	1960	2019	60	0.43
21647	до 1960	0.3	0.9	1950	1929	1960	32	0.07
21647	c 1960	7.5	8.4	1975	1960	2019	60	0.38
21802	до 1960	2.3	2.8	1946	1933	1960	28	-0.21
21802	c 1960	4.3	9.3	2005	1960	2019	60	0.29
21824	до 1960	0.4	2.9	1932	1910	1960	43	0.09
21824	c 1960	4.4	6.7	2005	1960	2019	60	0.29
21908	до 1960	0.7	4.5	1932	1910	1960	43	0.12
21908	c 1960	6.4	10.8	2005	1960	2019	60	0.35
21921	до 1960	1.5	5.3	1932	1910	1960	43	0.17
21921	c 1960	3.7	6.0	2005	1960	2019	60	0.27
21946	до 1960	10.8	14.1	1920	1887	1960	64	0.45
21946	c 1960	4.8	5.9	1975	1960	2019	60	0.31
21982	до 1960	0.6	3.3	1950	1927	1960	34	0.11
21982	c 1960	1.9	5.0	2008	1960	2019	59	0.19
22003	до 1960	0.4	2.4	1923	1856	1960	105	0.08
22003	c 1960	1.8	5.6	1991	1960	2019	60	0.19
22028	до 1960	1.3	3.0	1922	1814	1960	145	0.16
22028	c 1960	0.6	3.8	1991	1960	2019	60	0.11
22095	до 1960	0.7	4.6	1920	1814	1960	145	0.12
22095	c 1960	2.2	5.7	2004	1960	2019	60	0.21

22101	до 1960	0.5	2.2	1869	1856	1960	105	0.10
22101	c 1960	0.1	2.6	1988	1960	2019	60	0.04
22113	до 1960	0.6	1.6	1922	1814	1960	145	0.11
22113	c 1960	0.3	3.2	1988	1960	2019	60	0.08
22140	до 1960	0.3	1.6	1921	1814	1960	145	0.07
22140	c 1960	6.0	8.9	1992	1960	2019	60	0.34
22165	до 1960	0.6	3.4	1921	1814	1960	145	0.11
22165	c 1960	2.3	4.8	1992	1960	2019	60	0.21
22235	до 1960	1.0	2.6	1922	1814	1960	145	0.14
22235	c 1960	1.1	3.7	1992	1960	2019	60	0.15
22292	до 1960	1.0	3.5	1921	1814	1960	145	0.14
22292	c 1960	1.5	3.2	2004	1960	2019	60	0.17
22355	до 1960	1.0	2.3	1921	1814	1960	145	0.14
22355	c 1960	4.0	7.7	1993	1960	2019	60	0.28
22520	до 1960	0.8	1.4	1922	1814	1960	145	0.13
22520	c 1960	3.6	6.2	1988	1960	2019	60	0.26
22550	до 1960	1.1	1.6	1894	1814	1960	145	0.15
22550	c 1960	3.8	5.9	1992	1960	2019	60	0.27
22583	до 1960	1.2	1.9	1921	1814	1960	145	0.16
22583	c 1960	3.3	5.1	1992	1960	2019	60	0.26
23022	до 1960	6.0	12.8	1920	1863	1960	70	0.34
23022	c 1960	4.2	7.9	2004	1960	2019	60	0.29
23032	до 1960	6.8	14.5	1920	1877	1960	67	0.36
23032	c 1960	3.9	7.7	2004	1960	2019	60	0.28
23074	до 1960	2.0	5.0	1920	1907	1960	54	0.20
23074	c 1960	2.2	5.2	1980	1960	2019	60	0.21
23205	до 1960	2.0	5.0	1920	1907	1960	54	0.20
23205	c 1960	2.2	5.2	1980	1960	2019	60	0.21
23219	до 1960	1.4	3.2	1920	1814	1960	145	0.17
23219	c 1960	0.6	1.9	1981	1960	2019	60	0.11
23220	до 1960	0.0	3.5	1878	1868	1960	93	-0.01
23220	c 1960	2.0	3.8	1981	1960	2019	60	0.20
23242	до 1960	4.2	9.6	1920	1877	1960	67	0.29
23242	c 1960	2.8	5.1	2004	1960	2019	60	0.23
23256	до 1960	2.2	6.0	1920	1877	1960	67	0.21
23256	c 1960	2.5	4.9	1981	1960	2019	60	0.22
24125	до 1960	0.9	1.5	1950	1936	1960	25	-0.14
24125	c 1960	8.9	9.8	2005	1960	2019	60	0.41
24136	до 1960	0.4	4.2	1932	1910	1960	43	0.08
24136	c 1960	6.9	11.0	2005	1960	2019	60	0.36
24266	до 1960	10.5	13.1	1916	1886	1960	71	0.45
24266	c 1960	8.0	8.1	1991	1960	2019	60	0.39
24329	до 1960	3.6	2.7	1943	1933	1960	28	-0.27
24329	c 1960	5.8	9.4	2005	1960	2019	60	0.34
24343	до 1960	0.2	2.0	1939	1929	1960	32	-0.06
24343	c 1960	3.8	5.9	1991	1960	2019	60	0.27

25042	до 1960	3.0	6.3	1950	1929	1960	32	0.24
25042	c 1960	1.4	4.0	2009	1960	2019	60	0.17
25138	до 1960	6.1	8.2	1950	1933	1960	28	0.34
25138	c 1960	0.4	1.1	2003	1960	2018	59	0.09
25173	до 1960	1.8	6.1	1950	1927	1960	34	0.19
25173	c 1960	0.3	4.4	2009	1960	2019	60	0.07
25206	до 1960	6.0	8.1	1920	1887	1960	64	0.34
25206	c 1960	1.7	5.4	1976	1960	2019	60	0.19
25325	до 1960	14.5	14.6	1949	1933	1960	28	0.52
25325	c 1960	1.1	4.2	1986	1960	2018	59	-0.15
25372	до 1960	0.9	3.6	1950	1927	1960	34	0.14
25372	c 1960	0.1	2.9	2008	1960	2019	59	0.03

Код станц ии	Период	Δτр,%	Δст,%	Год ступенчатых изменений	Год начала измерений	Год окончания наблюден ий	Число лет	к-т корреля ции
20046	до 1960	8.8	11.1	1897	1868	1960	92	0.41
20046	c 1960	10.1	11.2	1990	1960	2019	60	0.44
20069	до 1960	0.9	3.2	1943	1931	1960	30	0.14
20069	c 1960	12.8	17.1	2006	1960	2019	60	0.49
20087	до 1960	2.1	4.5	1943	1931	1960	30	0.20
20087	c 1960	11.4	15.0	2007	1960	2019	60	0.46
20107	до 1960	1.5	1.5	1950	1940	1960	21	0.17
20107	c 1960	10.9	12.6	1989	1960	2019	60	0.45
20289	до 1960	3.8	5.9	1943	1917	1960	43	0.27
20289	c 1960	12.7	19.2	2007	1960	2019	60	0.49
20292	до 1960	0.0	1.8	1943	1931	1960	30	-0.01
20292	c 1960	13.7	21.6	2007	1960	2019	60	0.51
20667	до 1960	2.6	5.5	1943	1877	1960	67	0.23
20667	c 1960	8.6	14.1	2007	1960	2019	60	0.40
20674	до 1960	1.5	4.0	1932	1907	1960	54	0.17
20674	c 1960	8.1	15.9	2007	1960	2019	60	0.40
20744	до 1960	2.8	5.9	1943	1877	1960	66	0.24
20744	c 1960	9.7	13.7	2007	1960	2019	60	0.43
21432	до 1960	1.2	3.7	1940	1929	1960	32	0.15
21432	c 1960	17.6	30.4	2007	1960	2019	60	0.57
21647	до 1960	1.6	5.1	1940	1929	1960	32	0.18
21647	c 1960	19.0	27.2	2007	1960	2019	60	0.59
21802	до 1960	1.9	4.0	1948	1933	1960	28	-0.19
21802	c 1960	7.5	15.8	2007	1960	2019	60	0.38
21824	до 1960	0.0	1.9	1950	1910	1960	43	0.01
21824	c 1960	5.2	11.5	2007	1960	2019	60	0.32
21908	до 1960	1.4	3.6	1950	1933	1960	28	-0.17
21908	c 1960	13.2	17.2	2007	1960	2019	60	0.50
21921	до 1960	0.1	2.1	1950	1887	1960	71	-0.05
21921	c 1960	11.5	17.5	2007	1960	2019	60	0.47
21946	до 1960	0.0	0.8	1906	1887	1960	64	0.03
21946	c 1960	13.0	17.5	2009	1960	2019	60	0.49
21982	до 1960	0.1	2.2	1938	1927	1960	34	0.03
21982	c 1960	21.4	24.7	1988	1960	2019	60	0.62
22003	до 1960	0.6	1.4	1930	1816	1960	144	0.11
22003	c 1960	10.7	12.5	1999	1960	2019	60	0.45
22028	до 1960	0.2	1.3	1828	1816	1960	144	0.07
22028	c 1960	7.5	10.6	1999	1960	2019	60	0.38
22095	до 1960	0.1	2.1	1936	1863	1960	77	0.04
22095	c 1960	6.4	9.6	1989	1960	2019	60	0.35
22101	до 1960	4.9	5.1	1878	1856	1960	105	0.31
22101	c 1960	6.5	9.9	2002	1960	2019	60	0.36
22113	до 1960	0.6	1.5	1889	1814	1960	146	0.11

22113	c 1960	5.4	7.1	1989	1960	2019	60	0.32
22140	до 1960	0.1	0.8	1947	1814	1960	146	0.04
22140	c 1960	10.1	12.8	2000	1960	2019	60	0.44
22165	до 1960	0.0	2.6	1873	1863	1960	98	0.01
22165	c 1960	8.4	12.4	2000	1960	2019	60	0.40
22235	до 1960	0.2	0.7	1894	1814	1960	146	0.07
22235	c 1960	6.7	10.5	1999	1960	2019	60	0.36
22292	до 1960	0.0	2.1	1873	1863	1960	98	-0.01
22292	c 1960	4.6	8.4	2000	1960	2019	60	0.30
22355	до 1960	0.3	0.7	1881	1814	1960	146	0.07
22355	c 1960	7.6	10.3	2000	1960	2019	60	0.38
22520	до 1960	0.1	1.3	1829	1816	1960	144	0.04
22520	c 1960	6.4	9.3	1999	1960	2019	60	0.35
22550	до 1960	0.2	1.2	1903	1814	1960	146	0.07
22550	c 1960	3.1	6.0	1989	1960	2019	60	0.25
22583	до 1960	0.2	1.1	1903	1814	1960	146	0.07
22583	c 1960	2.9	4.4	1989	1960	2019	60	0.24
23022	до 1960	2.4	4.7	1936	1877	1960	67	0.22
23022	c 1960	4.1	8.8	2007	1960	2019	60	0.28
23032	до 1960	2.0	4.3	1936	1877	1960	67	0.20
23032	c 1960	3.7	8.5	2007	1960	2019	60	0.27
23074	до 1960	0.7	3.1	1932	1907	1960	54	0.12
23074	c 1960	6.8	15.2	2007	1960	2019	60	0.36
23205	до 1960	0.0	1.0	1936	1863	1960	88	0.02
23205	c 1960	5.5	7.4	1994	1960	2019	60	0.33
23219	до 1960	0.5	2.2	1943	1876	1960	85	0.10
23219	c 1960	3.7	7.5	2007	1960	2019	60	0.27
23220	до 1960	2.8	5.6	1932	1877	1960	68	0.23
23220	c 1960	2.3	5.5	2007	1960	2019	60	0.21
23242	до 1960	3.9	8.3	1936	1877	1960	56	0.28
23242	c 1960	4.0	8.4	2007	1960	2019	60	0.28
23256	до 1960	1.1	4.5	1932	1907	1960	54	0.15
23256	c 1960	5.5	10.8	2007	1960	2019	60	0.33
24125	до 1960	4.1	8.2	1950	1936	1960	25	-0.28
24125	c 1960	10.4	14.5	2007	1960	2019	60	0.44
24136	до 1960	0.1	2.9	1950	1910	1960	43	-0.05
24136	c 1960	16.6	16.7	2007	1960	2019	60	0.55
24266	до 1960	0.3	4.0	1950	1887	1960	71	-0.08
24266	c 1960	12.8	14.9	2009	1960	2019	60	0.49
24329	до 1960	1.3	7.9	1950	1933	1960	28	-0.16
24329	c 1960	12.0	13.9	2007	1960	2019	60	0.48
24343	до 1960	0.7	4.3	1950	1910	1960	43	-0.11
24343	c 1960	15.9	15.1	2007	1960	2019	60	0.54
25042	до 1960	0.1	1.2	1938	1927	1960	34	0.05
25042	c 1960	17.4	17.1	1990	1960	2019	60	0.56
25138	до 1960	0.2	1.2	1912	1887	1960	61	-0.07

25138	c 1960	13.3	13.9	2000	1960	2018	59	0.50
25173	до 1960	0.1	1.2	1938	1927	1960	34	0.05
25173	c 1960	14.0	15.9	1988	1960	2019	60	0.51
25206	до 1960	0.0	0.6	1940	1887	1960	64	0.00
25206	c 1960	12.7	17.0	2009	1960	2019	60	0.49
25325	до 1960	1.2	3.7	1946	1933	1960	28	-0.15
25325	c 1960	12.7	14.1	1990	1960	2018	59	0.49
25372	до 1960	0.1	0.9	1949	1927	1960	34	-0.04
25372	c 1960	12.4	13.5	1988	1960	2019	60	0.48

Код станц ии	Период	Δτр,%	Δст,%	Год ступенчатых изменений	Год начала измерений	Год окончания наблюден ий	Число лет	к-т корреля ции
20046	до 1960	10.0	11.2	1948	1917	1960	42	0.44
20046	c 1960	0.5	2.1	1987	1960	2019	57	-0.10
20069	до 1960	0.3	0.2	1943	1931	1960	26	0.07
20069	c 1960	0.0	1.1	2004	1960	2019	59	0.00
20087	до 1960	0.0	0.4	1943	1931	1960	26	0.01
20087	c 1960	0.0	1.0	1972	1960	2019	59	-0.02
20107	до 1960	5.6	8.0	1947	1931	1960	29	-0.33
20107	c 1960	12.8	12.5	1998	1960	2018	58	0.49
20289	до 1960	2.5	1.4	1945	1933	1960	28	0.22
20289	c 1960	0.3	3.0	1971	1960	2019	60	-0.08
20292	до 1960	3.0	2.6	1945	1933	1960	28	0.24
20292	c 1960	0.1	1.5	1971	1960	2019	58	-0.05
20667	до 1960	0.9	2.4	1950	1917	1960	44	0.13
20667	c 1960	10.9	13.4	2004	1960	2019	60	0.45
20674	до 1960	0.2	1.3	1928	1917	1960	44	0.07
20674	c 1960	8.7	12.3	2004	1960	2019	59	0.41
20744	до 1960	2.2	3.4	1920	1879	1960	63	0.21
20744	c 1960	0.5	2.8	2004	1960	2019	60	0.10
21432	до 1960	0.8	1.4	1948	1933	1960	25	-0.12
21432	c 1960	1.8	3.2	1991	1960	2019	60	0.19
21647	до 1960	0.6	7.6	1942	1929	1960	32	-0.11
21647	c 1960	0.3	2.0	1987	1960	2019	60	0.08
21802	до 1960	0.2	0.4	1949	1935	1960	26	-0.06
21802	c 1960	0.0	1.2	1972	1960	2019	60	0.00
21824	до 1960	0.9	2.8	1943	1933	1960	28	-0.14
21824	c 1960	2.1	5.4	1988	1960	2018	59	0.21
21908	до 1960	0.4	1.0	1949	1935	1960	26	-0.09
21908	c 1960	0.5	1.9	1991	1960	2019	60	0.10
21921	до 1960	0.8	3.3	1931	1887	1960	72	0.13
21921	c 1960	0.6	2.5	1991	1960	2019	60	0.11
21946	до 1960	1.4	4.8	1931	1887	1960	66	0.17
21946	c 1960	0.8	3.8	1987	1960	2019	60	0.12
21982	до 1960	0.5	4.7	1946	1927	1960	34	-0.10
21982	c 1960	19.3	22.0	1999	1960	2019	56	0.59
22003	до 1960	0.6	2.0	1913	1890	1960	71	0.11
22003	c 1960	0.1	2.0	2000	1960	2019	59	0.04
22028	до 1960	0.5	2.2	1913	1890	1960	71	0.10
22028	c 1960	0.1	2.3	2000	1960	2019	59	0.05
22095	до 1960	0.3	3.8	1950	1862	1960	68	0.08
22095	c 1960	1.0	4.7	2000	1960	2019	60	0.14
22101	до 1960	3.8	7.7	1913	1876	1960	85	0.27
22101	c 1960	0.9	2.6	1997	1960	2019	59	0.14
22113	до 1960	1.2	4.2	1913	1890	1960	71	0.15

22113	c 1960	0.3	2.4					
		0.3	2.1	2000	1960	2019	59	0.08
22140	до 1960	0.8	2.6	1931	1862	1960	75	0.13
22140	c 1960	0.0	2.9	1976	1960	2019	60	0.02
22165	до 1960	0.6	2.8	1950	1862	1960	69	0.11
22165	c 1960	0.2	3.4	2000	1960	2019	60	0.06
22235	до 1960	0.0	1.4	1838	1814	1960	146	-0.01
22235	c 1960	0.6	4.0	1998	1960	2019	60	0.11
22292	до 1960	0.3	3.1	1950	1862	1960	68	0.07
22292	c 1960	0.9	4.1	1998	1960	2019	60	0.13
22355	до 1960	0.2	5.7	1878	1856	1960	97	-0.07
22355	c 1960	3.0	8.4	2000	1960	2019	60	0.24
22520	до 1960	0.4	3.1	1878	1866	1960	95	-0.09
22520	c 1960	2.1	7.1	1999	1960	2018	59	0.21
22550	до 1960	0.0	1.1	1838	1814	1960	146	0.00
22550	c 1960	1.2	5.8	1998	1960	2019	60	0.15
22583	до 1960	0.2	1.3	1891	1814	1960	146	-0.06
22583	c 1960	1.6	5.4	1998	1960	2019	60	0.18
23022	до 1960	2.3	7.7	1950	1934	1960	27	0.21
23022	c 1960	2.8	5.4	2008	1960	2018	59	0.24
23032	до 1960	1.1	4.7	1950	1917	1960	43	0.15
23032	c 1960	3.1	4.3	2004	1960	2019	60	0.25
23074	до 1960	3.2	7.2	1942	1907	1960	46	0.25
23074	c 1960	1.1	3.5	2004	1960	2017	56	0.15
23205	до 1960	0.4	2.2	1950	1913	1960	48	0.09
23205	c 1960	0.2	2.0	1998	1960	2019	60	0.07
23219	до 1960	0.4	5.4	1950	1927	1960	34	0.09
23219	c 1960	1.1	3.3	2004	1960	2019	60	0.15
23220	до 1960	0.5	5.9	1950	1927	1960	34	0.10
23220	c 1960	0.4	1.7	2004	1960	2019	60	0.09
23242	до 1960	5.3	9.3	1948	1933	1960	22	0.32
23242	c 1960	5.6	6.7	1982	1960	2018	59	0.33
23256	до 1960	2.4	5.9	1950	1907	1960	47	0.22
23256	c 1960	1.7	3.8	2005	1960	2019	60	0.19
24125	до 1960	1.6	2.4	1948	1935	1960	26	-0.18
24125	c 1960	0.5	1.5	1996	1960	2019	60	0.10
24136	до 1960	0.2	4.6	1931	1910	1960	40	0.07
24136	c 1960	0.5	1.8	1991	1960	2019	60	0.10
24266	до 1960	0.0	1.7	1942	1887	1960	72	-0.01
24266	c 1960	2.2	4.6	1991	1960	2019	60	0.21
24329	до 1960	4.7	7.9	1949	1935	1960	26	-0.30
24329	c 1960	1.3	3.8	1991	1960	2019	60	0.16
24343	до 1960	0.4	4.8	1931	1910	1960	40	0.09
24343	c 1960	0.6	2.0	1997	1960	2019	60	0.11
25042	до 1960	1.1	7.6	1950	1934	1960	27	0.15
25042	c 1960	4.2	4.4	2003	1960	2017	58	0.29
25138	до 1960	0.0	2.6	1905	1887	1960	66	-0.02

25138	c 1960	3.6	5.2	1987	1960	2018	59	0.27
25173	до 1960	4.9	9.1	1950	1933	1960	28	0.31
25173	c 1960	1.5	3.4	2002	1960	2013	53	0.17
25206	до 1960	0.4	1.8	1931	1887	1960	66	0.09
25206	c 1960	2.4	5.3	1987	1960	2019	60	0.22
25325	до 1960	5.0	17.6	1945	1933	1960	27	-0.31
25325	c 1960	7.3	8.5	1971	1960	2017	58	0.38
25372	до 1960	1.5	6.5	1950	1933	1960	28	0.17
25372	c 1960	4.2	5.7	1972	1960	2014	55	0.29

Код станц ии	Период	Δτр,%	Δст,%	Год ступенчатых изменений	Год начала измерений	Год окончания наблюден ий	Число лет	к-т корреля ции
20046	до 1960	0.7	0.0	0	1940	1960	16	-0.11
20046	c 1960	18.7	27.9	2007	1960	2018	59	0.58
20069	до 1960	3.4	3.7	1945	1930	1960	31	-0.26
20069	c 1960	18.6	29.0	2007	1960	2018	59	0.58
20087	до 1960	2.9	6.3	1949	1930	1960	31	-0.24
20087	c 1960	19.0	29.6	2005	1960	2018	59	0.59
20107	до 1960	0.9	0.0	1949	1940	1960	15	0.13
20107	c 1960	6.4	9.1	2007	1960	2018	59	0.35
20289	до 1960	0.6	6.7	1950	1916	1960	36	-0.11
20289	c 1960	15.0	24.8	2005	1960	2018	59	0.53
20292	до 1960	4.1	10.9	1950	1930	1960	31	-0.28
20292	c 1960	18.4	28.4	2005	1960	2018	59	0.58
20667	до 1960	4.6	10.5	1919	1876	1960	67	0.30
20667	c 1960	11.4	13.5	2007	1960	2018	59	0.46
20674	до 1960	1.1	7.8	1919	1906	1960	55	0.15
20674	c 1960	9.4	14.0	2007	1960	2018	59	0.42
20744	до 1960	3.2	6.1	1921	1876	1960	75	0.25
20744	c 1960	11.1	12.7	2000	1960	2018	59	0.46
21432	до 1960	2.5	7.8	1948	1929	1960	32	-0.22
21432	c 1960	20.9	27.6	2005	1960	2018	59	0.61
21647	до 1960	1.1	4.8	1948	1929	1960	31	-0.15
21647	c 1960	22.7	31.0	2005	1960	2018	59	0.63
21802	до 1960	1.1	5.8	1950	1932	1960	29	-0.15
21802	c 1960	4.3	11.7	2007	1960	2018	59	0.29
21824	до 1960	0.1	3.7	1950	1909	1960	44	-0.05
21824	c 1960	7.7	12.8	2005	1960	2018	59	0.38
21908	до 1960	0.1	5.0	1950	1909	1960	44	-0.05
21908	c 1960	5.4	9.3	2007	1960	2018	59	0.32
21921	до 1960	0.0	2.9	1950	1909	1960	44	-0.01
21921	c 1960	6.5	12.3	2007	1960	2018	59	0.36
21946	до 1960	0.1	2.0	1931	1887	1960	68	0.05
21946	c 1960	21.6	22.8	2005	1960	2018	59	0.62
21982	до 1960	1.5	4.7	1936	1926	1960	35	0.17
21982	c 1960	21.7	26.8	2002	1960	2018	59	0.62
22003	до 1960	0.9	2.0	1929	1856	1960	105	0.13
22003	c 1960	7.0	8.7	1999	1960	2018	59	0.37
22028	до 1960	0.1	1.4	1929	1813	1960	147	0.04
22028	c 1960	4.5	6.7	1999	1960	2018	59	0.30
22095	до 1960	2.5	4.4	1929	1856	1960	105	0.22
22095	c 1960	9.2	13.3	1999	1960	2018	59	0.42
22101	до 1960	0.5	1.9	1929	1816	1960	144	0.10
22101	c 1960	3.6	5.0	1996	1960	2018	59	0.27
22113	до 1960	0.1	1.3	1929	1816	1960	144	0.03

			τ		T	Т	T	T
22113	c 1960	3.2	5.3	1999	1960	2018	59	0.25
22140	до 1960	0.1	1.7	1837	1813	1960	147	-0.04
22140	c 1960	6.7	9.1	1999	1960	2018	59	0.36
22165	до 1960	0.0	1.4	1837	1813	1960	147	-0.03
22165	c 1960	6.0	11.0	1999	1960	2018	59	0.34
22235	до 1960	0.0	1.4	1929	1813	1960	147	0.01
22235	c 1960	3.3	5.2	1999	1960	2018	59	0.26
22292	до 1960	0.1	1.6	1921	1813	1960	147	0.03
22292	c 1960	7.2	10.1	1999	1960	2018	59	0.37
22355	до 1960	0.0	1.6	1929	1813	1960	147	0.01
22355	c 1960	3.8	6.8	1999	1960	2018	59	0.27
22520	до 1960	0.1	2.0	1929	1813	1960	147	0.04
22520	c 1960	2.7	4.8	1995	1960	2018	59	0.23
22550	до 1960	0.0	0.8	1840	1813	1960	147	-0.02
22550	c 1960	2.7	5.4	1994	1960	2018	59	0.23
22583	до 1960	0.0	0.9	1921	1813	1960	147	0.01
22583	c 1960	4.9	7.8	1994	1960	2018	59	0.31
23022	до 1960	3.9	6.9	1923	1876	1960	67	0.28
23022	c 1960	7.8	9.0	1999	1960	2018	59	0.39
23032	до 1960	4.3	7.9	1923	1876	1960	67	0.29
23032	c 1960	8.3	8.9	1985	1960	2018	59	0.40
23074	до 1960	1.0	4.6	1923	1906	1960	55	0.14
23074	c 1960	5.3	6.9	2002	1960	2018	59	0.32
23205	до 1960	0.0	1.1	1856	1813	1960	147	-0.03
23205	c 1960	5.6	7.4	1999	1960	2018	59	0.33
23219	до 1960	2.1	4.5	1921	1876	1960	75	0.20
23219	c 1960	6.3	9.0	1980	1960	2018	59	0.35
23220	до 1960	2.0	6.4	1891	1868	1960	93	-0.20
23220	c 1960	6.7	9.7	1980	1960	2018	59	0.36
23242	до 1960	0.1	2.2	1923	1868	1960	77	0.03
23242	c 1960	8.4	8.5	1978	1960	2018	59	0.40
23256	до 1960	1.3	7.0	1919	1906	1960	55	0.16
23256	c 1960	6.8	7.7	1983	1960	2018	59	0.36
24125	до 1960	1.4	7.9	1950	1909	1960	44	-0.17
24125	c 1960	5.3	9.0	2007	1960	2018	59	0.32
24136	до 1960	0.2	6.0	1950	1909	1960	44	-0.06
24136	c 1960	1.8	6.3	2007	1960	2018	59	0.19
24266	до 1960	0.1	3.2	1950	1887	1960	72	-0.04
24266	c 1960	6.9	9.0	2005	1960	2019	60	0.36
24329	до 1960	0.2	5.3	1950	1935	1960	26	-0.07
24329	c 1960	2.2	5.2	2007	1960	2018	59	0.21
24343	до 1960	0.1	3.5	1950	1909	1960	44	-0.04
24343	c 1960	2.0	7.6	2007	1960	2018	59	0.20
25042	до 1960	1.4	5.2	1937	1926	1960	35	0.17
25042	c 1960	22.4	28.8	2002	1960	2018	59	0.63
25042		:			-, -,			

25138	c 1960	14.9	14.6	2003	1960	2018	59	0.52
25173	до 1960	0.2	2.6	1936	1926	1960	35	0.06
25173	c 1960	19.0	24.4	2002	1960	2018	59	0.59
25206	до 1960	0.2	3.0	1931	1887	1960	68	0.06
25206	c 1960	18.7	16.7	2002	1960	2018	59	0.58
25325	до 1960	1.8	5.8	1945	1934	1960	27	-0.19
25325	c 1960	14.4	18.7	2002	1960	2016	57	0.52
25372	до 1960	2.8	8.5	1945	1932	1960	29	-0.24
25372	c 1960	15.3	18.4	2002	1960	2014	55	0.53