ГЛАВНОЕ УПРАВЛЕНИЕ ГИДРОМЕТЕОРОЛОГИЧЕСКОЙ СЛУЖБЫ ПРИ СОВЕТЕ МИНИСТРОВ СССР

277534

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А. И. ВОЕИКОВА

ТРУДЫ

ВЫПУСК 324

АКТИНОМЕТРИЯ АТМОСФЕРНАЯ ОПТИКА ОЗОНОМЕТРИЯ

Под редакцией д-ра техн. наук Г. П. ГУЩИНА

УДК 551. (521+510.534+508.92+508.7+508.953) (061.6

Сборник посвящен вопросам измерений составляющих радиационного баланса, спектральной прозрачности атмосферы, ультрафиолетовой радиации, дальности видимости и атмосферного озона. 141

Предназначен для научных работников и специалистов в области физики атмосферы.

20807-150 069(02)-74 18-74(2) С главная геофизическая обсерватория им. А. И. Воейкова (ГГО), 1974 г.

Н. Н. АКСЕЛЬРОД

ОЦЕНКА ВЕРОЯТНОСТИ ПОПАДАНИЯ САМОЛЕТА В ЗОНЫ ПОВЫШЕННЫХ КОНЦЕНТРАЦИЙ ОЗОНА

Для сверхзвукового транспортного самолета во время полетов в стратосфере должна быть обеспечена безопасность экипажа и массажиров от токсических воздействий озона, концентрации котоого на высоте 15—25 км могут превышать допустимые значения в несколько раз. Для решения этого вопроса необходимы сведено в первую очередь о концентрации озона на разных высотах и стремени пребывания самолета в зонах повышенных концентрация озона.

В настоящей работе произведена оценка вероятности попадани самолета в зоны с различными концентрациями озона на маршруте Фербенкс (64° 08' с. ш., 147° 93' з. д.) — Нью-Йорк (40° 6' с. ш., 78° 08' з. д.) на уровнях 100, 50 и 30 мб.

Согласно исследованиям Фабиана [2], воздушную массу гори-нтальной протяженностью до 670 км по содержанию озона жно принять за однородную, что позволяет всю трассу (длиной 500 км) для решения задачи разбить на девять зон. По данным ертикального распределения озона за период 1963—1965 гг. [3] ами предварительно были построены карты массовых концентращи озона (r мкг/г) для территории Северной Америки, по которим в центре каждой зоны определялось значение r. Для каждой зоны была найдена вероятность появлений различных концентраий озона. Результаты представлены в табл. 1. Далее, используя данные табл. 1 и задавая значения r (от r > 1 до r > 9 мкг/r), на каждом уровне определяли вероятность 0, 1, 2, ..., п-кратного появления соответствующей этому уровню заданной концентрации озона по всей трассе. С учетом того, что появление задаваемой концентрации во всех зонах маршрута неравновероятно (что слеует из табл. 1), для решения задачи составлялось в каждом слуае произведение *п* биномов [1]:

 $\varphi_n(Z) = \prod (q_i + P_i Z).$

десь P_i — вероятность появления в зоне i заданной концентраи, q_i — вероятность концентрации озона ниже заданной.

(1)

Таблица 1

44 13 0,3

25 25 0,5

 $\begin{array}{c} 5\\30\\1\end{array}$

Вероятность (⁰/₀) появления различных концентраций озона у зонах но маршруту Фербенкс-Нью-Иорк

							1980 B		A	
Hb, MŐ	Концентрация	· .			301	ны марту	ута			
Урове	озона, мкг/г	1	2	3	4	5	6	7	8	9 9
100	$ \begin{array}{c} \leqslant 1 \\ 1,1-2,0 \\ 2,1-3 \\ 3,1-4 \end{array} $	$\begin{array}{c} - \\ 36 \\ 43 \\ 41 \end{array}$	38 48 14	32 57 11	22 67 11	31 59 10	4 52 33 11	7 56 37	7 75 18	72 14
50	$\begin{array}{c} 4,1-5\\ 5,1-6\\ 6,1-7\\ 7,1-8\\ 8,1-9 \end{array}$	$ \begin{array}{c} 17 \\ 55 \\ 7 \\ 21 \\ \end{array} $	20 53 7 20	20 53 7 20	$10 \\ 62 \\ 10 \\ 14 \\ 4$	$13 \\ 53 \\ 26 \\ 4 \\ 4 \\ 4$	$ \begin{array}{c} 17 \\ 47 \\ 32 \\ 4 \\ - \\ - \end{array} $	$ \begin{array}{r} 17 \\ 52 \\ 24 \\ 7 \\ \end{array} $	24 39 27 10	38 31 24 7
30	5,1-66,1-77,1-88,1-99,1-10	$24 \\ 20 \\ 33 \\ 4 \\ 15$	$28 \\ 16 \\ 32 \\ 4 \\ 16$	24 24 28 12 12	$20 \\ 24 \\ 32 \\ 20 \\ 4$	16 28 40 16 	8 32 36 24 	27 46 27	23 47 30	
Вероятн	10,1—11 ность (%) по	падани	4 я само	лета в	зоны	с разли	чной к	онцент	Габлі рацией	4 14 2 03 11 a
		по м	аршру	гу Фер	бенкс—	Нью-Й	орк			
Концентр	рация			Ko	оличество	о попадан	ний			
озона, м	1Kr/r 0	1	2	3	4	5	6	7	8	
			V	ровень	100 мб	5				
	$\begin{vmatrix} & & \\ 2 & & \\ 3 & & 43 \end{vmatrix}$	$\overline{\begin{array}{c}1\\37\end{array}}$	$\begin{bmatrix} -4\\ 4\\ 16 \end{bmatrix}$	$\begin{bmatrix} -\\ 15\\ 3 \end{bmatrix}$	27 0,5	0,1 28 0,3	$\left.\begin{smallmatrix}0,4\\18\\0,2\end{smallmatrix}\right $	3,5 5	25 1 —	71 0,5 —
			2	/ровени	50 мб	i i	1 F 1 F			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,1\\ 34\\ 44\end{array}$	0,3 32 20	$\substack{\substack{0,5\\16\\5}}$	4 8 0,8	8 5 0,1	16 0,6 0,07	25 0,2 0,01	29 0,1 0,01	$\left \begin{array}{c}17\\0\\0,01\end{array}\right $

Уровень 30 мб 0,01 0,04 0,05 0,4 0,5 1 0,7 1 1,3 2 11 15 8 22 31 24 10 4 51 37 10 1,5 0,4 0,1

.

4

 $\geq 7 \\ \geq 8 \\ \geq 9$

Z — произвольный параметр,

 $\prod_{i=n}^{n} (q_i + P_i Z) = \sum_{m=0}^{n} P_{m, n} Z^m, \qquad (2)$

где m — количество зон с заданной концентрацией озона по маршруту из и он. Коэффициенты при 0, 1, 2, ..., n степенях Z в правой исти уравнения (2) есть не что иное, как вероятности $P_{0,n}$, $P_{n,n}$, ..., $P_{n,n}$, т. е. вероятности 0, 1, ..., n-кратного попадания самолета в зоны с заданной концентрацией озона на трассе. Результаты расчетов приведены в табл. 2.

Анализ результатов показывает, что на высотах 16—25 км суествует достаточно высокая вероятность того, что на протяжении сей трассы самолет будет находиться в условиях концентраций вона, значительно выше предельно допустимых [4]. Так, например, на уровне 100 мб вероятность того, что концентрации озона выше ПДК (r > 1 мкг/г), по всей трассе достигает 71%. На уровне 50 мб примерно каждый пятый полет будет проходить в условиях недопотимых, опасных концентраций (r > 5 мкг/г). Уровень 30 мб по ком высоким концентрациям озона, во много раз превышающим вопустимые, остается наиболее опасным для полетов.

Предложенная методика позволяет не только определить вероятность попадания самолета в зоны повышенных концентраций бона на различных трассах, но также, зная скорость самолета, диентировочно оценить время нахождения самолета в слоях высокими концентрациями озона.

СПИСОК ЛИТЕРАТУРЫ

Вентцель Е. С. Теория вероятностей. М., «Наука», 1969, с. 59—64. Fabian P. Eine Abschätzung der räumlichen Ausdehnung einheitlicher huftpakete in der interen Stratosphäre aus Gesamtozonmessungen an 10 europäischen stationen.— "Arch. meteorol. Geophys. und Bioklimatol", A. 16, Nr. 4, 1967, S. 314—320.

 Ozonesonde observations over North America. AFCRL, 1965, vol. 3, 265 p., 1967, vol. 4, 365 p.

 Гущин Г. П., Осечкин В. В., Солонин С. В. Результаты исследований атмосферного озона и его влияния на эксплуатацию сверхзвукового транспорта.— «Тр. ГГО», 1972, вып. 279, с. 138—153.

А. М. БРОУНШТЕЙН, А. Ф. ФРОЛОВ, А.А. ШАШКОВ

О МЕТОДЕ ОПРЕДЕЛЕНИЯ ОБЩЕГО СОДЕРЖАНИЯ СО В АТМОСФЕРЕ ПО ИК СПЕКТРАМ ПОГЛОЩЕНИЯ СОЛНЕЧНОЙ РАДИАЦИИ

1. Контроль за содержанием газовых примесей атмосферы я ляется важной научной и прикладной задачей. Такие газовые примеси, как CO₂, H₂O, O₃, имеют существенное значение в энергетических и погодообразующих процессах. Повышенная концентраци CO, SO₂, C₂H₂ и некоторых других газовых примесей, в значительной степени являющихся продуктом деятельности человека, и губно сказывается на биосфере Земли.

Одним из наиболее эффективных методов контроля за сод жанием газовых примесей атмосферы является метод абсорбцисной инфракрасной спектроскопии. Определяя количество газа пути луча этим методом, можно использовать высокое, сред ее или низкое разрешение. В первом случае измеряют интегральное поглощение в отдельной линии исследуемого газа. При испольвании низкого или среднего разрешения определяют количество газа на пути луча по поглощению всей полосой исследуемого газа или частью полосы, содержащей несколько десятков линий. Рас смотрим кратко достоинства и недостатки обоих вариантов метод

Большинство исследователей, применявших метод абсорбцион ной спектроскопии для определения общего количества газовы примесей, использовало спектральные приборы высокого разреше ния (например, [1—5]). Метод высокого разрешения обладает и дом достоинств. Разрешая отдельные линии, можно даже в стично перекрытой полосе исследуемого газа выделить линии то глощения только определяемого газа. Интегральное поглощение отдельной линией сравнительно легко связать аналитической формулой с содержанием газа на пути луча. Выражения же, связывающие поглощение целой полосой или поглощение в спектральном интервале, содержащем несколько десятков линий, с количеством газа на пути луча, гораздо сложнее и не имеют простого теоретически обоснованного аналитического вида¹.

Кроме того, интегральное поглощение отдельной линией при прохождении излучения по неоднородному пути сравнительно просто заменить эквивалентным интегральным поглощением для однородного слоя.

¹ Существуют только простые эмпирические формулы (например, в [7]), свя зывающие поглощение в полосе с количеством газа.

Однакодири реализации этого метода возникают существенные трудности. Посковьку достигнутые разрешения в работах [1—5] не позволяют полностью разрешить отдельные спектральные линии, трудно арантировать, что измеряемое интегральное поглощение обусловано только ланией исследуемого газа и не включает накладыванитеся соседние слабые линии других газов. Существенную трудность представляет выбор так называемой нулевой лиции, т. е. отсчета, соответствующего отсутствию поглощения изметяемым газом. Очень трудно учесть крылья исследуемой линии, а акже наложенные на них крылья соседних линий. Шоу в рабате [1] вынужден был считать (понимая, что это, вообще говоря, неточно) максимальный отсчет рядом с линией нулевым уровнем. 🞯 полагал, что ошибки в планиметрировании линий за счет указанных эффектов достигают ±10%, а это приводит к ошибкам отдльного измерения содержания газа (в работе [1] это CO) $\pm 25\%$. Следует также отметить, что аппаратура, необходимая для получения высокого спектрального разрешения весьма сложна и требует высоквалифицированного обслуживания.

Определенными достоинствами обладает метод, использующий среднее или низкое разрешение (измеряется интегральное поглощение полосы или ее части, содержащей несколько десятков линий. Измеряемые сигналы в этом случае велики. Приборы, необходимые для этого метода, сравнительно просты и доступны. Можно получать большой статистический материал и использовать станстические методы разделения компонент поглощения в случая перекрывающихся полос, поскольку в этой методике труднее высрать достаточно чистый интервал, поглощение в котором обусло лено только исследуемым газом. Остаются также трудности, станные с корректным определением нулевой линии.

Этот метод использовался в работах [8, 9, 14] для нахождения концентрации таких примесей, как H₂O, N₂O, CO, CH₄.

астоящая статья посвящена рассмотрению некоторых вопросовопределения общего содержания CO₂ во всей толще атмосферы спользованием ИК спектрофотометра среднего разрешения. 2. Исследование вариаций содержания углекислого газа в атмосфере имеет научное и практическое значение. Как известно, CO₂ является существенным климатообразующим фактором, котоый вместе с тем частично связан с деятельностью человека. С другой стороны, методы температурного зондирования со спутнков основаны на предположении постоянства концентрации CO₂ в тмосфере. С позиции этих проблем представляют интерес как фуктуации фонового содержания CO₂ (длиннопериодные), так и короткопериодные вариации его концентрации.

Известно, что приземные концентрации СО₂ варьируют в широких пределах. Анализ литературы по измерениям, осуществленным в разных географических районах, показал, что приземная концентрация СО₂ изменяется в широком диапазоне, по крайней мере в пределах от 180 до 740 ppm [17]. Возникает вопрос о степени распространения приземных флуктуаций по высоте. Из этого

следует необходимость постоянного систематического контроля за общим содержанием СО₂ параллельно с измерением его приземной концентрации.

Безусловно, представляют также интерес и исслетования распределения CO₂ с высотой путем прямых зондирований или рещения обратных задач на основе наземных онгических даниях

3. Задачу определения общего содержания СО₂ в веренкальном столбе атмосферы удобно разделить на две основные части:

1) вопросы, связанные с определением по спектру поглощения количества газа на однородном пути, — выбор наиболее чистою (свободного от линий поглощения посторонних газов) спектрального участка в подходящей по интенсивности полосе поглощения CO₂, получение достаточно точных лабораторных данных о связи спектрального поглощения с количеством газа при достаточном разрешении по спектру, рассмотрение вопроса о влиянии аэрозольного ослабления и его учете, разработка наиболее корректного способа определения нулевой линии;

2) вопросы, связанные с переходом от однородных (горжентальных) путей к наклонным неоднородным путям.

В данной статье кратко остановимся на выборе измерительного спектрального интервала и исходных экспериментальных данных о поглощении для расчета количества CO_2 на однородных трасах (другие методические вопросы будут рассмотрены в следующей публикации) и основное внимание уделим наиболее важному вопросу, относящемуся ко второй части задачи — учету изменений давления и температуры на пути солнечной радиации, т. е. учему неоднородности атмосферы.

4. Рассмотрение спектров солнечной радиации, полученийх нами при различных высотах Солнца на установке ИКАУИ, а также таблиц [10] и атласов [11, 18] привело к выводу о том, что наиболее удобной для рассматриваемой цели является полоса CO_2 у 2 мкм. Эта полоса достаточно сильная: даже при массимальных высотах Солнца поглощение в ней достигает 30-40%. Вместе с тем она и не слишком сильная, так как даже при боль ших атмосферных массах ($m=8\div10$) в ней не достигается полное поглощение. Кроме того, эта полоса сравнительно чистая, она перекрыта только слабыми обертонами полосы водяного пара. Анализируя данные атласов [11, 18], удалось выбрать в этой по лосе интервал шириной 30 см⁻¹ (4890—4860 см⁻¹ — измерительный интервал), поглощение в котором обусловлено только CO_2 .

5. Как уже отмечалось выше, нет простых и достаточно точных теоретических соотношений, связывающих поглощение полосой или ее частью, содержащей несколько десятков линий, с количесвом газа на пути луча.

В работе [6] приведены эмпирические формулы, основанные ча общирном экспериментальном материале, позволяющие связань поглощение целой полосой с количеством газа на пути луча. Но, поскольку нет удобных и целиком чистых полос CO₂ в ИК обласии, эти данные не применимы для нашей цели.

В работе [13] было, получено большое количество лабораторных спектров среднего разрешения полосы CO_2 у 2 мкм для большого набора условий (количества газа, общего давления). На основании экспериментальных данных [13] в работе [12] были получены аппроксимационные формулы, позволяющие по заданным общему давщению *р* и количеству поглощающего газа *и* вычислить прозрачность в узких спектральных интервалах шириной 3—5 см⁻¹. В [12] воказано, что точность аппроксимации очень высокая.

56. Непосредственное использование формул, предложенных в работе [12], для определения содержания CO_2 по спектрам невозможно, поскольку они пригодны только для однородных оптических путей. В данной работе были реализованы две методики рисчета функции пропускания на неоднородных оптических путих — учет неоднородности методом Куртиса—Годсона с последующим использованием формул из работы [12] для однородного бути и методика расчета с использованием модели Эльзассера. 7. Метод Куртиса—Годсона заключается в сведении неоднородного оптического пути к эквивалентному, в смысле поглощения, однородному пути, который характеризуется двумя параметрами — эффективным количеством газа \tilde{u} и эффективным давлеинем \tilde{p} . Эти параметры, согласно [10], определяются из соотношений:

$$\widetilde{p} = \frac{\int_{0}^{L} pq \circ dl}{\int_{0}^{L} q \circ dl}, \qquad (1)$$

$$\widetilde{u} = \frac{\int_{0}^{L} \sigma q \, dl}{\widetilde{\sigma}}, \qquad (2)$$

те σ — средняя интенсивность линий в рассматриваемом спектральном интервале, $\widetilde{\sigma}$ — средняя интенсивность линий при некоторой фиксированной температуре \widetilde{T} , q и p — концентрация поглощающего газа и общее давление воздуха на пути луча соответственно.

HE TA LAND

Зависимость интенсивности отдельной линии о_ј от температуры была взята в виде

$$\sigma_j(T) = \sigma_j(T_0) \left(\frac{T_0}{T}\right)^n \exp\left\{-E_j \frac{(T_0 - T)}{kTT_0}\right\},\tag{3}$$

с где E_j — вращательная энергия нижнего уровня с вращательным жвантовым числом j, k — постоянная Больцмана. Показатель степени n зависит от сорта молекулы, для CO₂ n = 1 [21].

Для учета температурной зависимости средней интенсивности линий в методе Куртиса—Годсона в формуле (3) в качестве E;

было выбрано некоторое $E_{i\phi\phi}$ из следующих соображений: пропускание при реальной структуре спектра в измерительном интервале должно изменяться с температурой так жо как пропускание в измерительном интервале спектра, сосгоящего из одинаковых равноотстоящих линий со средней интенсивностью (модель Эльзассера), которая меняется с температурой согласно формуле (3), где вместо E_j стоит $E_{i\phi\phi}$. Был выполнен прямой расист пропускания в измерительном интервале по реальной тонкой самктуре спектра для различных температур. Параметры линий, использованные в вычислениях, взяты из работ [18, 20]. Далее, варьируя $E_{i\phi\phi}$ в формуле (3), вычисляли пропускание в измерительном интервале по модели Эльзассера. Значение $E_{i\phi\phi}$, обеспечивающое наиболее близкую к прямому расчету температурную зависимосты пропускания, было принято оптимальным.

Все необходимые расчеты, связанные с методом Куртиса—Годсона, были выполнены на ЭВМ М-222. При вычислении использов вались реальные температурные профили, взятые из данных радиозондирования в пос. Воейково в дни измерений.

8. В силу линейности молекулы CO_2 ее полосы поглощения ют регулярную структуру. Измерительный интервал включает в себя часть *R*-ветви полосы $4v_2 + v_3$ и перекрыт лишь слабыти полосами изотопов $C^{13}O_2$ и COO^{18} . Поэтому следует ожидать, что применение модели Эльзассера к измерительному интервалу должно дать удовлетворительные результаты.

Параметрами модели Эльзассера являются средние интенсйв ность, полуширина и расстояние между линиями. Полуширина интенсивность в модели Эльзассера подбирались нами для изм рительного интервала следующим методом. На ЭВМ вычислялос пропускание в измерительном интервале по формулам работы [12] для широкого диапазона давлений и количеств газа, харак терных для атмосферы. Для тех же условий вычислялось пропус кание по модели Эльзассера. Результаты этих двух расчетов сра нивались. Критерием сравнения была выбрана сумма относительных ошибок пропускания по всему набору условий. В качестве н чальных приближений для параметров модели Эльзассера была взяты средние интенсивность и полуширина по данным работы [20]. Затем, по определенному алгоритму, варьируя эти параметры, добивались минимума суммы относительных ошибок. Значения полуширины и интенсивности, соответствующие минимуму этой суммы, и были взяты как оптимальные.

В приближении изотермической атмосферы, предполагая, что CO₂ равномерно перемешан, согласно [10], пропускание по мо дели Эльзассера на неоднородном пути между точками (1) и (2) можно записать в виде

$$\overline{T}(1, 2) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\frac{-\ln 2\pi y (2) - \cos 2\pi x}{\cosh 2\pi y (1) - \cos 2\pi x} \right)^{\frac{1}{2}/\zeta} dx$$

где $x = v/\delta$, $y = \alpha_L/\delta$ — безразмерные переменные, v — частотас

α_L — лоренцовская с полуширина линии, δ — среднее расстояние между линиями, **б** — косинус зенитного угла солнца.

 $\widetilde{u} = \frac{\sigma}{2\pi} \frac{da}{da_{t}}, \qquad (5)$

где о — иниенсивность линии, da — количество поглощающего газа на пути луча в слое толщиной dz.

- 0 (TR

На ЭВМ был проведен расчет пропусканий всей толщи атмосферы в измерительном интервале по формулам (4) и (5) для температур от 245 до 290 К с щагом 5 К и отношений смеси CO₂ от 1,2·10⁻⁴ до 5,2·10⁻⁴. Были получены семейства кривых зависимостей пропускания от зенитного угла Солнца для указанного набора концентраций CO₂ и температур. По этим кривым были построены градуировочные номограммы.

Для восстановления концентрации СО₂ по измеренному пропусканию с помощью номограмм нужно решить вопрос о выборе температуры. Имеется в виду выбор изотермической атмосферы, эквенно было бы взять температуру изотермической атмосферы как средневзвешенную по поглощению температуру реальной атмосферы, но такая задача чрезвычайно трудоемка. Поскольку выяснилось, что с изменением температуры изотермической атмосферы в довольно широких пределах пропускание меняется мало, нами был выбран более простой вариант — взвешивание температуры не по самому поглощению, а по осредненным параметрам, характеризующим поглощение: полуширине и интенсивности линий и концентрации поглощающего газа.

⁷ Тогда для эффективной температуры $T_{
m app}$ получим следующее выражение:

 $T_{\mathfrak{s}\mathfrak{p}\mathfrak{p}} = \frac{\int_{0}^{\infty} q(z) \mathfrak{s}(z) \mathfrak{a}_{L}(z) T(z) dz}{\int_{0}^{\infty} q(z) \mathfrak{s}(z) \mathfrak{a}_{L}(z) dz} .$ (6)

9. Нами была определена устойчивость расчетов по методу Куртиса—Годсона (табл. 1) и методике, использующей модель Эльзассера (табл. 2), т. е. была вычислена ошибка в количестве газа, определенном по этим методам, при заданной ошибке в пропускании в измерительном интервале.

Таблица 1

Таблица 2

	Атмосфер- ная масса	Относительная ошибка в про- пускании, %	Относительная ошибка в кон- центрации СО ₂ , %	Атмосфер- ная масса	Относительная ошибка в про- пускании, %	Относительная ошибка в кон- центрации СО ₂ , %
and the second	$\begin{array}{c}1\\5\\10\end{array}$	2,5 2,5 2,5	7,2 3,7 2,9	1 5 10	2,5 2,5 2,5	11,8 4,3 2,6

Устойчивость обоих методов приблизительноводинакова и увеличивается с ростом атмосферной массы.

10. В качестве примера приведем результаты обработки вышеописанными методами нескольких экспериментальных спектов поглощения солнечной радиации (табл. 3). Спектры были записаны на установке ИКАУ-1 [16] в пос. Воейково летом 1973 г. 🗰

Таблица 3

Пото началение	Вр изме	емя рения	Атмосферная	Пропускание в измеритель-	Объемное смеси СС	отнощение) ₂ , % · 10 ⁻²
дата измерения	ч	мин	масса	ном интервале за счет СО ₂ , %	по методу Куртиса — Годсона	по модели Эльзассера
16 VII 1973 11 VII 9 VII 2 VII	$ \begin{array}{c} 11 \\ 10 \\ 18 \\ 21 \end{array} $	09 56 50 14	1,38 1,38 2,81 10,48	66,2 66,5 52,9 22,7	3,42 3,36 3,26 3,18	3,30 3,25 3,25 3,15

СПИСОК ЛИТЕРАТУРЫ

- 1. Shaw J. H. The abundance of atmospheric carbon monoxide above Columbu Ohio.— "Astrophys. J.", 1958, vol. 128, No. 2, p. 428—440.
- 2. Rank D. H. e. a. Abundance of N₂O in the atmosphere. JOSA, 1962, vol. 52, No. 8, p. 838-859.
- 3. Goldberg L., Muller E. A. The vertical distribution of nitrous oxide and methane in the earth's atmosphere. JOSA, 1953, vol. 43, No. 11, p. 1033-1036.
- Goldberg L. The abundance and vertical distribution of methane in the earth's atmosphere.— "Astrophys. J.", 1957, vol. 113, p. 567—579.
 Юрганов Л. Н., Дианов-Клоков В. И. О сезонных вариациях сс.
- держания окиси углерода в атмосфере.— «Изв. АН СССР. Физика атмосфер
- и океана», 1972, т. 8, № 9, с. 981—984. 6. Howard J. N., Burch D. E., Williams D. Infrared transmission of synthetic atmosphere. — JOSA, 1956, vol. 46, No. 3, р. 237—241. 7. Голубицкий Б. М., Москаленко Н. И. Функции спектрального про-
- пускания в полосах паров H₂O и CO₂. «Изв. АН СССР. Физика атмосферы и океана», 1968, т. 4, № 3, стр. 346--359.
- 8. Birgeland J. W., Shaw J. H. Abundance of nitrous oxide in ground level air.-- JOSA, 1959, vol. 49, No. 6, p. 637--638.
- Bowman R. L., Shaw J. H. Abundance of nitrous oxide methane and carbon monoxide in ground level air. "Applied Optics", 1963, vol. 2, No. 2, p. 176—179.
- 10. Гуди Р. М. Атмосферная радиация. Ч. 1. Основы теории. «Мир», 1966, 522 с.
- 11. Hougton J. T. e. a. An atlas of the infrared solar spectrum from 1 to 6.5 mkm observed from a high-altitude aircraft.— "Phys. Trans. Roy. Soc.", 1960, A 254, No. 1037, London, p. 47-123.
- 12. Zachor A. S. Equation for the transmittence of the 2 mkm CO_2 bands.-
- J. Q. S. R. T., 1968, vol. 8, No. 6, p. 1341-1349.
 Burch D. E., Gryvnak D., Patty. Absorption by CO₂ between 4500 and 5400 cm⁻¹ (2 mkm). Aeronautic reports, U-2955, 1964.
- 14. Киселева М. С., Непорент Б. С., Федорова Е. О. Поглощение инфракрасной радиации при неразрешенной структуре спектра для наклонных

путей в атмосфере. -- «Изв. АН СССР. Физика атмосферы и океана», 1967, т. 3, № 6, с 640—653.

- 15. Берт Болин и Холтер Бишоф. Изменение атмосферного содержания СОз в северном полущарии. Tellus, 1970, vol. 22, No. 4, p. 431—442.
- 16. Броунштейн А. М., Демидов В. В., Сакин И. Л. Инфракрасная атмостерная установка ИКАУ-1 для исследования спектральной прозрачности в области 2-25 мкм. - «Тр. ГГО», 1973, вып. 312, с. 23-32.
- 17. 3. 4. В. Е. Распространение вндимых и инфракрасных волн в атмосфере. 44. «Советское радио», 1970. 496 с. 18. Mohler O. G. A Table of Solar Spectrum Wave Lengths 11984A to 25578A.
- The University of Michigan Press, 1955.
- 19. Howard J. H., Burch D. E., William's D. Infrared transmission of synthetic atmosphere. IV. Application of theoretical band models.— JOSA, 1956, à vol. 46, No. 5, p. 334-337.
- 🞾 0. Василевский К. П., Казбанов В. А. и Дервиз Т. Е. Интенсивность и полуширина линий CO₂ в полосе 4v₂+v₃.— «Оптика и спектроскопия», 1967,

т. 23, вып. 6, с. 888—893. 21. Сгаwford В. L., Dinsmore H. L. Vibrational Intensities. I. Theory of Diatomic Infra-Red Bands.— "J. of Chem. Phys.", 1950, vol. 18, р. 983—986.

К МЕТОДИКЕ ИЗМЕРЕНИЯ РАССЕЯННОЙ И СУММАРНОЙ УЛЬТРАФИОЛЕТОВОЙ РАДИАЦИИ

Л. А. ГОВОР

Данные о режиме естественной ультрафиолетовой радиации в настоящее время широко используются как в различных областях науки, так и для практических целей. В биологии и гигиенической практике все шире применяется ультрафиолетовое излучение. Поэтому очень важно знать и рационально использовать естественные ресурсы ультрафиолетовой радиации, распределенные крайне неравномерно по территории и во времени. При этом необходимо измерять как суммарную радиацию, так и ее составляющие.

В работе [1] предлагается метод измерения ультрафиолетовой радиации в областях спектра В (280—315 нм) и А (315—400 нм) для приборов со светофильтрами, применяемый в основном для, прямой солнечной радиации.

Метод основан на том, что с помощью редукционных множителей $R(\theta, \Omega)$, зависящих от высоты Солнца θ и общего содержания атмосферного озона Ω , показания реального прибора с произвольной кривой спектральной чувствительности приводятся к показаниям идеального прибора с прямоугольной кривой чувствительности, совпадающей с областями В и А ультрафиолетового спектра.

Ниже рассматривается применение метода для измерения суммарной и рассеянной ультрафиолетовой радиации и метод градуировки прибора.

Для расчета редукционного множителя $R(\theta, \Omega)$ используется формула Берлаге [2]

$$D_{\lambda} = 0.5 \left(S_{0, \lambda} - S_{\lambda} \right) \sin \theta, \tag{1}$$

(2)

где D_{λ} — спектральная плотность потока рассеянной радиации, $S_{0, \lambda}$ — спектральное распределение энергии солнечного излучения вне атмосферы, S_{λ} — спектральная плотность потока прямой радиации при высоте Солнца θ . Эта величина равна

 $S_{\lambda} = S_{0,\lambda} \cdot 10^{-(\mu 2\alpha_{\lambda} + m\beta_{\lambda} + m\delta_{\lambda})}.$

где µ и m — озонная и воздушная оптические массы, α_{λ} — показатель поглощения озона, Ω — общее содержание атмосферного озона, β_{λ} — показатель релеевского рассеяния, δ_{λ} — показатель аэрозольного ослабления атмосферы.

Формуля (1) основана на следующих соображениях. Если на определенном уровне измерена прямая солнечная радиация S, то потеря радиации в атмосфере равна разности $S_0 - S$, где S_0 первоначальный поток солнечной радиации до ее вхождения в атмосферу. В идеальной атмосфере вся энергия, потерянная потоком прямой радиации, переходит в рассеянную. В конечном итоге рассеянная радиация направляется к земной поверхности либо уходит в мировое пространство. При симметричной форме индикатрисы молекулярного релеевского рассеяния к земной поверхности направляется половина всего количества рассеянной радиации. Для пересчета на горизонтальную поверхность в формулу вводится в качестве сомножителя синус высоты Солнца.

Из формулы (1) следует, что

$$Q_{\lambda} = 0.5 \left(S_{0, \lambda} + S_{\lambda} \right) \sin \theta, \qquad (3)$$

где Q_{λ} — спектральная плотность потока суммарной радиации. Учитывая (1) и (3), получим формулы для расчета редукциончых множителей $R_D(\theta, \Omega)$ и $R_Q(\theta, \Omega)$ для рассеянной и суммарной Фадиации соответственно:

 $R_{D} = \frac{\int_{\lambda_{3}}^{\lambda} w_{2, \lambda} D_{\lambda} d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} w_{1, \lambda} D_{\lambda} d\lambda}$

 $R_{Q} = \frac{\int_{\lambda_{3}}^{\lambda_{4}} w_{2,\lambda} Q_{\lambda} d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} w_{1,\lambda} Q_{\lambda} d\lambda},$

где $w_{1, \lambda}$ — спектральная чувствительность реального прибора в относительных единицах; λ_1 и λ_2 — границы спектральной чувствительности реального прибора в области В (или А) ультрафиолетового спектра; $w_{2, \lambda} = 1$ при $280 \leq \lambda \leq 315$ нм для области В (или $315 \leq \lambda \leq 400$ нм для области А) и $w_{2, \lambda} = 0$ при всех остальных значениях λ ; $\lambda_3 = 280$ нм, $\lambda_4 = 315$ нм (или $\lambda_3 = 315$ нм и $\lambda_4 = 400$ нм для области А).

При расчете редукционных множителей $R_D(\theta, \Omega)$ и $R_Q(\theta, \Omega)$, так же как и в работе [1], показатель аэрозольного ослабления атмосферы δ_{λ} полагался равным постоянной величине в связи с тем, что участки спектра, выделяемые реальным и идеальным приборами близки друг к другу. Значения редукционных множителей нормируются так, что R = 1 при m = 0.

Выбрав какое-нибудь значение общего содержания атмосферного озона ($\Omega = \Omega_i$), можно построить график функции $R(\theta, \Omega_i)$ от θ . Построив ряд таких графиков для разных значений Ω , получим номограмму для определения редукционного множителя

(4)

(5)

по известному содержанию озона Ω_i и высоте Солнца θ_i , причем кривые на номограмме будут являться линиями одинакового содержания озона.

Номограммы для определения редукционных множителей $R_D(\theta, \Omega)$ и $R_Q(\theta, \Omega)$ для областей В и А ультрафиолетового спектра, вычисленные по указанному выше способу, показаны на рис. 1—4. По оси абсцисс нанесены высоты Солнца в градусах, по оси орди-

нат — значения редукционных множителей $R(\theta, \Omega)$, у кривых указаны значения озона в сантиметрах.

Нёмограммы для определения редукционных множителей рассчинываются для разных высот над уровнем моря. При этом в формулах расчета $R(\theta, \Omega)$ достаточно изменить значения β_{λ} ,

множив их на отношение *p*/*p*₀, где *p* и *p*₀ — давление на избранной высоте и уровне моря.

Необходимо отметить, что суммарная ультрафиолетовая радиация изменяется с высотой Солнца в меньшей степени, чем прямая и рассеянная. Это приводит к меньшей зависимости редукционного множителя $R_Q(\theta, \Omega)$ от высоты Солнца. Значения редукционного множителя $R_Q(\theta, \Omega)$ для областей В и А УФ спектра близки к единице для всех высот Солнца и почти не зависят от

Область спектра А (315-400 нм).

общего содержания озона Ω . Изменение $R_Q(\theta, \Omega)$ не превышает 1% для высот Солнца, меньших 15°.

Редукционный множитель $R_D(\theta, \Omega)$ для рассеянной радиации в области A заметно уменьшается с ростом высоты Солнца θ и мало зависит от общего содержания озона Ω .

В области В УФ спектра редукционный множитель для рассеянной радиации $R_D(\theta, \Omega)$ показывает более высокую зависимость и от высоты Солнца θ и от изменения общего содержания атмосферного озона Ω .

2 Зак. № 262

Лонин,ридоний Гидроматеорологический ил-т БИБЛИОТЕНА В качестве прибора для измерения естественной УФ радиации применяется озонометр М-83. Полусферические потоки в ультрафиолетовой области спектра принимаются фотометрическим изром. Основные фотометрические характеристики некоторых типов таких шаров в применении с фотометром М-83 определены экспериментально. Соответствующие кривые отклонений угловых характери-

Рис. 5. Относительное отклонение угловой характеристики фотометрического шара. Прибор М-83.

1, 2 — шары с кольцевым входным отверстием, диаметр шаров 100 и 80 мм; 3, 4 — шары с экраном — конус в центре, диаметр шаров 100 и 80 мм.

стик шаров от закона косинуса приведены на рис. 5. Отклонение характеристики шара j(z) определялось по формуле

$$i(z) = \frac{s(z)/s(0) - \cos z}{\cos z},$$

(6)

где s(z) и s(0) — показания прибора при углах падения радиации z и 0.

Функция *j*(*z*) определялась на фотометрической скамье. В качестве источника света использовалась лампа с точечным телом накаливания, расположенная на расстоянии 3 м от входного отверстия фотометрического шара. Доля рассеянного света в показаниях измерительного прибора определялась затенением прямого пучка света. Угловая характеристика фотометрических шаров зависит от геометрических размеров шаров и отверстий, от формы и размеров экрана и от качества покрытия внутренней поверхности шаров. Шары покрашены краской, основной частью которой является сернокислый барий (коммерческое покрытие). Размеры шаров: внутренний диаметр 100 и 80 мм, входное отверстие (круглое) 20 мм, выходное отверстие 6 мм. Диаметр кольцевого отверстия 50 мм,

Из рассмотрения угловых характеристик на рис. 5 видно, что наилучшее соответствие закону косинуса имеют шары с кольцевым входным отверстием, т. е. экран этих шаров вынесен в плоскость входного окна.

Отклонение характеристики фотометрического шара как приемника радиации не зависит от азимута, поскольку шар имеет осевую симметрию.

Так как рассеянная радиация поляризована, то чувствительность прибора с шаром не должна зависеть от ориентации плоскости поляризации. Измерения, проведенные Х. Нийлиск [3], показали, что падающая на приемное отверстие шара поляризованная радиация почти полностью деполяризуется фотометрическим шаром.

Градуировка фотометра, предназначенного для измерения рассеянной или суммарной радиации, производится по методу Солние-тень или с помощью трубы, направленной на Солнце.

При градуировке прибора с помощью трубы, направленной на Солнце (при этом положение приемной поверхности прибора перпендикулярно солнечным лучам), переводный множитель определяется по формулам:

для рассеянной УФ радиации

$$k_D = \frac{S}{R_D(\theta, \Omega) n}, \qquad (7)$$

для суммарной УФ радиации

$$k_Q = \frac{S}{R_Q(\theta, \Omega) n}, \qquad (8)$$

где S — абсолютное значение прямой УФ радиации, приходящей к прибору, т. е.

$$S = \int_{\lambda_3}^{\lambda_1} w_{2, \lambda} S_{0, \lambda} 10^{-(\mu \Im \alpha_{\lambda} + m\beta_{\lambda} + m\delta_{\lambda})} d\lambda, \qquad (9)$$

а *п* — отсчет по прибору.

Для расчета величины S используются значения общего содержания атмосферного озона Ω_i , высота Солнца θ_i и величина $\delta_{\lambda,i}$, которые измерялись в момент градуировки.

Из серии измерений находится средний переводный множитель k, который используется для расчетов рассеянной или суммарной

 2^*

радиации по отградуированному прибору,

где k_i — единичный переводный множитель.

Рабочие формулы для практических расчетов рассеянной суммарной УФ радиации при измерениях прибором будут име вид

$$D = k_{\rm D} R_{\rm D}(\theta, \Omega) n$$

(11)

(12)

И

 $Q = k_0 R_0(\theta, \Omega) n.$

Сильное биологическое действие УФ излучения ставит вопрос « о выборе наиболее подходящих, удовлетворяющих запросам и требованиям практики единиц измерения: абсолютных энергетических или относительных, редуцированных по биологическому эффекту.

Предложенная методика позволяет производить измерения ультрафиолетовой радиации в любых из названных единицах, поскольку в этой методике никаких ограничений на величину w2, л не наклалывается.

С помощью редукционных множителей $R_{\mathfrak{s}}(\theta, \Omega)$ показания пр бора с произвольной кривой спектральной чувствительности приводятся к показаниям приборов со спектральной чувствительностью, идентичной кривой эритемной (или эритемно-загарной) эффективности ультрафиолетовой радиации.

СПИСОК ЛИТЕРАТУРЫ

1. Гущин Г. П., Говорушкин Л. А. К методике измерения естественной ультрафиолетовой радиации.— «Тр. ГГО», 1970, вып. 255, с. 73—79. 2. Сивков С. И. Методы расчета характеристик солнечной радиации. Л., Гидро-

- метеоиздат, 1968, с. 62-99.
- 3. Нийлиск Х. Упрощенный спектрофотометр для измерения спектральных потоков рассеянной радиации. - В кн.: Исследование по физике атмосферы. Т. 3. Изд. ИФА АН Эстонской ССР, 1962, с. 150-158.

В. И. ГОРЫШИН

ОПТИЧЕСКИЙ МЕТОД ИЗМЕРЕНИЯ КОЛИЧЕСТВА ТВЕРДЫХ ОСАДКОВ

Введение

Применяемый в настоящее время на сети ГМС метод измерения количества твердых осадков с помощью осадкомера с ветровой защитой не обеспечивает удовлетворительной точности результата измерений, что вызвано влиянием ряда факторов и прежде всего ветровым недоучетом. Измеренные за определенный период суммы • осадков имеют систематическую погрешность. Отдельные измерения также отягощены значительными случайными и систематическими погрешностями.

В поисках лучших методов нами была проведена в период. 1971-1972 гг. работа по исследованию возможности измерения количества твердых осадков оптическим способом по результатам измерения ослабления света в зоне снегопада. Известен ряд работ [1-4], посвященных изучению зависимости прозрачности и метеорологической дальности видимости в снегопадах от их интенсивности. Результаты этих работ подтверждали наличие такой связи, однако при оценке устойчивости этой зависимости авторы отмечали весьма большие относительные погрешности оптического метода измерения интенсивности осадков из-за различий в микроструктуре снегопадов. Оценивая возможности оптического метода, авторы работы [2] делают вывод о малой перспективности определения количества твердых осадков с удовлетворительной точностью по данным оптических измерений. Вопросу исследования ослабления излучения в снегопадах как в видимой области спектра, так и в области радиоволн посвящен ряд более поздних работ [5-10]. Результатом этих исследований явилось установление эмпирической зависимости ослабления излучения от интенсивности снегопадов для различных длин волн.

Необходимо отметить, что приводимые в работах экспериментально установленные связи существенно отличаются друг от друга и не дают исчерпывающего ответа на вопрос о возможности надежных измерений количества твердых осадков оптическим способом. Поскольку в задачу вышеприведенных работ не входила разработка оптического способа определения количества твердых осадков по данным оптических измерений, материалы этих работ не позволяют сделать конкретную оценку возможностей этого способа и его количественных характеристик. Получить ответ на эти вопросы можно было только в результате проведения специальной работы по изучению возможностей оптического способа измерения количества выпавших осадков. Рассмотрению результатов такого исследования и посвящена настоящая статья.

1. Основные теоретические положения оптического метода измерения твердых осадков

Полное теоретическое решение задачи об ослаблении излучения в снегопадах представляет практически неразрешимую проблему из-за невозможности аналитического представления разнообразных форм снежинок и отсутствия данных о показателе преломления реальных снежинок. Попытки введения сильно упрощенных предположений о параметрах снегопада, как это сделано в работах [10, 11], не дают хороших приближений результатов теоретических расчетов и эксперимента, поэтому основным методом изучения интересующих нас зависимостей является экспериментальный метод.

Некоторое представление о характере изучаемых связей могут дать следующие теоретические положения.

Если реальные снежные частицы заменить некоторыми эффективными частицами, имеющими сферическую форму и плотность реальных снежинок, а ослабление этих снежных шариков пред ставить равным ослаблению реальных снежинок, то величина ослабления излучения *K*, вызванная подобными гипотетическими частицами, может быть описана следующей формулой:

$$K = 2\pi \int_0^\infty a^2 N_{(a)} \, da,$$

(1)

(2)

где *а* — радиус снежного шарика, *N*_(*a*) — функция распределения.

Интенсивность подобного снегопада *I*, выраженная количеством воды, которая получена при таянии снега, собранного за единицу времени, равна

$$I = \frac{4}{3} \pi \rho \int_{0}^{\infty} a^{3} N_{(a)} da,$$

где о --- средняя плотность снежных шариков.

При измерении интенсивности твердых осадков из-за малой чувствительности и точности применяемых приборов за единичный отрезок времени обычно выбирают промежуток от 10 до 60 мин. Ослабление излучения при этом оценивают средней за выбранный промежуток времени величиной. Учитывая, что ослабление в снегопадах чрезвычайно изменчиво во времени, возникает неопределенность при оценке среднего ослабления, а следовательно, и погрешности результатов исследований. Кроме того, сбор осадков за короткий промежуток времени приводит к возникновению значительных относительных погрешностей измерения интенсивности. С учетом

этих обсатоя тельств за оптический параметр в наших исследованиях была принята величина R, определяемая следующим выражением:

где $K_{(t)}$ — функция ослабления излучения реальным снегопадом на отрезке времени от t_1 до t_2 .

Соответственно количество твердых осадков W (мм воды), собранных за рассматриваемый промежуток времени, будет равно

$$W = \int_{t_1}^{t_2} I_{(t)} dt, \qquad (4)^{t}$$

где $I_{(t)}$ — функция интенсивности твердых осадков на отрезке времени от t_1 до t_2 .

Поскольку в процессе исследований мы устанавливаем осредненные зависимости, в итоге нас будет интересовать коэффициент пропорциональности между осредненными значениями величин Rи W, т. е.:

$$\frac{\overline{W}}{\overline{R}} = p. \tag{5}$$

Знание этой зависимости позволит произвести градуировку оптического метода измерения количества твердых осадков. Если величина p = const, то мы будем иметь случай линейной корреляции.

Отношение интенсивности снегопада к ослаблению, которое он вызывает (формулы (2) и (1)), приводит к выражению следующего вида:

$$\frac{I}{K} = \frac{2}{3} \rho \frac{\int\limits_{0}^{\infty} a^{3}N(a) da}{\int\limits_{0}^{\infty} a^{2}N(a) da}.$$
 (6)

Анализ этой зависимости позволяет сделать заключение, что в пределах изучаемого снегопада это отношение должно быть равно постоянной величине. Для различных снегопадов оно будет варьировать, при этом наибольшее влияние должно оказывать изменение плотности снежных частиц. Результаты экспериментальных исследований плотности снега, представленные в работе [12], показывают, что плотность свежевыпавшего снега может колебаться в довольно значительных пределах. Ослабление этого фактора как источника погрешностей можно осуществить дифференцированной градуировкой метода для некоторых видов твердых осадков.

Экспериментальные данные ранее указанных работ, и прежде всего результаты работы [8], а также результаты наших исследо-

ваний подтверждают ранее сделанные выводы. Экспериментальное исследование связи представленной формулой (5) подтверждает, что имеет место линейная корреляция между величинами W и R. Материалы этих исследований будут рассмотрены ниже.

Необходимо отметить, что при измерении ослабления излучения прибор реагирует на количество взвешенных снежных частиц, находящихся в рабочей зоне светового луча. Интенсивность же снегопада зависит не только от этого параметра, но и от вертикальной скорости падения снежных частиц. При осуществлении измерений колебания скорости падения в различных снегопадах могут сказываться на результатах отдельных измерений. При определении сумм осадков за продолжительный период результат должен быть более точным, так как предполагаемый метод эмпирической градуировки соответствует некоторой средней вертикальной скорости падения частиц, характерной для снегопадов.

2. Приборы и методика исследований

Исследования проводились на Полевой экспериментальной базе ГГО в пос. Воейково Ленинградской области в 1971—1972 гг. В процессе экспериментальных исследований измерялось коли-

чество твердых осадков W за определенный промежуток времени (формула (4)) и величина, пропорциональная R (формула (3)). Для измерения количества твердых осадков было установлено на площадке четыре осадкомера Третьякова в соответствии с рекомендациями Наставления. Два из них (№ 1 и 3) имели планочную ветровую защиту, два других (№ 2 и 4) не имели ветровой защиты и являлись вспомогательными. Результаты измерений, полученные по осадкомерам без ветровой защиты, использовались при введении поправок на ветровой недоучет в соответствии с методикой Л. Р. Струзера, изложенной в работе [13].

Пара осадкомеров (№ 1 с ветровой защитой и № 2 без защиты) была установлена на открытой местности, другая пара (№ 3 и 4) — в защищенном месте среди кустов высотой около 2,5 м.

Для измерения и регистрации ослабления в зоне снегопадов был использован регистратор прозрачности РДВ-2 [14] с базой 175 м×2. Длина волны в максимуме чувствительности фотоприемника прибора равна 0,55 мкм. Регистрация ослабления производилась с помощью самописца ЭПП-09, скорость протягивания диаграммной бумаги 60 мм/ч. Световой луч прибора РДВ-2 проходил над осадкомерами на высоте более 5 м над поверхностью земли. Рабочий объем светового луча прибора, в пределах которого присутствие снежных частиц вызывало ослабление света, равен примерно 4 м³. По данным работ [6, 8], при интенсивности снегопада 0,1 мм/ч и скорости падения снежинок 1 м/с в 1 м³ объема воздуха содержатся не менее 10³ снежных частиц. Следовательно, в нашем эксперименте мы имеем удовлетворительное пространст-

венное осреднение. На расстоявии 300 м от нашей измерительной площадки была расположена площадка метеостанции Воейково, где регулярно в соответствующие сроки производились измерения твердых осадков. Результаты этих измерений были также использованы нами в последующем анализе.

За величину, пропорциональную R, нами была принята площадь S под кривой ослабления на изучаемом отрезке времени. Ослабление в каждый момент времени оценивалось для облегчения обработки материалов записи не в дБ/км. а в условных единицах, выраженных в миллиметрах и пропорциональных величине ослабления в дБ/км. За нулевой уровень ослабления принималась прямая, соединяющая уровень ослабления перед началом снегопада и уровень ослабления после его прекращения. Те снегопады, которые проходили на фоне тумана или очень сильной обработке не подвергадымки. лись. В рабочие дни сбор осадков обычно производился за весь период снегопада. В выходные дни иногда суммировались осадки не-Дополнискольких снегопадов. тельно по данным ст. Воейково за период снегопада вычислялась средняя температура, средняя скорость ветра и преобладающее направление его. Пример диаграммной ленты с регистрацией ослабления в снегопадах представлен на рис. 1. Продолжительные снегопады разбивались на OTдельные участки, в пределах которых производилось планиметрирование.

Дать надежную оценку погрешности измерения количества твердых осадков осадкомерами

Рис. 1. Ослабление излучения в снегопаде 2 января 1971 г.

Третьякова не представляется возможным. Однако опыт использования этих осадкомеров на сети ГМС показывает, что в ряде слус чаев погрешность измерения может быть весьма значительной и составлять несколько десятков процентов. Отсутствие эталонных методов измерения твердых осадков создает определенные трудности при сравнительном анализе результатов оптических и стандартных измерений количества твердых осадков. Относительная погрешность определения оптического параметра (площади под кривой ослабления) не превышает 5%, принимая во внимание, что само ослабление регистрируется с погрешностью не более ±2% [15].

and the second second

Чувствительность оптического параметра к вариациям интенсивности осадков, а следовательно, и к количеству собранных осадков, для выбранной измерительной дистанции 175 м×2 более чем на порядок выше чувствительности стандартного осадкомера. Оптическим способом надежно регистрируются осадки очень слабые или средней интенсивности, но кратковременные, в то время как по осадкомеру осадки или вообще не фиксируются, или оцениваются как 0,0. Таким образом, погрешность в определении оптического параметра не отражается на результатах анализа материалов исследования при таком грубом контрольном методе оценки количества выпавших осадков.

3. Основные результаты исследования

Всего за зимний период 1971-72 г. нами было зарегистрировано и использовано при анализе 78 снегопадов различной продолжительности. от нескольких часов до двух суток, которые дали следующие суммы осадков: по осадкомеру № 1 204 мм, по осадкомеру № 3 212 мм. Разделение твердых осадков по виду не производилось, указанные 78 снегопадов включают в себя почти все виды твердых осадков, зарегистрированных нами в диапазоне температур от +2° С до -15° С и скоростей ветра от 0 до 12 м/сек. Около пяти снегопадов, которые проходили на фоне туманов в весенний период, а также несколько случаев смешанных осадков (снег и дождь) не вошли в число снегопадов, подвергнутых анализу. При анализе были также использованы результаты измерений количества твердых осадков в Воейково (169 случаев с суммой осадков равной 181 мм). Первичные данные наблюдений и вычислений по осадкомерам № 1, 2, 3 и 4, которые были подвергнуты анализу. представлены в табл. 1.

Для каждого снегопада за период сбора осадков осадкомерами производилось определение оптического параметра — площади под кривой ослабления излучения с эффективной длиной волны 0,55 мкм — и далее исследовалась связь оптического параметра с количеством твердых осадков, измеренных непосредственно осадкомерами Третьякова. Стандартные поправки в результаты измерения сумм осадков вводились в соответствии с указаниями наставления.

	1	and a line and the state of the and							5												
аблица 1	-09т; дол	Сумма осадков, меренных на ме станции за цери сбора, мм	0,5	3,2		5,4		°°° ·	6,5	6'0	0,5	2,2	4,5	1,9	0,9	3,4	1,0	1,3	 _		
,7म , , , ,		воядеро диВ	* ∆°	•* ☆ *	•*	< •≯	*⊅°	* *	•*	<•¥	°*∜	* •*	* * :•*	、 *	\$ ₽	*	°*	°∆° *		, · ·	é
	ъ/₩'	Скорость ветра	5	9	ъ С	ŋ	9	9	5	 	ۍ ۲	<u>م</u>	5	3,5	6	$8 \div 5$	5	4	 	•	
		∂ ₀ <i>1</i>	6	-3,5	-0,4	0,2	-4,8	0,8	0,4	0,6	-1,2	0,0	-0.2	-2,0	-3,9	-4,2	-7.4	9,3			
		Плошадь, дм ²	1,7	4,7	1,8	2,4	1,6	1,2	6,4	2,8	2,0	3,3	9,2	2,1	4,7	7,8	1,8	2,2			
		Осалкомер № 4 Измерено, мм	0,7	3,0	2,5	2,8	0,8	1,0	5,5	0,6	1,2	2,3	4,3	1,4	1,0	2,1	1		 	•	
-	dep Na 3	исправлено по Струзеру, мм	 1,1	6,3	3,9	1	1,3	2,5	11,0	1	1,4	6,8	4,2	1,6	3,7	6,9	1]			
	Осадком	мм ,онэдэмен	 0,9	4,2	3,1	4,5	1,0	1,3	6,7	1,0	1,3	3,3	4,2	1,5	1,9	3,7	1,0	1,3	 ~		
	•	Осалкомер № 2 Измерено, мм	0,7	3,1	2,4	3,3	0,8	0'0	5,3	0,8	1,0	2,8	4,4	0,9	0'0	2,4	1	-	 		
-	tep Ne 1	нсправлено по Струзеру, мм	1,7	5,0	4,1	8,8	2,0	1,8	14,0	1,8	2,5	5,8	5,0	2,7	3,6	5,6	1	1			
	Осадком	мм ,онэдэмен	 1,1	3,9	3,1	4,4	1,2	1,2	7,0	1,1	1,5	3,5	4,8	1,5	1,8	3,5	1,0	1,3			
3.	осалков	конец	2 XII 1970	3 XII	3 XII	4 XII	7 XII	11X L	8 XII	8 XII	0 XII	0 XII	14 XII	15 XII	21 XII	23 XII	26 XII	28 XII			
	Дата сбора	Начало	2 XII 1070	2 XII	3 XII	· 3 XII	4 XII	IIX 2	11X L.	IIX 8	11X 8-	1:1X 6	0 X11	14 XII	15 XII	21 XII	23 XII	26 XII			

из- пол	Сумма осади н. меренных на ме станции за пери сбора, мм	v ⊅ ()		0.0	4,9	4.1	19.2	6.0	0.7	0,5	7,4	2,0	0.7	1,4	1,7 6	4,7	2,5	1,4	Č	6
	Вид осадков	*] *	。 *	*C 0 >	> 0 	*C * * >	> * *	* *	*	*• * *	*∆ ∀	≪	° *⊅	•*	•*	•*	•*		
р/ж ⁻	, корость ветра,		5	1	ς η	ۍ 	ស	5	5	9	ന 	ى. ت	7	ۍ 	7	ŝ	2 Q	ŝ		_
	J. 1	-7.0	-10,4	-14,8	-10,1	-6,4	-11,0	8,5	-8,4	-6,6	-1,0	-1,0	-1,2	-0,1	0,7	0,3	0,5	0,2	<u>.</u>	-
	Плошаль, дм²	0.4	1,4	0,1	6,2	4,5	2,4	1,7	1,5	1,0	6 '0	4,7	1,5	2,5	1,0	5,6	4,8	2,1		-
	Осалкомер № 4 Измерено, мм	0.5	0,9	0,1	3,6	3,9	14,3	1,2	0,4	0,4	4,1	1,1	0,5	1,6	1,0	5,0	2,3	1,1		-
комер 🔊 🤅	им иснравлено им	0,5	1,1	0,4	4,5	5,0	24,8	1.7	0,4	0,6	!	3,5	1,8	2,1		6,0		1,9	·	e.
Осад	мм онэдэмен	0,5	1,0	0,2	4,1	4,5	19,7	1,5	0.4	0,5	9,1	6'T	0,9	1,9	1,3	5,3	3°8 3°8	1,3		
•; 	В Мамерено, мм Измерено, мм	0,4	0,0	. 0,1	2,4	2,6	, 13,9	; 1,0	0,3	0,3	4,5	1,7	0,0	1,4	1,0	4,8	2,6	t 1,1	<u> </u>	•
комер № 1	исправлено по Струзеру, мм	0,4	1,3	0,4	6,7	. 6,9	17,4	1,6	1,1	1,1	9,4	2,3	1,2	3,0		7,1		2,4		
Ocan	мм 'онэдэмен	70 0,4	1,1	0,2	4,1	4,3	71 16,1	1,3	0,0	0,6	9.3	1,7	0,8	2,0	1,4	5,4	3,5	1,4		
ора осадков	конец	28 XII 197	29 XII	29 XII	30 XII	31 XII	4 I 197	5 I	5 1	I L	16 1	18 1	18 I	21 I	27 1	28 I	2 11	2 11	(
8 Дата сбс	н ачало	28 XII 1970	28 XII	29 XII	29 XII	30 XII	31 XII	4 I 1971	5 1	1 2	ΙL	16 1	18.1	21 J	27 I	28 I	111	2 14		

1		مىلىنىيى ئىمەر يەرىپى ئىرىپى ا																		
والمراجع والمراجع	, из- 167ео- лоно	Сумма осадкої мерепных на м станции за пер сбора, мм	1,9	2,1	2,4	2,1	1,0	0,6	0,4	0,5	1,3	0, 4	0,3	0,2	1,9	1,9	1,9	1,0	1,9	. *
)		вид осадков	°* •*	¢	*∆ *	*	*	*	。 *	*	*	*	*	。 *	。 *	*	*	*	*	
	э/ж 'в	дтэя агзодояЭ	က်	10	4	*	Ŧ	5	က	က	9	9	7	2	5	7	5	5	5 C	
		Do 7	-3,0	-2,4	-4,4	-13,0	-13,2	-13,8	-11,3	-10,3	-8,0	-10,7	-12,9	-10,2	-11,0	-13,2	-13,2-	9,5	4,8	
		Площадь, дм ²	4,1	3,8	4,4	7,8	4,7	2,7	0'0	1,3	5,1	1,9	0,6	0,3	4,2	2,3	2.3	1,1	3,3	
	 ۴	Осадкомер № Измерено, мм	1,7	1,5	0,8	1,0	0,4	0,3	0,4	0,5	0,7	0,0	0,2	0,0	1,7	1,8	1,8	0,7	1,9	;
\rangle	dep Nº 3	мм по Струзеру. мм	2,6	5,1	2,6	4,0	2.1	0,8	0,2	0'0	2,9	J	0,4	ľ	2,4	2,3	2,3	6'0	4,2	
\$	Осадко	нэмерено, мм	2,1	2,7	1,4	2,1	1,0	0,5	0,2	0,7	1,5	0,2	0,3	0, 2	2,1	2,1	2,1	0,8	2,7	-
		Осалкомер № Измерено, мм	1,8	1,7	0,7	0,7	0,3	0,2	0,4	0,5	0,5	0,0	0,0	0,0,	1,5	1,6	1,6	0,6	1,8	
	fep Né 1	исправлено по Струзеру, мм	2,7	4,7	2,5	4,2	l	1,1	0,3	0,9	2,2	- 1	. 1	ļ	2,5	2,6	2,6	1,0	4,5	
-	Осадкол	мм ,онэдэмен	2,2	2,7	1,3	1,9	1,1	0,5	0,3	0,7	1,1	0,3	0,3	0,2	2,0	2,1	2,1	0,8	2,7	
	а осадков	конец	3 11 1971	5 11	8 11	9 11	9 11	10 11	11 11	II II	15 11	16 11	16 11	17 11	22 11	24 11	24 II	24 11	25 11	<u> </u>
	Дата сбор	Начало	2 II 1971	4 11	5 11	8 11	11 6	11 6	10 11	II II	12 11	15 11	16 11	17 11	20 11	23 11	23 11	24 11	24 II	

							•						Server and a server and a server a se	فستعجمهم	العندر					
-ся -0972 Дод	Сумыя осалков, меренных на ме станции за пери сбора, мм	0,5	3,5	E	~ ~	0,8	11,5	6,7	3,0	8,1	0,5	0,6	1,2	0,6	4,2	3,2	0'0	3,1	(
	воядков див	° *	*	*	*¤ ⊀	>*⊳ < }	*	* *	*	+ *	° . *	: *	*	•*	< *	*	°*	4		
, м/с	Скорость ветра	ស	ମ ୧	4	9	9	-29	78	5 S	, 4	12	23	4	4	5	S	8	24		
	Do #	-1,5	-3,6	-3,6	-11,0	-13,4	-6,8	-3,0	-7,1	-9,0	-12,9	-6,5	-2,2	0,4	-7,7	-4,0	-1,6	-3,4		
	Площадь, дм ²	1,3	4,8	2,7	9,9	3,8	16,5	12,8	4,2	8,4	1,4	1,8	4,4	1,6	4,8	2,9	0,5	2,9		4
	Осадкомер № 4 Измерено, мм	0,6	2,9	2,2	5,2	0,8	10,6	6,6	2,5	4,4	0,4	0,8	1,3	1,1	3,8	2,5	1	2,4		(
dep Nº 3	нсправлено по Струзеру, мм	1,8	4,1	2,8	7,0	1,7	20,2	12,0	3,4	6,4	0, 4	1,0	3,0	2,4	4,5	4,6		4,6		
Осадкол	мм ,онэдэмеп	1,0	3,5	2,5	6,2	1,2	15,2	8,7	3,0	5,5	0,4	0,9	1,9	1,4	4,2	3,3	0,2	3,2		
	Сеалкомер № 2 Измерено, мм	0,6	2,5	1,5	3,1	0,4	8,4	5,1	1,6	3,5	0,3	0,8	1,3	1,0	3;9	2,7	. 1 -	2,1		- -
Mep Na 1	исиравлено по Струзеру, мм	1,8	5,8	4,5	12,6	2,1	22,6	15,9	6,3	10,1	0,3	1,2	2,7	1	4,6	4,0	1	5,0		
Осадко	мм ,онэдэмен	1,0	3,6	2,5	6,5	1,0	14,0	8,7	3,3	5,7	0,3	1,0	1,8	1,4	4,3	3,3	0,2	3,1		
1 осадков	конец	 25 II 1971	26 11	26 11	1 111	4 111	111 6	10 111	10 111	111 111	13 111 - 1	15 111	17 111	17 111	4 11 1972	9 II	10 11 01	13 11		Ś
Дата сбора	Начало	 25 II 1971	25 11	26 11	26 11	1, 111	4 111	9 111 6	10 111	10 111	111 111	13 III	15 111	17 111	3 11 1972	7 11	11 6	11 11		-
30																				

	- ки , етео- лон	Сумма осадкон меренных на м станцки за пер сбора, мм	 0,2		¢,4	3,1	1 6		1,4	4,7	1	2,4	4,9	6,4	7
State States		воядкоо диВ	\triangleleft	* \	*⊳	*⊳ *	×	X	*⊳ *	*⊅ ∀ *	*⊳ *	•*	•*	•*	, • •
	з/ж 'т	, Скорость ветра	2	0,5	 	4	 2``	Ω.	ۍ د	4	4	5	က	· –	
		Joc	-4,1	-4,0	4,7	2,0	-0,5	-0.7	-2,0	3,0	-1,0	1,0	-0,9	1,1	
		Площадь, дм ²	0,4	2,3	1,0	3,7	0,3	0,2	1,3	7,2	10,5	3,9	3,8	11,3	
and the rain	•	Осадкомер 🕅 мм		, 1	0,6	3,0	0,8	0,2	0,4	1,7	4,7	2,4	4,2	5,9	·· .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wep Nº 3	исправлено по Струзеру, мм	 .1	1,4	0,8	4,0	1,0	0,8	1,0	5,0	8,6	3,5	6,3	8,6	
	Осадко	мж ,онэдэмен	0,2	1,3	0,7	3,3	0,9	0,4	0,6	2,8	6,2	2,7	5,2	9,6	
>	•2	Осадкомер № 2 Измерено, мм	.1	1,1	0,6	3,0	0,9	0,2	0,4	1,7	4,6	2,4	4,3.	5,0	
	dep Né 1	исправлено по Струзеру, мм	ĺ	1,4	0,8	5,1	1,1	0,5	1,0	3,7	5,6	3,0	5,9	1.	•
	Осадков	мм ,онэдэмси	 0,2	1,3	0,7	3,5	1,0	0,3	0,6	2,4	5,2	2,6	5,2	6,4	
	OCALKOB	конец	22 II 1972	29 II	1 111	23 111	23 III	23 III	24 III	27 111	28 111	29 111	31 111	7 IV	
	Дата сбора	Начало	19 II 1972	23 II	29 11	1 111	23 111	23 111	23 III	24 111	27 111	28 111	29 111	6 IV	

На рис. 2 представлены результаты измерения сумм осадков по осадкомерам № 1 и 3 и связанного с ними оптического параметра. Этот рисунок подтверждает наличие достаточно тесной связи между оптическим параметром и суммой осадков, измерен ных осадкомером за тот же период. Вместе с тем данные его не дают основания предполагать наличие нелинейной связи между изучаемыми характеристиками, поэтому в дальнейшем для оценки тесноты связи будем производить расчеты параметров линейной корреляции.



Рис. 2. Связь оптического параметра S с суммой осадков. a — по данным осадкомера № 1, б — по данным осадкомера № 3.

Отдельные измерения суммы осадков и оптического параметра дают значительные колебания величин, что хорошо видно из рис. 2. Однако невозможно сделать заключение, какая часть этих отклонений связана с погрешностью измерения твердых осадков осадкомерами, а какая часть обусловлена зависимостью оптического параметра от некоторых характеристик снегопада, которые могут варьировать при одной и той же водности снегопадов.

Распределение данных наблюдений по градациям скоростей ветра и температурам не производилось, так как сбор осадков обычно производился в течение большого отрезка времени, а средняя температура и средняя скорость ветра в этом случае часто становятся не характерными параметрами в связи с большими колебаниями за период сбора. Кроме того, при распределении по градациям объем материала становится недостаточным для установления надежных статистических связей.

Вместе с тем качественный анализ материалов наблюдений, отраженных в табл. 1, показывает, что во многих случаях измерений при больших скоростях ветра и низких температурах наблюдается преуменьшенное количество измеренных осадков, если брать за исходную величину оптический параметр. По материалам указанных наблюдений был произведен расчет коэффициентов корреляции  $r_n$  между оптическим параметром S и суммой измеренных осадков и расчет уравнений регрессии по данным осадкомеров № 1 и 3. Кроме того, был вычислен коэффициент корреляции сумм осадков, измеренных по осадкомерам № 1 и 3. Результаты этого расчета представлены в табл. 2.

Таблица 2

*	Характеристика	Осадкомер № 1 (открытое место)	Осадкомер № 3 (защищенное место)
	Қоэффициент корреляции Уравнение регрессии	$0.914 \pm 0.019 \\ W - 2.62 = \\ = 0.652 (S - \\ - 3.935)$	$0.931 \pm 0.015 \\ W - 2.73 = \\ = 0.75 (S - \\ - 3.935)$
	Коэффициент корреляции сумм осад- ков, измеренных по осадкомерам № 1 и 3	0,978 <u>-</u>	± 0,005

Данные табл. 2 показывают тесную связь выбранного нами оптического параметра с суммой собранных осадков, причем четко проявилось влияние защищенности места, где установлен осадкомер. Коэффициент корреляции для осадкомера № 3 выще, чем для осадкомера № 1. Это обстоятельство, как и высокий коэффициент корреляции, также говорит о перспективности измерения твердых осадков оптическим методом.

Полученные уравнения прямых W = 0,652S - 0,06 для осадкомера № 1 и W = 0,75S - 0,23 для осадкомера № 3 содержат небольщое по величине постоянное слагаемое. Из простых физических соображений вытекает, что прямая должна проходить через начало координат и это слагаемое возникло из-за ошибок эксперимента. Учитывая его малость, им можно пренебречь.

От зависимости между условным оптическим параметром S, принятым в нашей работе, и суммой измеренных осадков несложно перейти к зависимости ослабления излучения снегопадом в д $\mathbf{E} \cdot \mathbf{K} \mathbf{M}^{-1}$  от интенсивности снегопада в мм/ч, имея в виду, что

$$K = 10 \lg \frac{\Phi_0}{\Phi} \frac{1}{L}$$
, (7)

этде  $\Phi_0$  — световой поток, не ослабленный снегопадом;  $\Phi$  — световой поток, ослабленный снегопадом, L — путь светового луча (км). Логда от уравнений, представленных в табл. 2, перейдем к следующим формулам:

ло данным осадкомера № 1

$$K = 16I$$
, (8)

по данным осадкомера № 3

$$K = 11.7I.$$

Зак. № 262

(9) .33 Таким образом, полученные нами зависимости ослабления излучения в зоне снегопада хорошо совпадают с результатами работы Вернера и Ганна [8], которые экспериментально получали коэффициент пропорциональности от 13 до 11 дБ · км⁻¹/мм/ч, и с результатами работы [7]. Это совпадение, как и содержание работы [10], подтверждает также независимость ослабления излучения в снегопадах от длины волны в пределах видимого участка и ближнего инфракрасного вне полос поглощения.

Кроме того, из формул (8) и (9) и результатов, приведенных в работе [7], следует, что недобор осадков осадкомером приводит к заметному увеличению этого коэффициента пропорциональности.



Рис. 3. Связь оптического параметра S с суммой исправленных количеств осадков.

α - по данным осадкомеров № 1 и 2, б - по данным осадкомеров № 3 и 4.

На рис. 2 нанесены прямые регрессии, наклон которых несколько различается. Установление правильной градуировки оптического способа сводится к установлению оптимального угла наклона прямой. Достоинством оптического способа измерения твердых осадков является то, что установление оптимального угла наклона прямой может быть произведено по выборочной серии измерения количества интенсивных осадков при малых скоростях ветра. Возможна также и дифференциация градуировочных прямых по типам осадков.

По результатам измерения количества осадков осадкомерами № 1, 2, 3 и 4 нами были введены поправки на ветровой недоучет в соответствии с рекомендациями работы [13]. В ряде случаев на блюдений рекомендованная в этой работе методика не позволяла определить величину поправки. В табл. 1 в этом случае в соответ ствующей графе проставлен прочерк. Связь оптического параметра с исправленными значениями измеренных количеств твердых осадков отражена на рис. З для результатов измерения по осадкомерам № 1 и 2, 3 и 4. По уточненным данным был произведен рас-

34

...

чет коэффициентов корреляции и уравнений регрессии аналогично представленным в табл. 2. Так как из-за больших различий количеств осадков, измеренных осадкомерами с ветровой защитой и без нее, поправки в ряде случаев ввести было невозможно, то общее количество анализируемых случаев уменьшилось с 78 до 67 для осадкомера № 1 и до 68 для осадкомера № 3. Результаты произведенных расчетов после введения поправок сведены в табл. 3.

Таблица З

Характеристика	Осадкомер № 1 (открытое место)	Осадкомер № 3 (защищенное место)
Коэффициент корреляции Уравнение регрессии	$0,614 \pm 0,076 \\ W - 4,25 = \\ = 0,659 (S - \\ -4,13)$	$0,86 \pm 0,03$ W - 3.8 = = 0,89 (S - 4,13)
Коэффициент корреляции сумм осад- ков, измеренных по осадкомерам № 1 и 3, после введения поправок	0,90	<u>+</u> 0,023

Данные табл. 3 показывают, что теснота связи оптического параметра с величинами измеренных осадков после введения поправок на ветровой недоучет ухудшилась, значительно для осадкомера на открытом месте и менее значительно для осадкомера на защищенном месте. Ухудшился и коэффициент корреляции величин осадков, измеренных осадкомерами № 1 и 3, после введения указанных поправок. Вероятно, эти связи изменились бы еще больше, если бы часть данных не была исключена из анализа из-за слишком больших и неопределенных поправочных коэффициентов на ветровой недоучет.

Можно предположить, что введение поправок на ветровой недоучет в отдельные измерения количества твердых осадков недостаточно обосновано, а в целом введение поправок сводится к введению некоторого поправочного множителя в сумму измеренных за продолжительный период количеств твердых осадков.

Как было указано ранее, для проверки оптического метода измерения количества твердых осадков нами были проанализированы 169 случаев измерения осадков на ст. Воейково. Оптический параметр определялся по данным синхронной регистрации ослабления в осадках прибором РДВ-2 на расстоянии 300 м от станционных осадкомеров. Результаты произведенного расчета представлены в табл. 4.

Корреляционная связь оптического параметра с количеством осадков, измеренных на метеостанции, несколько хуже по сравнению с корреляционной связью, отраженной в табл. 2.

По нашему мнению, это объясняется главным образом тем, что в 6-часовой срок обычно бывает небольшое количество осадков,

3*

Таблица 4

	При скорост	и ветра, м/с
Характеристика	0-12	0—3
Коэффициент корреляции Уравнение регрессии	$0,79 \pm 0,03$ W = 0,693 (S0,13)	0,81 <u>+</u> 0,04

измерение которых осуществляется со значительно большей относительной случайной погрешностью, что и приводит к снижению коэффициентов корреляции.

Влияние ветра, хотя и проявляется, но недостаточно уверенно, поэтому различие в коэффициентах корреляции незначительно.

Используя полученные экспериментальные данные, мы произвели расчет сумм осадков и сумм оптического параметра за период наблюдений и коэффициента пропорциональности *p* по формуле (5) для осадкомеров № 1 и 3 и ст. Воейково. Результаты расчета представлены в табл. 5.

Таблица 5

	Осади	комер	После в попр	ведения авок	Воей	ково
Параметр	№ 1	№ 3	№ 1	№ 3	0—12 м/с	0—3 м/с
Сумма осадков Сумма S Коэффициент р	204,3 306,9 0,67	212,6 306,9 0,693	284,8 277,1 1,03	258,7 281,2 0,92	180,7 191,9 0,62	84,3 121,7 0,694
<i>p</i> _{cp}				0,78		

Данные табл. 5 показывают, что вычисление сумм осадков по данным оптических измерений при использовании экспериментально установленных зависимостей может обеспечивать достаточно высокую точность результата.

Расхождение сумм вычисленных осадков и непосредственно измеренных будет безусловно возрастать при уменьшении временно́го промежутка суммирования. Для отдельных измерений эти расхождения могут быть значительными, но достоверная количественная оценка погрешностей отдельных измерений количества выпавших твердых осадков как для оптического способа, так и для стандартного измерения осадкомером Третьякова в настоящее время не может быть произведена из-за отсутствия надежного метода контрольных измерений количества выпавших осадков. Однако результаты рассмотренных выше исследований позволяют сделать вывод, что случайные погрешности оптического метода измерения коли-
чества твердых осадков не превышают случайные погрешности стандартных измерений с помощью осадкомера. Систематическая же погрешность, свойственная измерениям с помощью осадкомера Третьякова, в оптическом методе может быть сведена к минимуму или даже вообще исключена путем выбора оптимального угла наклона градуировочной прямой.

Определение достоверного значения коэффициента *р* наиболее точно может быть произведено тогда, когда мы сможем опереться на надежный контрольный метод измерения суммы осадков. В этом заключается существенная трудность практической реализации оптического метода измерения твердых осадков.

### 4. Заключение

1. В результате выполнения рассмотренной работы разработан и испытан оптический метод измерения количества твердых осадков, предполагающий измерение величины, пропорциональной интегралу ослабления излучения в зоне осадков по времени, и определение по измеренной величине количества выпавших твердых осадков за рассматриваемый период по экспериментально установленному уравнению прямой.

2. Выбранный нами оптический параметр хорошо коррелирует с количеством непосредственно измеренных осадков, позволяет точно учесть сложную структуру ослабления излучения в снегопадах и может быть технически реализирован в виде какой-либо интегральной легко измеряемой характеристики, например количества электричества и др.

3. Оптический метод измерения количества твердых осадков является перспективным методом, ибо процесс измерения сравнительно легко может быть автоматизирован и сопровождаться регистрацией. Пространственное осреднение при оптическом методе измерения значительно больше, чем при стандартных измерениях осадкомером.

4. Линейная связь между оптическим параметром и количеством выпавших твердых осадков позволяет установить оптимальный угол наклона прямой, т. е. найти оптимальную градуировку метода и свести к минимуму систематические погрешности.

5. Совпадение установленной нами связи ослабления излучения (формулы (8) и (9)) в дБ км⁻¹ и интенсивности осадков в мм/ч с аналогичной связью, полученной американскими исследователями [8], указывает на независимость или слабую зависимость этой связи от климатических условий.

6. Оптический метод измерения количества твердых осадков имеет также и ряд недостатков, которые в ряде случаев могут явиться причиной появления случайных погрешностей измерений.

Наиболее трудно устранимым дефектом метода является зависимость измеряемого оптического параметра от начального уровня ослабления, обусловленного дымкой или туманом, и изменения этого уровня в период сбора осадков. При обработке материалов наблюдений мы полагали, что уровень нулевого ослабления остается неизменным или медленно изменяется по линейному закону, что является не всегда верным допущением. Благодаря вышеуказанной причине измерение твердых осадков оптическим методом затруднено при их выпадении на фоне тумана или очень сильной дымки.

Существенно ослабить действие этого фактора можно путем выбора оптимальной длины волны излучения и наиболее рациональной геометрии измерительного луча фотометра и его некоторых параметров.

В единичном масштабе с целью уточнения характеристик оптического метода измерения твердых осадков можно пойти по пути создания двухлучевого фотометра, один из лучей которого подвержен воздействию снегопадов, а другой защищен от воздействия, но на оба луча могут одинаково воздействовать как дымка, так и туман.

7. Причиной существенных погрешностей единичных измерений количеств выпавших твердых осадков оптическим методом может явиться то, что при неизменном оптическом параметре для различных снегопадов водность этих снегопадов может быть различной из-за различной плотности выпадающих частиц. Уменьшить влияние этого фактора можно путем дифференциации градуировки понекоторым видам осадков.

При измерении сумм осадков за продолжительный период роль этого источника погрешностей сводится к минимуму и использование единой градуировки даст вполне удовлетворительный результат.

Возникает трудность при использовании оптического метода и тогда, когда измерения производятся в смешанных осадках, например весной, когда в течение какого-то времени выпадают твердые осадки, а затем жидкие или когда наблюдается смесь этих осадков.

Дальнейшее развитие настоящей работы предполагает уточнение некоторых характеристик оптического метода с целью его усовершенствования и создание действующего макета оптического измерителя твердых осадков с учетом полученных в данной работе результатов.

### СПИСОК ЛИТЕРАТУРЫ

 Richards T. L., An apperoach to forecasting snowfall amounts. - "Circa met. Div. Trans. Toront.", 1954, No. 2421. 21 p.

- Полякова Е. А., Третьяков В. Д. Исследование метеорологической дальности видимости при снегопаде. — «Тр. ГГО», 1960, вып. 100, с. 53—57.
- 3. Зельманович И. Л. Микроструктура и прозрачность снегопада. «Тр. ГГО», 1960, вып. 100, с. 58—64.
- 4. Jefferson G. J. Visibility in precipitation. "Met. Mag.", 1961, 90, No. 1067, p. 168—174.

5. Gunn K. L. S. Measurements of new-fall snow. Mebill University, Stormy Weather Group. Sci. Rept. MW-44, 1965, 25 p.

6.3G u n n K. L. S. The number flux of snow cristals at the ground Uon. — "Wea. Rev.", 1967, 95, p. 921-924.

Lillesaeter O. Parallel-beam attenuation of light, particularly by falling

- snow. "J. Appl. Meteor.", 1965, 4, p. 607—613. Warner C. and Gann K. L. S. Measurements of Snowfall by Optical At-tenuation. "J. Appl. Meteor.", 1969, vol. 8, No. 1, p. 110—121.
- 9. Соколов А. В. К вопросу ослабления видимого и инфракрасного излучения в дожде и снеге. — «Радиотехника и электроника», 1970, № 12, с. 2463— 2467.
- 10. Бабкин Ю. С. и др. К вопросу об ослаблении излучения на волне 0,96 мм в снеге. — «Радиотехника и электроника», 1970, № 12, с. 2459—2462.
- 11. Gunn K. L. S. and Marshall J. S. The distribution with size of aggregate snowfeakes .- "J. Meteor.", 1958, 15, p. 452-461.
- 12. Долов М. А., Халкечев В. А. Физика снега и динамика снежных лавин. — «Тр. Высокогорного геофиз. ин-та», 1972, вып. 23. 327 с.
- 13...Струзер Л. Р. Метод измерения правильных величин твердых атмосферных осадков. — «Тр. ГГО», 1969, вып. 244, с. 41—47. 14. Горышин В. И. Серийный образец компенсационного фотометра для из-
- мерения и регистрации и прозрачности атмосферы.—«Тр. ГГО», 1968, вып. 213, c. 48-58.
- 15. Горышин В. И. Некоторые результаты лабораторных и полевых испытаний автоматического фотометра для измерения и регистрации прозрачности атмосферы (РДВ-1). — «Тр. ГГО», 1968, вып. 213, с. 59—69.

### В. И. ГОРЫШИН, В. И. КОРНИЕНКО

# ИЗМЕНЧИВОСТЬ ГОРИЗОНТАЛЬНОЙ ДАЛЬНОСТИ ВИДИМОСТИ

### Введение

Опыт эксплуатации на сети авиаметеостанций надежных, технически достаточно совершенных серийных регистраторов метеорологической дальности видимости (МДВ) типа РДВ-2 [1] показал, что наши представления о пространственной структуре видимости, возникшие из априорных предположений о пространственной однородности оптических характеристик атмосферы, в большинстве случаев не отражают действительного состояния реальной атмосферы.

Применяемая в настоящее время методика приборных измерений МДВ не обеспечивает высокой надежности результата измерений этого параметра.

Необоснованное применение для реальной атмосферы основных положений известной теории дальности видимости [2, 3], разработанной для оптически однородной среды, в ряде случаев может явиться причиной ошибочной оценки МДВ.

Основные причины и источники возникновения методических погрешностей измерения МДВ рассмотрены в работе [5].

Количественная оценка методических погрешностей измерения МДВ и разработка более совершенной методики приборных измерений этой величины может быть произведена на основе изучения ( пространственных и временных характеристик поля прозрачности атмосферы (поля МДВ).

Рассмотрению некоторых результатов исследования пространственной и временной изменчивости горизонтальной дальности видимости и посвящена данная статья. Экспериментальные материалы и результаты их анализа, рассмотренные в статье, получены в итоге завершения первого, начального этапа исследований, развитие которых запланировано на последующий период.

# 1. Пространственная изменчивость горизонтальной дальности видимости

Исследование пространственных характеристик поля горизонтальной МДВ (прозрачности) было предпринято впервые. Во время организации эксперимента возникли трудности при решении вопроса о выборе минимальной дистанции между регистраторами прозрачности атмосферы, предназначенными для синхронных измерений МДВ в различных точках пространства. В этом случае мы не могли опереться на результаты каких-либо исследований, проведенных ранее.

На первом этапе было принято решение расположить три прибора вдоль взлетно-посадочной полосы (ВПП) ленинградского аэропорта Шоссейная в соответствии с рекомендациями принятой в настоящее время методики приборных измерений МДВ в аэропортах. Прибор РДВ-2 № 1, расположенный на западном конце ВПП, был принят за основной. На середине полосы, на расстоянии 1400 м от первого был установлен прибор РДВ-2 и № 2, на противоположном конце ВПП на расстоянии 3000 м — прибор № 3. Еще два прибора были установлены на большом удалении от аэропорта Шоссейная: один в аэропорту Смольный (25 км), второй на полевой экспериментальной базе ГГО в пос. Воейково (40 км). Все измерительные приборы РДВ-2 были расположены примерно по прямой линии в направлении с юго-запада на северо-восток. При анализе материалов наблюдений использовались данные только трех приборов, так как из-за недостаточного объема материала наблюдений данные по аэропорту Смольный пришлось исключить.

Так как наблюдения были начаты только в 1972 г. и проводились в течение одного года, объем материала был сравнительно ограничен. Кроме того, к анализу привлекались данные только в тех случаях, когда изучаемое метеорологическое явление наблюдалось по всей линии расположения регистраторов прозрачности атмосферы. Когда же граница того или иного метеорологического явления проходила между какой-либо парой приборов, то эти данные не использовались при анализе.

Всего было получено: две серии наблюдений в дождях (47 и 137 наблюдений), одна серия наблюдений в снегопадах (142 наблюдения) и три серии наблюдений в дымках при видимости от 1 до 10 км из (101, 108 и 110 синхронных наблюдений).

Синхронные отсчеты по лентам регистрации МДВ производились со скважностью от 5 до 30 мин в зависимости от устойчивости и продолжительности наблюдаемого явления.

Для оценки тесноты связи результатов измерения МДВ в указанных точках пространства был произведен расчет коэффициентов корреляции величин МДВ, измеренных прибором № 1 и другими приборами РДВ-2, средних квадратических отклонений показаний приборов № 2, 3 и 4 относительно показаний прибора № 1, принятого за основной, и ряда других параметров. Результаты расчета этих величин представлены в табл. 1.

Данные табл. 1 показывают, что пространственная неоднородность прозрачности атмосферы во всех метеорологических явлениях при видимости менее 10 км весьма высока. Масштаб неоднородностей помутнения таков и трансформация их протекает в пространстве так, что уже на расстоянии 1400 м связь процессов изменения прозрачности сильно ослаблена, коэффициент корреляции в этом случае для дымок, дождей и снегопада лежит в пределах 0,6-0,86, а средние квадратические отклонения показаний прибора

Таблица 1

							<u> </u>
Параметр	Прибор	Дымка I сер.	Дымка II сер.	Дымка III сер.	Дождь I сер.	Дождь II сер.	Снего- пад
Среднее значение МДВ по приборам (км)	№ 1 № 2 № 3	$3,36 \\ 4,22 \\ 3,11 \\ 4,03$	3,32 4,03 4,56 	2,67 3,27 	$ \begin{array}{c c} 3,04 \\ 4,07 \\ 3,45 \\ 4,53 \end{array} $	4,42 4,89 4,53	1,91 3,0 2,84
Среднее квадра- тическое отклоне- ние ряда наблю- дений по прибо- рам (км)	№ 1 № 2 № 3 № 4	1,23 1,73 1,82 2,49	0,94 1,10 1,53 —	1,15 1,36 1,5	1,5 2,63 2,95 1,98	2,87 2,60 	1,04 1,90  2,34
Коэффициент кор- реляции	$ \begin{array}{c c} 1-2 \\ 1-3 \\ 1-4 \\ 2-3 \end{array} $	$0,65 \\ 0,28 \\ 0,21 \\ 0,42$	0,57 0,48 	0,86 0,40	$\begin{array}{c} 0,75 \\ 0,28 \\ 0,21 \\ 0,68 \end{array}$	0,71 	0,86 <u>0</u> ,34 —
Среднее квадрати- ческое отклонение показаний прибо- ров от показания прибора № 1 (%)	№ 2 № 3 № 4	60,7 55,0 95,3	46,0 77,5		51,7 68,9 113	39,5 — 86,5	73,0 103

№ 2 относительно показаний прибора № 1 колеблются от 40 до 73%, что говорит об очень большом различии единичных отсчетов МДВ, произведенных в двух точках, отстоящих друг от друга на расстоянии 1400 м.

Необходимо отметить, что для оценки надежности сделанных нами выводов была изучена связь показаний трех приборов РДВ-2, установленных в одном пункте параллельно друг другу. Измерительная база приборов соответствовала стандартной, принятой на аэродромах и была равна 100 м×2. Коэффициент корреляции показаний приборов в этом случае был практически равен 1. Это говорит о том, что случайные приборные погрешности измерения МДВ не искажают изучаемые связи.

При расстоянии между приборами, равном 3000 м, корреляционная связь становится настолько слабой, что она далее мало изменяется при увеличении дистанции между приборами до 40 км. Вычисленные коэффициенты корреляции для этих случаев лежат в пределах 0,28—0,48. Рассмотренные результаты исследований весьма наглядно подтверждают сделанные в работе [4] выводы о роли дистанции осреднения измеряемой величины прозрачности атмосферы или рассеянного света как возможного источника значительных методических погрешностей измерения МДВ.

Данные табл. 1 также показывают, что приборные измерения МДВ, произведенные в данном пункте, репрезентативны для очень ограниченной территории. Это заключение позволяет подвергнуть сомнению рациональность организации наблюдений за видимостью на сети ГМС. Восемь отсчетов значений МДВ, произведенных на метеостанции в метеорологические сроки, характеризуют случайнов состояние прозрачности атмосферы для каждого данного момента измерения на небольшой площади, непосредственно примыкающей к пункту измерений.

Вместе с тем проведенные нами исследования показали, что для построения пространственных корреляционных функций необходимо проведение новых синхронных наблюдений с другим пространственным масштабом размещения регистраторов прозрачности атмосферы, что и должно явиться содержанием дальнейшей работы.

### 2. Временная изменчивость горизонтальной дальности видимости

В настоящее время статистическая структура полей ветра, температуры, влажности и давления сравнительно хорошо исследована. Изучение временно́й структуры прозрачности атмосферы было предпринято в 1963—1964 гг. Е. Н. Довгялло [6], получившей структурные функции МДВ в некоторых метеорологических явлениях. Однако существенным недостатком этой работы было то обстоятельство, что минимальный временной интервал при анализе структуры был выбран равным 6 мин. Это привело к некоторому искажению зависимостей, их сглаживанию. При анализе такой весьма изменчивой характеристики, как прозрачность атмосферы, временной интервал, равный 6 мин, малопригоден. Кроме того, наши исследования показали, что результаты изучения временной структуры прозрачности существенно зависят от протяженности того слоя атмосферы, в котором изучается прозрачность. При такой организации эксперимента вносится элемент случайного пространственного осреднения изучаемого параметра, что приводит к искажению изучаемой структуры МДВ. В указанной работе [6] исследовалась прозрачность слоя атмосферы протяженностью 240 м.

Для того чтобы результаты исследования временной структуры поля прозрачности атмосферы были наиболее близки к структуре МДВ в условиях неоднородной атмосферы, в наших исследованиях измерение горизонтальной прозрачности атмосферы (МДВ) производилось с помощью фотоэлектрического фотометра типа М-37 с базой, равной 0,96 км. При такой большой дистанции осреднения дальность видимости в диапазоне от 1 до 5 км измеряется достаточно точно и методическая погрешность, связанная с фиксированной дистанцией осреднения, в этом случае сведена к минимуму. Процессы изменения прозрачности атмосферы никогда не бывают точно стационарными или однородными. Почти всегда в этом случае мы имеем дело с относительно быстрыми колебаниями прозрачности атмосферы, накладывающимися на медленные ее изменения. Существенные трудности при анализе структуры прозрачности возникают из-за того, что масштабы этих двух типов изменений сравнительно близки. Существует определенное затруднение при использовании статистических методов анализа временной

структуры МДВ в связи с тем, что понятие средней видимости не применяется при практической оценке видимости, поэтому получаемые в результате исследований рекомендации о временных интервалах осреднения МДВ имеют относительную практическую ценность. Результаты этих исследований могут явиться основой для разработки более совершенной, научно обоснованной методики измерения дальности видимости при обслуживании различных видов транспорта.

Измерение горизонтальной МДВ производилось на полевой экспериментальной базе ГГО в пос. Воейково. Прибор измерял среднее значение прозрачности горизонтального слоя атмосферы протяженностью 0,96 км с погрешностью единичного отсчета не более 2%. Погрешность определения МДВ в диапазоне исследования (1—5 км) не превышала 10%.

Фотометр М-37 является практически безынерционным прибором. Регистрация результата измерений велась с помощью малоинерционного электронного потенциометра ЭПП-09 с временем пробега каретки по всей шкале прозрачности (0—100 %), равным 1 с. Эта аппаратура позволила при большой скорости протягивания диаграммной бумаги регистрировать небольшие флуктуации прозрачности на отрезке времени около 1 с.

В процессе записи прозрачности атмосферы в различных метеорологических явлениях с большой скоростью протягивания диаграммной бумаги выяснилось, что высокочастотные составляющие с периодом менее 1 мин выражены слабо и амплитуды этих колебаний в основном лежат в пределах приборных погрешностей. Поэтому основная масса материала, подвергнутого анализу, была получена путем выборки информации из диаграммных лент регистрации прозрачности атмосферы с шагом, равным 1 мин.

За основную характеристику изменчивости прозрачности атмосферы была принята структурная функция. В случае временной структуры структурная функция случайного процесса флуктуаций прозрачности представляет собой средний квадрат разности значений прозрачности на концах исследуемого интервала времени, т. е.

$$D_{\tau} = \overline{[f_{(t)} - f_{(t+\tau)}]^2}, \qquad (1)$$

где τ — временной сдвиг.

Известно, что форма структурной функции не зависит от периода интегрирования, если временной сдвиг не настолько велик, чтобы изменение среднего играло роль. Погрешность структурной функции прозрачности возрастает при увеличении т из-за ограни ченности длины ряда наблюдений.

При анализе временной структуры МДВ возникает затруднение, связанное с тем, что во многих случаях ее среднее значение изменяется нелинейно. Можно было бы для расчета структурных функций использовать приращения более высокого порядка, как рекомендовано в работе [7], однако из-за большой погрешности измерения МДВ (10%) ошибка определения конечных разностей более высоких приращений будет очень высока и поэтому эту методику невозможно использовать.

С учетом всего сказанного ранее анализировались стационарные участки, где среднее значение МДВ было достаточно стабильным во времени.

На лентах регистрации шкала времени и шкала прозрачности (в процентах) линейные, а шкала изучаемой МДВ логарифмическая. Для того чтобы выполнялось условие линейности приращения,

структурные функции рассчитывались для ln S_M.

На рис. 1 приведены структурные функции логарифма МДВ для снегопадов, дождей и дымок, полученные на основании анализа сравнительно ограниченного материала наблюдений. К ана-



Рис. 1. Временные структурные функции логарифма МДВ для снегопадов (1), дождей (2) и дымок (3).





лизу привлекались те участки записи флуктуаций МДВ, на которых уровень среднего значения был примерно одинаковым. Из рисунка 1 видно, что снегопады являются наиболее изменчивым во времени метеорологическим явлением, вызывающим значительные флуктуации прозрачности атмосферы.

Для стационарных участков записи рассчитывались корреляционные и спектральные функции. Корреляционная функция вычислялась по следующей формуле:

$$R_{(\tau)} = 1 - \frac{D_{\tau}}{2\sigma^2}, \qquad (2)$$

где  $\sigma^2$  — дисперсия ряда наблюдений.

Пример временной корреляционной функции для снегопадов представлен на рис. 2. Вид корреляционной функции для дождей аналогичен этой функции. Из рисунка следует, что время корреляции для достаточно стационарного процесса флуктуаций МДВ в снегопадах равно примерно 15 мин. При определении спектральной функции использовалась следующая зависимость:

$$S_{(\omega)} = \frac{2}{\pi} \int_{0}^{\infty} R_{\tau} \cos \omega \tau \, d\tau,$$

где  $S_{(\omega)}$  — спектральная плотность стационарной случайной функции,  $\omega = 2\pi/T$  — круговая частота, T — период осреднения.

Практически более удобно пользоваться нормированной спектральной плотностью

$$S_p = \frac{S_{(\omega)}}{\int\limits_{0}^{\infty} S_{(\omega)} d\omega},$$

(4)

(5)

где  $\int S_{(\omega)}\,d\omega$  — площадь, ограниченная кривой  $S_{(\omega)}$ .

Для расчета спектров нами использовалась корреляционная функция, которая из-за малости длины ряда измерения МДВ вычислялась по методу удвоения рядов. Возможность такого удвоения допустима ввиду стационарности выбранного участка записи.

Для расчета спектров применялась профильтрованная корреляционная функция

$$\rho_{(\tau)} = R_{(\tau)} \frac{\sin y}{y} ,$$

где  $y = \pi n/0, 1N$ , а N — число членов ряда измерений. Действие фильтра sin y/y сводится к сильному ослаблению частот, лежащих ниже  $\omega = \pi/0, 1N$ . Частоты, лежащие ниже указанного предела, связаны с изменением медленно меняющегося среднего и вносят большую ошибку в определение исследуемого спектра.

Из-за ограниченности ряда наблюдений при достаточно большом  $\tau$  относительная точность определения  $\rho_{(\tau)}$  становится низкой. При заданном T максимально допустимое время  $\tau$ , а также минимальная ширина полосы частот ограничены.

Так, например, для гауссовского процесса с экспоненциальной корреляционной функцией в работе [7] приводится следующее соотношение, связывающее максимальное  $\tau$  и время интегрирования T при заданной точности  $\varepsilon$ :

$$T = \frac{4\sqrt{2\tau}}{\varepsilon^2}.$$

Для точности 20%  $T \approx 141\tau$ .

Погрешность расчета  $D_{(\tau)}$  и  $R_{(\tau)}$  существенно зависит от длины ряда измерений, однако при анализе флуктуаций МДВ было весьма затруднительно получить большие ряды измерений при условии стационарности.

На рис. З приведены временные безразмерные спектральные функции МДВ в снегопадах и дождях и временная безразмерная

спектральная функция прозрачности атмосферы в дымке. В области более высоких частот спектры в логарифмическом масштабе имеют линейный участок, соответствующий степенной зависимости спектральной функции от частоты. Значения показателя степени для снегопадов и дымок порядка 2, для дождей 2,7, т. е. весьма

сильно отличаются от теоретического. Это отклонение связано с тем, что поле МДВ сильно изменчиво и подвержено влиянию многих случайных внешних факторов. Критерий стационарности анализируемых участков флуктуаций МДВ во многих случаях является приближенным.

Все приведенные формулы (1) - (5)имеют дискретные аналоги, которые и применялись при расчетах. Расчеты выполнены на ЭВМ М-220. При статистическом анализе временной структуры МДВ мы получаем характеристики периодов осреднения, которые обесминимальную печивают дисперсию среднего значения МДВ. Однако практически в авиации не пользуются средними значениями видимости, поэтому необходимо было ввести дополнительную характеристику, которая определяла бы изменчивость МДВ в различных метеорологических условиях и явилась бы критерием при определении предельно допустимого времени осреднения (инерции приборов) при осуществлении измерений для нужд авиации.





Если производить сравнение значений МДВ в начальный момент времени t₀ с ее значением в момент t для периодов быстрых и устойчивых возрастаний или спадов прозрачности, то относительное отклонение (относительно начального значения) величины МДВ можно рассматривать как некоторую случайную ошибку измерений, которая возникала бы при осуществлении осреднения за период, пропорциональный вышеуказанному отрезку времени (t₀ — t). Для авиации важны наиболее сложные, предельные условия из-

менчивости видимости, поэтому из всей имеющейся информации

выбирались участки быстрых спадов и нарастаний МДВ и рассчитывались относительные отклонения по формуле

 $\frac{\Delta S_{\rm M}}{S_{\rm M}} = \frac{S_{\rm M(t_0)} - S_{\rm M(t)}}{S_{\rm M(t_0)}} \ .$ 

Далее, представляя относительное отклонение как функцию времени для предельных условий, можно определить предельное время осреднения (инерция прибора) и время, в течение которого



Рис. 4. Временная изменчивость МДВ в снегопадах (1) и дождях (2). 1 — средние значения, 11 и 111 — предельные значения.

действительно измеренное значение МДВ с заданной погрешностью. Эти характеристики имеют реальное практическое значение при метеорологическом обслуживании авиации.

На рис. 4 представлены результаты расчетов относительной изменчивости видимости в снегопадах и дождях. Кривая *I* представляет собой среднюю изменчивость МДВ в снегопадах, полученную как результат осреднения по 19 реализациям процесса, кривые *II* и *III* — предельные значения изменчивости МДВ в снегопадах. Из рисунка видно, что даже относительное среднее отклонение через 15 мин может достигать 15% первоначальной величины. В предельных случаях за это время ошибка превышает 25%. Из этого следует, что существующая в настоящее время практика передачи метеорологической информации со скважностью во времени 5—

15 мин для МДВ мало обоснована. При оперативной работе авиации в области взлетно-посадочных минимумов необходимо передавать информацию о значениях МДВ со скважностью, равной 1-2 мин. В случае снегопадов в течение 1 мин первоначальное значение МДВ может изменяться на 5%.

На рис. 4 представлена также изменчивость МДВ в дождях. Изменение видимости во времени здесь несколько меньше, чем в снегопадах. Среднее значение отклонения (кривая I) за 15 мин достигает 10%, а предельное (кривые II и III) за это же время — 20%. Среднее значение  $\Delta S_{\rm M}/S_{\rm M}$  получено путем осреднения по 10 реализациям.

Рассмотренные результаты исследования временной изменчивости МДВ в силу ограниченности объема использованного материала наблюдений еше не позволяют сделать широкие обобщающие выводы практической целенаправленности, однако полученные результаты показывают большую пространственно-временную изменчивость МДВ, которая должна учитываться при разработке более совершенной методики определения характеристик дальности видимости при метеорологическом обслуживании авиации.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Горышин В. И. Серийный образец компенсационного фотометра для измерения и регистрации прозрачности атмосферы. - «Тр. ГГО», 1968, вып. 213, c. 48—58.
- Коśch mider H. Theorie der horisontalen Sichtweite Beiträge. "Z. Phys. freien Atm.", 1926, R XII, Nr. 1, S., 33—35, Nr 3, S. 171—181.
   Гаврилов В. А. Видимость в атмосфере. Л., Гидрометеоиздат, 1966. 324 с.
   Горышин В. И., Корниенко В. И. О репрезентативности измерений метеорологической дальности видимости фотометрами с малой измерительной базой. — «Тр. ГГО», 1972, вып. 279, с. 80-84.
- 5. Горышин В. И. О методике измерения дальности видимости при метеорологическом обслуживании авиации. — «Тр. ГГО», 1973, вып. 312, с. 50-64.
- 6. Довгялло Е. Н. О статистических закономерностях изменения видимости. --В кн.: Труды 5-го Междуведомственного совещания по актинометрии и атмосферной оптике М., «Наука», 1964, с. 203-205.
- 7. Яглом А. М. Корреляционная теория процессов со случайными *п*-ми приращениями. — «Матем. сб.», 1955, 37 (79), № 1, с. 141—196.
- 8. Ламли Д. Л., Пановский Г. А. Структура атмосферной турбулентности. М., «Мир», 1966. 264 с.

Г. К. ГУЩИН 🕅

(1)

# К ВОПРОСУ О ТОЧНОСТИ ИЗМЕРЕНИЯ ОБЩЕГО СОДЕРЖАНИЯ ОЗОНА ФИЛЬТРОВЫМИ ОЗОНОМЕТРАМИ НА МОРЯХ И ОКЕАНАХ

Для измерения общего содержания озона ( $\Omega$ ) на морях и океанах используется в основном самолетный озонометр конструкции Г. П. Гущина, представляющий собой электрический фотометр с двумя стеклянными светофильтрами [4]. Величины  $\Omega$  определяются по озонной номограмме, если известны отношение двух отсчетов для первого и второго светофильтров  $\frac{I_1}{I_2} k_{\rm T}$  ( $k_{\rm T}$  — температурный коэффициент градуировки озонометра) и высота солнца  $\theta$  в момент наблюдения [4, 14].

При построении озонных номограмм ослабление света аэрозолями считается нейтральным, и расчет их происходит по формуле

$$\frac{I_1}{I_2} = \frac{\int_{\lambda_1}^{\lambda_2} w_{\lambda} S_{0, \lambda} \cdot 10^{-\alpha_{\lambda} \otimes \mu - \beta_{\lambda} m} d\lambda}{\int_{\lambda_2}^{\lambda_4} w_{\lambda}' S_{0, \lambda} \cdot 10^{-\alpha_{\lambda} \otimes \mu - \beta_{\lambda} m} d\lambda}$$

где  $w_{\lambda}$  и  $w'_{\lambda}$  — спектральная чувствительность прибора в относительных единицах в области пропускания первого и второго светофильтров соответственно;  $S_{0, \lambda}$  — монохроматический поток радиации с длиной волны  $\lambda$  за пределами атмосферы;  $\alpha_{\lambda}$  — десятичный коэффициент поглощения озоном излучения, длина волны которого  $\lambda$ ;  $\beta_{\lambda}$  — оптическая толщина чистой (релеевской) атмосферы для длины волны  $\lambda$ ;  $\mu$  и m — озонная и атмосферная воздушные массы соответственно; ( $\lambda_{4}$ ,  $\lambda_{2}$ ) и ( $\lambda_{3}$ ,  $\lambda_{4}$ ) — границы спектральных интервалов первого и второго светофильтров соответственно.

Однако допущение о независимости ослабления света аэрозолем от длины волны редко оправдывается в реальных условиях и поэтому в действительности величина отношения равна

$$\frac{I_1}{I_2} = \frac{\int_{\lambda_1}^{\lambda_2} w_{\lambda} S_{0, \lambda} \cdot 10^{-\alpha_{\lambda}\mu\Omega - \beta_{\lambda}m} d\lambda}{\int_{\lambda_3}^{\lambda_4} w_{\lambda}' S_{0, \lambda} \cdot 10^{-\alpha_{\lambda}\mu\Omega - \beta_{\lambda}m} d\lambda} \cdot 10^{-m} (\delta_{\lambda_1, m} - \delta_{\lambda_2, m}),$$

где  $\delta_{\lambda_{1,m}}$  и  $\delta_{\lambda_{2,m}}$  оптические толщины аэрозоля в максимумах спектральной чувствительности для первого и второго светофильтров соответственно;  $\lambda_{1,m} = 318 \div 328$  нм,  $\lambda_{2,m} = 369$  нм.

Так как в подавляющем большинстве случаев разность  $\delta_{\lambda_{1,m}} - \delta_{\lambda_{2,m}} > 0$  [2, 6], то появление дополнительного множи-

^f — ^{-m}(^δ_{λ1,m} ^{-δ}_{λ2,m}) в формуле (2) приводит к возникновению фиктивного суточного хода озона с минимумом в полдень, для исклю-, чения которого вводится аэрозольная поправка

$$a = 10^{m \left( \delta_{\lambda_{1,m}} - \delta_{\lambda_{2,m}} \right)}.$$
 (3)

Методика введения аэрозольной поправки в показания фильтровых озонометров разработана Г. П. Гущиным [9]. Окончательная формула для вычисления разности  $\delta_{\lambda_1} = -\delta_{\lambda_2}$  имеет вид

$$\delta_{\lambda_{1, m}} - \delta_{\lambda_{2, m}} = \delta_{\lambda_{2, m}} \left[ \left( \frac{\lambda_{1, m}}{\lambda_{2, m}} \right)^{3-n} - 1 \right], \qquad (4)$$

где *n* — показатель Юнге в формуле распределения аэрозольных частиц по размерам [17]. Показатель *n* определяется из соотношения

$$\frac{\delta_{\lambda_{2,m}}}{\delta_{\lambda_{3,m}}} = \left(\frac{\lambda_{2,m}}{\lambda_{3,m}}\right)^{3-n},\tag{5}$$

где  $\delta_{\lambda_{3,m}}$  — оптическая толщина аэрозоля в максимуме пропускания третьего светофильтра озонометра ( $\lambda_{3,m} = 530$  нм).

Таким образом, для расчета аэрозольной поправки необходимы данные измерений оптических характеристик аэрозоля. На судах же аэрозольные наблюдения, как правило, не проводятся. В связи с этим непосредственный расчет величины *a* отпадает и остаются лишь приближенные способы ее оценки.

В настоящей статье предлагается метод определения аэрозольной поправки по сопутствующим актинометрическим наблюдениям. Для этой цели используются графические связи оптических толщин аэрозоля  $\delta_{\lambda_{2,m}}$  и  $\delta_{\lambda_{3,m}}$  с величинами фактора мутности *T*, приведенными по методу С. И. Сивкова [13, 15] к высоте солнца 30° (рис. 1). Графики построены по данным наблюдений в открытом океане (на расстоянии более 250 миль от берега), проводившихся в 1968—1969 гг. на НИС «Академик Королев». Полученные соотношения можно использовать для вычисления аэрозольной поправки *a*, если параллельно с озонометрическими проводить также и актинометрические наблюдения.

Величина a вводится в виде множителя в отношение  $I_1/I_1$  и позволяет исключить погрешность, связанную с аэрозолями. Но для этого озонометр предварительно градуируется с учетом аэрозольной

4*

поправки, и коэффициенты градуировки определяются по формуле

$$k_{\rm T, a} = \frac{(I_1/I_2)_{\rm H}}{(I_1/I_2)a'},$$

где  $(I_1/I_2)_{\rm H}$  — величина отношения, которая находится по озонной номограмме по высоте солнца и общему содержанию озона, определенному в момент измерения по спектрофотометру Добсона; a' аэрозольная поправка в момент градуировки. Для входа в озонную номограмму используется произведение  $(I_1/I_2)k_{\rm T, a}a$  (a — аэрозольная поправка, определенная в месте измерения озона).



Рис. 1. Графики связи между оптическими толщинами аэрозоля  $\delta_{\lambda_{2,m}}$  и  $\delta_{\lambda_{3,m}}$  для длин волн 369 и 530 нм соответственно и величинами фактора мутности *T*.

Обычно же аэрозольную поправку не учитывают, и коэффициент градуировки озонометра определяется по формуле

$$k_{\rm r} = \frac{(I_1/I_2)_{\rm H}}{I_1/I_2} \,. \tag{7}$$

(8)

Тогда из выражений (6) и (7) получим, что

$$\frac{I_1}{I_2}k_{\rm T, a} = \frac{I_1}{I_2} k_{\rm T} \frac{a}{a'}.$$

Таким образом, в случае судовых измерений для исключения аэрозольной погрешности в озонную номограмму нужно входить с выражением, отличающимся от прежнего на множитель a/a'.

Как уже отмечалось выше, аэрозольные наблюдения на судах не проводятся. Величины а' за прошлые годы определить сейчас

невозможно. Можно оценить лишь среднюю для океанов величину аэрозольной погрешности при измерении общего содержания озона. Аналогичная задача для сети станций уже была решена в расоте [8].

Поскольку градуировки озонометров проводились в Воейково в марте—июне, можно принять для расчетов средние параметры аэрозоля:  $\delta_{\lambda_{2,m}} = 0,100, n = 4$ . При этом среднее значение аэро-

зольной поправки a' для высот солнца 20—50° будет равно 1,07. Тогда средний поправочный множитель a/a' определяется соотношением

$$a_1 = a | a' = 0,935a,$$
 (9)

а средняя относительная аэрозольная погрешность, согласно работе [8], находится из формул:

$$f=2(a_1-1)\cdot 100^{\circ}/_{0}$$
для  $10^{\circ} \leqslant \theta \leqslant 25^{\circ}$ , (10)

$$f=2,5(a_1-1)\cdot 100^{\circ}/_{\circ}$$
для  $\theta=25^{\circ}$ . (11)

Знак минус перед f означает, что измеренные значения озона меньше действительных.

Определив по графикам (рис. 1) оптические толщины аэрозоля для разных значений T и произведя расчет аэрозольной поправки a, получим по формулам (3), (10) и (11) величины относительной аэрозольной погрешности при разных значениях фактора мутности (табл. 1). Таблицу 1 теперь можно использовать для определения аэрозольной поправки f.

Таблица l

Относительная аэрозольная погрешность измерения общего содержания озона (%) в открытых районах океана в зависимости от величины фактора мутности T

т	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
2	-13,7	-13,5	-13,3	-13,1	-12,9	-12.7	-12,5	-12,2	-12.0	-11,8
3	-11,5	-11,3	-11,0	-10,6	-10,2	-9.6	9,0	-8,3	-7.6	-6,7
4	-5,8	-4,9	-3,7	-2,8	-1,8	-0.6	0,5	1,7	2.7	4,0

Для средних значений замутненности атмосферы в Тихом океане [3] и Северной Атлантике величины аэрозольных поправок получились равными в среднем около —12 и —10,5% соответственно (табл. 2). Величины фактора мутности T в табл. 2 вычислены по материалам работы [11]. Аналогичные величины f получились также для Атлантического и Индийского океанов в 1968—1969 гг. (табл. 3). Для сравнения в табл. 3 приведены аэрозольные поправки, рассчитанные по данным непосредственных аэрозольных наблюдений. Величины  $\delta_{\lambda_2,m}$  и n взяты из работы [2].

### Таблица

Средние значения фактора мутности *T* и относительной аэрозольной поправки *f* % на разных широтах Тихого и Атлантического океанов

								÷
	Северная широта, град.	Южная широта, град.						Service States
-	60 50 40 30 20 10	0	10	20	30	40	50	A. S. S.
	Тихий оке	ан	•					
T f	$ \begin{vmatrix} 2,99 \\ -11.5 \end{vmatrix} - 2,80 \\ -12,0 \end{vmatrix} - 2,94 \\ -11,7 \end{vmatrix} - 3,12 \\ -11,2 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\ -11,3 \\$	2,94 —11,7	3,12 —11,2	2,89 —11,8	2,66 	2,85 —11,9	2,34 —13,0	
	Атлантический	океан	ł					
f f	$ \begin{vmatrix} 2,50 \\ -12,7 \end{vmatrix} - \begin{matrix} 2,76 \\ -12,1 \end{vmatrix} - \begin{matrix} 3,03 \\ -11,4 \end{vmatrix} - \begin{matrix} 3,36 \\ -10,4 \end{vmatrix} - \begin{matrix} 3,57 \\ -9,2 \end{vmatrix} - \begin{matrix} 3,72 \\ -8,2 \end{vmatrix} $	* . * .		•				
			· ·	2	Т	абли	ца З	

Величины относительной аэрозольной поправки  $f_1$  и  $f_2$  % соответственно для Атлантического и Индийского океанов, рассчитанные

по величине фактора мутности T и по данным непосредственных аэрозольных наблюдений

	Коорд	инаты	Исходные данные				
Дата	широта	долгота	Т	δ _λ 2, m	n	fs .	$f_2$
11 VIII 1968 12 VIII 18 VIII 19 VIII 21 VIII 23 VIII 24 VIII 25 VIII 8 11 1969 20 II 4 III 13 III	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 10^{\circ} & 02' & B \\ 14 & 00 \\ 51 & 10 \\ 57 & 51 \\ 66 & 56 \\ 77 & 37 \\ 83 & 07 \\ 89 & 06 \\ 64 & 50 \\ 89 & 52 \\ 35 & 20 \\ 9 & 36 & 3 \end{array}$	3,55 2,63 2,63 2,90 3,10 3,13 3,01 2,85 3,57 3,22 3,68	0,110 0,049 0,036 0,061 0,071 0,064 0,064 0,063 0,043 0,043 0,050 0,048 0,082 Cpega	3,7 4,0 3,4 3,9 3,6 3,6 3,6 3,8 3,8 3,8 3,8 3,5 3,2 3,7	$\begin{array}{c} -9.3 \\ -12.4 \\ -12.4 \\ -11.8 \\ -11.3 \\ -11.2 \\ -11.2 \\ -11.5 \\ -11.9 \\ -9.2 \\ -10.9 \\ -8.4 \\ -10.7 \end{array}$	$\begin{array}{c} -5.0 \\ -10.0 \\ -13.8 \\ -7.5 \\ -10.0 \\ -11.2 \\ -7.5 \\ -10.0 \\ -16.2 \\ -11.2 \\ -15.0 \\ -7.5 \\ -10.9 \end{array}$

Как видно из табл. 2 и 3, оба способа расчета аэрозольной поправки приводят почти к одним и тем же результатам. Максимальные различия в некоторые дни достигали 4%, а среднее для океанов значение f получается одинаковым в обоих случаях.

На основании данных табл. 2 и 3 для районов океана, удаленных от берега более чем на 250 миль, среднюю аэрозольную поправку к средним дневным величинам  $\Omega$  можно принять равной —11%.

В работе [2] было показано, что среднее количество аэрозольных частиц над океанами примерно вдвое меньше, чем над контиментами. Поэтому по мере приближения к берегу аэрозольная составляющая атмосферы возрастает, а поправка *f* стремится к нулю. Исходя из этого предположения величины *f* приняты равными —8, —4 и 0% для районов океана, удаленных от берега соответственно на 250—120, 120—60 и менее 60 миль.

Так как аэрозольная поправка важна в основном для средних дневных величин  $\Omega$ , то при расчетах использовались некоторая средняя эффективная длина волны  $\lambda_{1,m} = 324$  нм и высота солнца  $\theta$ , равная 34°. Использование средних значений  $\lambda_{1,m}$  и  $\theta$  не приводит к ощутимым погрешностям в определении аэрозольной поправки. Даже при расчете по экспериментальным значениям  $\lambda_{1,m}$  и  $\theta$  величины *а* отличаются друг от друга не более чем на 2%.

Таким образом, пренебрежение влиянием аэрозоля приводит к занижению величин общего содержания озона над океанами в среднем на 11%. Однако поправка f, как это видно из табл. 2 и 3, может отличаться от среднего значения на 3—5%. Величину  $\Delta_t^f = \pm 4\%$  можно принять за погрешность определения средних дневных величин общего содержания озона, связанную с использованием во всех случаях постоянной аэрозольной поправки (11%).

Помимо аэрозольной погрешности, точность определения общего содержания озона будет зависеть от погрешностей регистрации потоков радиации и метода расчета величин Ω. При нормальных рабочих условиях (оптимальном режиме работы усилителя, правильной юстировке и точной наводке прибора на Солнце) и отсутствии внешних влияний отношение  $I_4/I_2$  измеряется с точностью  $\pm 1\%$ , что соответствует погрешности обычного фотоэлектрического прибора [7]. Экспериментальная оценка этой погрешности приводит к такому же результату. Например, при наблюдениях, выполненных 8 марта 1973 г. в течение коротких промежутков времени (табл. 4), средние квадратические ошибки одного измерения (о) для каждой группы значений  $I_1/I_2$  составляли  $\pm 0,001$ ,  $\pm 0,0045$  и  $\pm 0,005$ . Значение о, как известно, характеризует не ошибку, которая имеет место при каждом измерении, а распределение ошибок. В частности, вероятность того, что случайная ошибка по своей абсолютной величине не превзойдет утроенного значения о, равна 0.997. Таким образом, с вероятностью, близкой к достоверности, истинное значение измеряемого отношения  $I_1/I_2$  лежит в интервале  $[I_1/I_2 - 3\sigma]$  $I_1/I_2 + 3\sigma$ ] ( $I_1/I_2$  — среднее значение отношения  $I_1/I_2$  в какой-либо серии измерений). Результат, отклоняющийся от среднего арифметического на величину, превышающую Зо, можно считать промахом. Тогда точность единичного измерения будет характеризоваться выражением

$$\eta_0 = \pm \frac{3\sigma}{I_1/I_2} \cdot 100^0 /_0, \tag{12}$$

числовые значения которого в рассматриваемых случаях равны  $\pm 0.3, \pm 1.2$  и  $\pm 1.3\%$ . Среднее из этих трех величин  $\eta_0$  ( $\pm 0.9\%$ )

совпадает с оценкой погрешности измерения величины I₁/I₂ фильтровым озонометром [7].

Таблица

		·						1
Номера отсчетов	I 1	12	I ₁ /I ₂	Номера отсчетов	Is	Ι2	I1/I2	_ '
Серия 1. 1 (мое	1 ч 46 м к. вр.). Ө	ин — 11 ч =37,6÷37	51 мин ,9°	Серия 3.	12 ч 23 θ=39,	мин—12 ч 5÷39,9°	1 33 мин.	-
1 - 4	29,5	27,5	1,071	1-4	31,0	27,5	1,128	
3-7 8-10 11-35	29,0	27,0	1,074	5	30,5	27,0	1,131	
11-00	20,0	21,0	1.072	618	30,0	26,5	1,133	
		Среднее	$\pm 0,001$	19	29,5	26,0	1,136	
Серия 2.	11 ч 52 м θ=38 0	ин—11 ч { ÷38.2°	55 мин.	20	30,0	26,5	1,133	
1-4	29,5	27,0	1,092	21	31,0	27,5	1,128	
5—16 17	30,0 30,0	27,5 28,0	1,091 1,071	22	31,5	28,0	1,126	
18-19 $20$	30,0 29,5	27,5 27,0	1,091 1,091	23-28	32,0	28,0	1,142	Æ
		Среднее а ==	1,090 <u>+</u> 0,0045		- - -	Среднее σ ==	1,134 + 0,005	(hic

Величины отношений I₁/I₂, измеренные по прямому солнечному свету озонометром М-83 № 125. Карадаг, 8 марта 1973 г. Ясно, помутнение

Погрешность  $\pm 1\%$  при нахождении отношения  $I_1/I_2$  приводит в свою очередь к ошибке определения величин  $\Omega$ , равной  $\pm 2,5\%$ . При этом предполагается, что погрешности параметров  $k_{\rm T}$ ,  $\alpha_{\lambda}$ ,  $\beta_{\lambda}$ ,  $S_{0,\lambda}$ ,  $\omega_{\lambda}$  и  $\theta$  равны нулю. Величину  $\pm 2,5\%$  можно принять за погрешность метода измерения общего содержания озона приборами со светофильтрами в релеевской атмосфере.

Однако точность определения общего содержания озона, предусмотренная методикой, практически недостижима при наблюдениях, так как внешние влияния и просчеты наблюдателя могут приводить к дополнительным погрешностям. Даже при наблюдениях в течение небольщих промежутков времени (около 40 мин) точность отдельного определения величины  $\Omega(\eta_{\Omega})$ , согласно данным работы [1], может изменяться от ±1,6 до ±14,6%. Среднее значение  $\eta_{\Omega}$  составило ±6,8%.

Величины  $\eta_{\Omega}$  вычислялись по формуле

$$\eta_{g} = \pm \frac{3\sigma_{g}}{\overline{Q}} \cdot 100^{0}/_{0}, \qquad (13)$$

где

$$\sigma_{\varrho} = \pm \sqrt{\frac{\sum (\varrho - \overline{\varrho})^2}{n-1}}$$

(14)

есть средняя квадратичная ошибка единичного измерения,  $\overline{\Omega}$  — среднее значение общего содержания озона в какой-либо серии измерений. n — количество наблюдений в рассматриваемой серии.

Поскольку средняя квадратичная ошибка среднего арифметического уменьшается с увеличением количества наблюдений, точность определения средних дневных значений  $\Omega$ , зависящая лишь от случайных погрешностей измерений, будет находиться из выражения

$$\eta_{\widetilde{g}} = \pm \frac{\eta_{Q}}{\sqrt{m}} \, {}^{0}/_{0} = \pm \frac{6.8}{\sqrt{m}} \, {}^{0}/_{0}, \tag{15}$$

где m — число наблюдений за день. При возрастании m от 6 до 20 погрешность  $\eta_{\overline{n}}$  уменьшается от  $\pm 2,8$  до  $\pm 1,5\%$ .

Вычисляемая по формуле (15) погрешность измерения величин

 $\overline{\Omega}$  является минимально возможной. Обычно же в процессе длительной эксплуатации прибора имеют место небольшие отклонения от нормальной его работы, которые заметно не проявляются при каждом измерении, но обнаруживаются при статистическом анализе (например, по возрастанию средних квадратичных погрешностей).

Одной из причин, приводящей к дополнительным погрешностям измерения озона, может явиться нарушение линейной зависимости между силой падающего света и силой фототока во внешней цепи фотоэлемента. Связано это с использованием в озонометрах в качестве приемников света фотоэлементов с внешним фотоэффектом. Основным недостатком названных фотоэлементов является их малая интегральная чувствительность, вследствие чего они требуют применения ламповых усилителей (в озонометрах используются лампы 1H3C), которые и вносят нелинейные искажения в величину выходного сигнала. Отклонения от линейности, связанные с утомлением фотокатода, менее вероятны, так как они наблюдаются при длительном непрерывном освещении фотоэлемента достаточно ярким светом. При измерениях же озона фотоэлемент освещается всего 1—2 мин в течение часа.

На озонометрических станциях линейность фотоэлектрической системы озонометра проверяется один раз в неделю с помощью нейтрального светофильтра HC-7 с известной кривой пропускания. Для этой же цели устанавливается светофильтр озонометра, выделяющий участок спектра со средней длиной волны около 530 нм. Затем с помощью озонометра измеряется пропускание нейтрального светофильтра при разных отсчетах на шкале микроамперметра и разных чувствительностях. Совпадение пропусканий светофильтра HC-7 (с точностью до 1%), измеренных озонометром и вычисленных по паспорту, свидетельствует о линейности прибора. Если же имели место нелинейные искажения сигнала, то при наличии систематических контрольных измерений всегда можно внести исправления в отсчеты  $I_1$  и  $I_2$ . В самолетных озонометрах, которыми до последнего времени измерялось общее содержание озона на океанах,

такой возможности не было предусмотрено. Поэтому выявить ошибки, связанные с нарушением линейности озонометров, теперь невозможно.

Проверка линейности самолетных озонометров осуществлялась иногда лишь во время градуировки.

При градуировках приборов проводились также оптические юстировки озонометров с целью установления параллельности оптических осей целика и тубуса. Юстировку самолетного озонометра осуществляют два человека: один наблюдатель наводит прибор на Солнце, а второй следит за отсчетами по микроамперметру. Смещая слегка прибор в ту или иную сторону, добиваются, чтобы на пульте управления получился максимальный отсчет. При этом в случае правильной юстировки прибора солнечный зайчик будет находиться в центре внутреннего круга целика. Если же зайчик отклоняется от центра, то, передвигая прицельное стекло, добиваются нужного положения. В некоторых случаях не удается добиться требуемого соответствия, и тогда приходится несколько разворачивать фотоэлемент. Юстировка прибора обычно не нарушается, если наблюдатель аккуратно обращается с озонометром.

При работе в море появляются дополнительные трудности, которые могут приводить к погрешностям при измерениях.

Организация озонометрических наблюдений на судах начинается с выбора места для наблюдений. При этом по возможности должны выполняться следующие условия: место наблюдения должно быть достаточно высоко от поверхности океана, чтобы свести 4 к минимуму забрызгивание прибора; площадка для наблюдений должна быть достаточно открыта и велика, чтобы при изменении положения Солнца или курса судна всегда можно было бы произвести измерение, не перемещая прибор на большие расстояния; для измерения высоты Солнца секстаном горизонт в сторону Солнца всегда должен быть открыт; и, наконец, место наблюдения не должно быть слишком удалено от метеорологической лаборатории. Более всего поставленным условиям отвечает площадка верхнего мостика. Кроме того, защитный козырек, укрепляемый по всей ширине мостика, часто при сильном волнении спасает прибор и наблюдателя от заливания морской водой. Только при сильном ветре с кормы, приносящем дым из трубы, и работе судовой радиостанции проводить наблюдения на верхнем мостике становится невозможно и приходится переносить прибор на другое место. При выборе нового места наблюдения предпочтение следует отдавать кормовой части судна, так как в носовой части больше вероятность забрызгивания.

Дым из трубы не всегда явно мешает измерениям. В некоторых случаях (особенно при нахождении судна в дрейфе) при беглом взгляде создается впечатление, что дым из трубы вообще не идет. Только присмотревшись внимательнее, можно заметить дрожание воздуха над трубой, аналогичное конвективным струям над раскаленными поверхностями. И если при наблюдениях свет от Солнца будет попадать в прибор, пройдя предварительно через слой этого хотя и почти прозрачного дыма, результат измерения будет искаженным. Иногда это постороннее влияние удается обнаружить во скачкам отсчетов I₂ и I₂ и их отношений в какой-либо серии измерений; в других же случаях внесенная погрешность остается незамеченной.

Работа судовой радиостанции создает обычно значительные помехи в работе озонометра, которые сразу же обнаруживаются по колебаниям стрелки микроамперметра. Но иногда помехи бывают настолько незначительными, что при закрытом тубусе стрелка колеблется около нуля, отклоняясь на половину или одно деление в ту и другую сторону. При наведенном на Солнце приборе эти колебания вообще трудно улавливаются. Неопытный наблюдатель может отнести эти отклонения стрелки за счет вибрации судна. Поэтому следует всегда иметь в виду, что вибрация судна никаких отклонений стрелки микроамперметра не вызывает. Только при качке судна, когда прибор находится в нерабочем состоянии, возможны небольшие плавные колебания стрелки. Перемена же быстрых колебаний всегда связана с электромагнитными влияниями. Избавиться от помех, создаваемых радиостанцией, довольно легко: достаточно лишь перенести прибор на корму или заранее согласовать сроки наблюдений с графиком работы радистов.

Дым и радиостанция, хотя и создают помехи в работе, могут приводить к ощутимым ошибкам при измерении озона лишь в редких случаях. Из всех влияний, связанных со спецификой работы на судах и вносящих погрешность в определения величин  $\Omega$ , наибольшую роль играет качка судна. Обычно измерение по озонометру производит один наблюдатель. И нужен значительный навык, чтобы при качке судна удерживать наведенный на Солнце прибор и одновременно производить отсчет по микроамперметру. Некоторым наблюдателям затруднительно даже просто удерживать в руках головку озонометра в строго определенном положении. Среди озонометров встречаются приборы, у которых даже при незначительном отклонении тубуса происходят довольно большие колебания отсчетов  $I_1$  и  $I_2$ . В другой же группе приборов перемещения зайчика в пределах всего внутреннего круга целика не вызывают отклонений стрелки микроамперметра; эти озонометры предпочтительнее для судовых станций.

Все замечания, изложенные выше, желательно учитывать при подборе наблюдателя, организации и проведении озонометрических измерений на судах. По крайней мере лица с небольшим опытом работы должны проводить наблюдения вдвоем.

Для определения высоты Солнца на судах используется секстан, представляющий собой угломерный инструмент, действие которого основано на законе отражения света от плоских зеркал. Секстан (рис. 2) состоит из следующих основных частей: 1) лимба CD; 2) алидады M, которая движется по лимбу; 3) плоского подвижного зеркала P₂, находящегося на алидаде в центре ее вращения; 4) второго плоского зеркала P₁, называемого малым и укрепленного неподвижно против трубы F; 5) трубы для наблюдений F. Схема действия секстана показана на рис. 2. Для измерения высоты Солнца над горизонтом наблюдатель должен держать секстан за рукоятку так, чтобы плоскость его была вертикальна, и направлять его так, чтобы прямым зрением через верхнюю часть малого зеркала  $P_1$ , которая не покрыта амальгамой (на чертеже не заштриховано), видеть в середине поля зрения трубы черту истинного горизонта. Пусть от какой-либо точки горизонта луч света попадает в трубу F по пути AKO'. От той же точки горизонта при определенном положении алидады свет в трубу может попасть по пути A'OKO', отразившись предварительно от зеркал  $P_2$  и  $P_1$ . Так как линия горизонта находится очень далеко от инструмента по



Рис. 2. Схема секстана и ход лучей в нем.

сравнению с расстоянием между зеркалами  $P_1$  и  $P_2$ , то лучи AK и A'O можно считать практически параллельными. Зеркала  $P_1$  и  $P_2$  укреплены строго вертикально к плоскости лимба, так что нормали к обоим зеркалам и оптическая ось трубы параллельны плоскости чертежа. При рассмотренном положении секстана в поле зрения трубы наблюдается непрерывная линия горизонта, частично видимая непосредственно, а частично — после отражения от зеркал  $P_2$  и  $P_1$ . Отсчет на лимбе при этом равен нулю. Перемещая затем алидаду, добиваются такого ее положения M', когда появившийся в поле зрения диск Солнца коснется своим краем линии горизонта. Когда это будет достигнуто, отсчет на дуге секстана покажет высоту края Солнца над горизонтом.

При перемещении алидады в положение M' подвижное зеркало  $P_2$  займет положение  $P'_2$ . При этом луч света от Солнца попадает в трубу по пути *BOKO'*, а угол *BOA'* равен высоте Солнца над горизонтом. Подвижное зеркало  $P_2$  повернется влего на угол *NON'* (*ON'* и *ON* — нормали к плоскости зеркала  $P_2$  в обоих его положе-

нцях), который, как это видно из рисунка, вдвое меньше угла BQA'. Чтобы не умножать на два каждый раз угол поворота зеркала  $P_2$ , делениям на алидаде CD приписаны удвоенные числа.

Сама процедура измерения секстаном очень нетрудоемка и занимает мало времени. Но весь секрет работы заключается в том, чтобы при измерениях плоскость инструмента была точно перпендикулярна к горизонту. Практически такая точность недостижима. Поэтому поступают следующим образом. Удерживая секстан примерно вертикально, слегка поворачивают его вправо и влево относительно вертикальной плоскости. При этом в поле зрения трубы диск Солнца будет перемещаться по окружности (рис. 3). Правильным считается такое измерение, когда в процессе движения по ок-

ружности диск Солнца касается линии горизонта АА' лишь один раз в низшей точке дуги (рис. 3, случай 2). В первом и третьем случаях измерение высоты Солнца произведено неверно. В случае 1 эта ошибка явно заметна. Но в случае 3, как д видно на рисунке, при двух положениях секстана диск Солнца будет касаться линии горизонта. Если теперь при этих положениях инструмента отсчет на лимбе принять за действительное зна-



Рис. 3. Возможные перемещения диска Солнца в поле зрения трубы при измерении высоты Солнца секстаном. АА' — линия горизонта.

чение θ, то высота Солнца будет измерена с некоторой погрешностью. Это довольно распространенная ошибка измерения величин θ. Значительные промахи обычно легко выявляются в процессе критического просмотра наблюдений. Небольшие же погрешности зачастую остаются и снижают точность измерения общего содержания озона.

При критическом просмотре выявлению ошибок измерения величин в помогают построения графиков изменений высоты Солнца в течение дня. Отклонения некоторых значений от плавной кривой свидетельствуют о просчетах в определении высоты Солнца или времени наблюдения. Кроме того, полезно проводить сопоставления измеренных значений в с вычисленными по формуле

$$\sin\theta = \sin\varphi \sin\delta + \cos\varphi \cos\delta \cos\tau, \qquad (16)$$

де φ— географическая широта места наблюдения, δ— склонение Солнца, τ— истинное солнечное время наблюдения.

Как видно из изложенного выше, в судовых условиях практически невозможно учесть вклад каждого влияния в суммарную погрешность озонометра. Даже статистический анализ данных наблюдений затруднителен, так как невозможно ввести аэрозольную поправку в каждое измерение и тем самым исключить фиктивный дневной ход величин Ω. Для определения случайной погрешности измерения средних дневных количеств общего содержания озона были отобраны дни, когда число наблюдений было 15 и более. Для каждого дня вычис-

лялись среднеквадратичные отклонения σ_Ω и величины

$$\widetilde{\eta}_{\overline{2}} = \pm \frac{3\sigma_{\Omega}}{\overline{\Omega} \sqrt{\overline{m}}} \cdot 100^{\circ}/_{0},$$

(17)

характеризующие возможные колебания средних дневных значений Ω.

Величина η_Ω зависит от случайных погрешностей измерений, от действительно имевших место колебаний озона в течение дня и



Рис. 4. Максимально возможные отклонения  $\eta_{\overline{Q}}$ % реальных средних дневных значений общего содержания озона от измеренных самолетными озонометрами на разных широтах океанов.

1 — осредненная кривая основной группы точек; 2 — кривая, обобщающая группу минимальных значений у₀.

главным образом от аэрозольной компоненты атмосферы, которая вызывает в большинстве случаев появление фиктивного дневного хода озона.

Как видно на рис. 4, величины  $\eta_{\overline{\Omega}}$ , почти не меняясь на протяжении от 60 до 20° с. ш., южнее резко возрастают и достигают максимума в районе 10—30° ю. ш. (кривая 1). Так как при вычислении величин  $\tilde{\eta}_{\overline{\Omega}}$  использовались данные наблюдений в Атлантическом Индийском и Тихом океанах во все времена года, то рис. 4 в как кой-то мере характеризует возможные отклонения от измеренных значений  $\Omega$  на разных широтах океанов при использовании само летных озонометров.

Помимо величин, группирующихся около кривой 1, на рис. 4 от четливо выделяются точки, расположенные ниже основной массы значений  $\widetilde{\eta_{\alpha}}$  и обобщаемые кривой 2. Несмотря на то, что большее количество наблюдений указывает на существование отчетливо выраженного широтного хода величин  $\eta_{\overline{\Omega}}$ , минимальные значения  $\eta_{\overline{\Omega}}$ ( $\eta_{\overline{\Omega}}'$ ) постоянны на всех широтах и равны 3—4%. Это постоянство значений  $\overline{\eta}'_{\Omega}$ , вероятнее всего, связано с тем, что аэрозоли в этих случаях не оказали заметного влияния на результат измерения. Тогда отклонения  $\overline{\eta}'_{\Omega}$  обусловлены лишь случайными погрешностями измерений, так как только случайная погрешность постоянна в любом пункте измерения. Влияние реальных колебаний озона в течение дня на величины  $\overline{\eta}'_{\Omega}$  можно не учитывать, так как для анализа использовались дни с устойчивой синоптической обстановкой. Таким образом, величина  $\overline{\eta}'_{\Omega}$  характеризует точность определения средних дневных величин общего содержания озона, связанную лишь со случайными погрешностями наблюдений, т. е.  $\overline{\eta'_{\Omega}} \approx$  $\approx \eta_{\overline{\Omega}} \approx 3,5\%$ .

Подтверждение полученному значению  $\gamma_{\Omega}$  (3,5%) можно также найти, анализируя материалы сравнений озонометрических приборов. Величины среднеквадратичных отклонений, проводимые в работах [1, 5, 10], использовались для расчета относительных отклонений

$$\widetilde{\eta}_{\varrho} = \pm \frac{3\widetilde{\sigma}}{\overline{\varrho}} \cdot 100^{\circ}/_{o}.$$
(18)

Средние и минимальные значения η_Ω для каждого прибора за период того или иного сравнения приведены в табл. 5. Таблица 5

Максимально возможные относительные средние квадратичные отклонения отдельных отсчетов  $\widetilde{\eta}_{\mathcal{Q}} = \pm \frac{3\sigma}{\overline{\mathcal{Q}}} \cdot 100\%$  для различных озонометров во время сравнений озенометрических приборов (по материалам работ [1, 5, 10])

	_	Номер озоно-	Величина ~ _{η̂Ω}			
	Дата сравнений	метра М-83	средняя	минимальная		
>	13—19 XII 1963	10	13.5	9,9		
	12—15 V 1969	22	16,7	6,6		
		45	30,2	12,0		
-	24 V—9 VI 1969 29 V—8 VI 1969	24-P CO_10	18,2 15,3	11,4 10,2		
-		and the second second	Cr.	елнее 10.0		

Отождествляя величину  $\eta_{\Omega}$  с погрешностью отдельного измерения, мы завышаем эту погрешность за счет колебаний общего содежания озона. Поэтому, как и выше, выбрав лишь минимальные отно-

сительные отклонения, получим, что в среднем  $\eta_{\Omega} = \pm 10\%$ . Тогда при m = 16 относительная случайная погрешность измерения средних дневных значений озона будет равна  $\pm 2,5\%$ .

Эта погрешность примерно в 1,5 раза меньше погрешности, определенной выше для судовых наблюдений. Такой результат вполне можно было ожидать, так как при сравнениях, естественно, наблюдения проводились со всевозможной тщательностью, и были устранены погрещности, связанные с неточной наводкой прибора на Солнце, неверными определениями высоты Солнца и другими влияниями. Поэтому случайная погрешность измерения средних дневных величин  $\Omega$  самолетными озонометрами на судах, определенная выше и равная ±3,5%, вполне приемлема.

В результате, если ввести постоянную аэрозольную поправку к измеренным на судах значениям  $\overline{\Omega}$ , увеличив их на 11%, то суммарная погрешность определения средних дневных величин озона  $\varepsilon_c$ , связанная с отклонением поправки f от среднего значения (±4%) и со случайными ошибками наблюдения (±3,5%), определится соотношением

$$\varepsilon_{\rm c} = \Delta f + \eta_{\tilde{c}}$$

(19)

и составит в среднем  $\pm 7,5\%$ .

Так как в годовом и широтном ходе озона, а также при его колебаниях в связи с изменениями аэросиноптических условий величины  $\overline{\Omega}$  могут изменяться на 10—15%, то при погрешности определения средних дневных величин  $\Omega$ , не превышающей 10%, прибор можно считать пригодным для озонометрических измерений. При судовых измерениях самолетный озонометр удовлетворяет этому условию.

В заключение остановимся на вопросе о сравнимости показаний фильтровых озонометров и спектрофотометров Добсона, которые являются основными приборами для измерений озона за границей и используются в СССР главным образом в качестве эталонов. Для этой цели воспользуемся материалами официальных сравнений озонометрических приборов, которые опубликованы в работах [1, 5, 10, 12] и на основании которых составлена табл. 6.

Если исключить данные сравнения озонометров со спектрофотометром Добсона № 71 (до 1969 г. аэрозольная поправка не вводи-

лась), то отклонения  $\eta$ , равные  $\frac{\overline{\Omega} - \overline{\Omega}_{\mu}}{\overline{\Omega}_{\pi}} \cdot 100\%$  ( $\overline{\Omega}_{\mu}$  - среднее

дневное значение общего содержания озона, полученное по спектрофотометру), не превышали ±14%. Как показали сравнения Отклонения средних дневных величин общего содержания озона, измеренных озонометрами, от средних дневных значений Ω, измеренных спектрофотометрами Добсона (Ω_π).

(По материалам работ [1, 5, 10, 12])

<u>}</u>		Спект том Доб	рофо- іетр сона	Но озоно	мер метра	Отклоне	ение η =	± <u>-</u> <u><u></u><u></u><u></u><u></u></u>	<u></u> .100%
	Дата сравнений	номер	пара длин волн	универсальный или М-83	самолетный	максил +	альное	среднее	среднее из абсо- лютных величин т
	2—7 VI 1959 13—19 XII 1963	9 71 71	C AD C	$ \frac{-10}{11} $ 10	<u> </u>	5,6 2,2 4,2	8,5 17,2 20,9 12,2	-2,6 -8,2 -11,8 -6,5	6,0 8,7 11,8 8,5
9	1215 V 1969	, 84	AD	$     \begin{array}{c}       11 \\       22 \\       60 \\       45     \end{array} $		$     \begin{array}{c}                                     $	$15.5 \\ 5.6 \\ 10.2 \\ 10.8$	-10,2 1,1 -8,2 1,2	10,2 5,0 8,2 8,4
	24 V-8 VI 1969	108 108	AD C	51 24-P 24-P	10	13,0 6,5 6,5 9,9	5,6 7,5 11,0	3,6 1,7 0,1 4,9	7,4 3,7 3,6 4,9
	26 V-8 VI 1969	9	С	24-P	10 10	8,1 13,6 5,0	$ \begin{array}{c} 0,7\\ 13,1\\ 5,1 \end{array} $	$ \begin{array}{c c} 2,8 \\ -3,1 \\ -0,5 \end{array} $	3,2 7,7 3,4

в г. Шиофоке (Венгрия) [10], по спектрофотометру Добсона № 71 получаются величины Ω, завышенные на 10%. Если же ввести поправку, уменьшив результаты измерений по спектрофотометру Добсона № 71 на 10%, то максимальные отклонения т и в этом случае будут находиться в пределах ±14%.

Так как число дней наблюдений во всех случаях сравнений было мало, получить кривые распределений величин  $\eta$  не представляется возможным. Несколько же значений  $\eta$  случайно могут оказаться с одним знаком, что и наблюдалось для некоторых приборов (табл. 6). Поэтому расхождения между показаниями приборов точнее будут характеризовать средние отклонения ( $\eta$ ), полученные рез учета знака величин  $\eta$ .

Как видно из табл. 6, расхождения между показаниями озонометров и спектрофотометров Добсона № 9 и 108 (СССР) близки между собой, а величина η в среднем для всех сравнений составила 4,6%. При использовании в качестве эталона спектрофотометра Добсона № 84, принадлежащего Польской Народной Республике, отклонения η были в пределах 5—8,5%.

5 Зак. № 262

Таким образом, рассмотрение результатов сравнений озонометрических приборов приводит к выводу о том, что данные по общему содержанию озона, получаемые в настоящее время в СССР и а границей, сопоставимы между собой.

Как было сказано выше, основная погрешность озонометра обусловлена аэрозолем. При расчете же аэрозольной поправки встречаются значительные трудности. Поэтому важнейшей задачей фильтровой озонометрии является уменьшение аэрозольной погрешности. С этой целью в 1972 г. судовые станции начали оснащаться озонометрами с новыми светофильтрами.

Теоретические расчеты [16] показывают, что приборы с полосой пропускания более 20 нм могут иметь ту же точность, что и приборы с узкими полосами пропускания. Кроме того, точность возрастает, если использовать для измерений более короткие длины волн. С учетом этого обстоятельства светофильтры подобраны таким образом, чтобы один из них пропускал длины волн короче 310 нм. Основные данные о новых светофильтрах приведены в табл. 7, в которой для сравнения указаны также характеристики и старых светофильтров.

т	~	6	-			~	~7
T.	а	υ	л	И	ц	а	_ 1

	<ul> <li>An example of the second se Second second secon second second sec</li></ul>				
Номер свето <del>.</del> фильтра	Марка и толщина светофильтров, мм	Длина волны, сов- падающая с максиму- мом спектральной чувствительности $\lambda_m$ , нм	Ширина кривой спектральной чувет- вительности на поло- вине высоты, нм	Коэффициент погло- щения озона для $\lambda_m$ , см ⁻¹	_
1 (старый) 1 (новый) 2 (старый) 2 (новый)	$\begin{array}{c} & \forall \Phi C-2 \ (5) \ + \ \mbox{\ensuremath{\mathbb{K}}} C \ - \ \mbox{\ensuremath{\mathbb{3}}} (2) \\ & \forall \Phi C-2 \ (3,5) \ + \ \mbox{\ensuremath{\mathbb{K}}} C \ - \ \mbox{\ensuremath{\mathbb{2}}} (9) \\ & \forall \Phi C-2 \ (3,5) \ + \ \mbox{\ensuremath{\mathbb{K}}} C \ \mbox{\ensuremath{\mathbb{3}}} (2) \\ & \forall \Phi C-2 \ \mbox{\ensuremath{\mathbb{3}}} (3,5) \ + \ \mbox{\ensuremath{\mathbb{K}}} C \ \mbox{\ensuremath{\mathbb{3}}} (2) \\ & \forall \Phi C-2 \ \mbox{\ensuremath{\mathbb{3}}} (3,5) \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \ \ \mbox{\ensuremath{\mathbb{3}}} (3,5) \ \ \ \ \mbox{\ensuremath{\mathbb{3}}} (2) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	318 298 369 326	21 21 22 21	0,58 5,25 0,000 0,115	

### Характеристики старых и новых (с 1972 г.) светофильтров для озонометров конструкции Г. П. Гущина

Из табл. 7 видно, что в области пропускания первого светофильтра поглощение радиации озоном резко возросло (в 9 раз) по сравнению со старым вариантом. Теперь аэрозольная составляющая атмосферы будет вносить очень незначительный вклад в ослабление солнечной радиации в этом участке спектра. Кроме того, расстояние между светофильтрами уменьшено почти в два раза, и этот фактор еще более уменьшает погрешность измерения озона, связанную с аэрозолем. Таким образом, при использовании новых светофильтров для определения общего содержания озона аэрозольную составляющую атмосферы, по-видимому, можно не принимать во внимание.

#### СПИСОК ЛИТЕРАТУРЫ

Бессонов Н. П. и др. О результатах сравнения различных озонометрических приборов СССР.— «Метеорология и гидрология», 1971, № 7, с. 97—107. 2. Гущин Г. К. Оптические характеристики аэрозоля над океанами. — «Тр. ГГО», 1970, вып. 255, с. 52-68. 3. Гущин Г. К. Прозрачность атмосферы над Тихим океаном. — «Тр. ГГО», 1970, вып. 255, с. 40—51. 4. Гущин Г. П. Исследование атмосферного озона. Л., Гидрометебиздат, 1963. 267 c. 医髂骨膜炎 计分子 网络新门 经行行 网络大小标准 化浓末 5. Гущин Г. П. Международные сравнения озонометрических приборов СССР и ГДР в Ташкенте. — «Тр. ГГО», 1966, вып. 184, с. 35—40. 6. Гущин Г. П. Спектрофотометрические исследования характеристик атмосферного аэрозоля в различных географических районах СССР. — «Тр. ГГО», 1968, вып. 223, с. 65—80. 7. Гущин Г. П. Исследование озона в земной атмосфере. Автореф. дисс. на соискание учен. степени д-ра техн. наук. Л., изд. ГГО, 1969. 64 с. 8. Гущин Г. П. Об аэрозольной погрешности данных общего содержания атмосферного озона, полученных на озонометрических станциях СССР. - «Тр. ГГО», 1969, вып. 237, с. 81—87. 9. Гущин Г. П. К методике введения аэрозольной поправки в результаты измерения общего содержания атмосферного озона. — «Тр. ГГО», 1969, вып. 237, c. 69—80. 10. Гущин Г. П. Международные сравнения озонометрических приборов в Шиофоке (Венгрия). — «Тр. ГГО», 1972, вып. 279, с. 128—137. 11. Егоров Б. Н. Прозрачность атмосферы над Северной Атлантикой.— «Тр. ГГО», 1972, выш. 282, с. 220—229. 12. Знаменский А. А. Результаты сравнения различных озонометрических приборов, проведенного в Главной геофизической обсерватории им. А. И. Воейкова. В кн.: Атмосферный озон. М., Изд. МГУ, 1961, с. 187-194. 13. Методические указания по определению характеристик прозрачности атмосферы для актинометрических отделов (групп) гидрометеорологических обсерваторий УГМС. Л., Изд. ГГО, 1965. 36 с. to all 14. Методические указания по производству и обработке наблюдений за общим содержанием атмосферного озона. Л., Гидрометеоиздат, 1970. 68 с. 15. Сивков С. И. Общий метод приведения интенсивности солнечной радиации к определенному числу масс атмосферы. «Тр. ГГО», 1949, вып. 14 (76), c. 52--62. 16. Шаламянский А. М. Особенности измерения общего содержания озона приборами с широкими полосами пропускания. — «Тр. ГГО», 1970, вып. 255, c. 148-159.

17. Юиге Х. Химический состав и радиоактивность атмосферы. М., «Мир», 1965. 423 с.

5*

Г. Қ. ГУЩИН

## О СВЯЗИ МЕЖДУ ОБЩИМ СОДЕРЖАНИЕМ ОЗОНА И КОЛИЧЕСТВОМ ВОДЯНОГО ПАРА В АТМОСФЕРЕ НАД ОКЕАНАМИ

Процесс взаимосвязи атмосферного озона и водяного пара еще слабо изучен. Теоретические расчеты [7, 8, 13] показывают, что даже малое количество водяного пара в стратосфере может значительно уменьшить равновесную концентрацию озона. Частично эти выводы подтверждают самолетные измерения, проводившиеся между 80° с. ш. и 10° ю. ш. на высотах 6—15 км и позволившие Рочу [12] обнаружить к северу от 45° с. ш. обратную связь между озоном и отношением смеси водяного пара.

В настоящей статье рассматривается связь общего содержания атмосферного озона с количеством водяного пара на разных высотах. Исходным материалом для работы явились данные наблюдений в 1963—1969 гг. на НИС «А. И. Воейков», «Ю. М. Шокальский» и «Академик Королев» в тропических и субтропических районах Тихого и Индийского океанов.

Общее содержание озона измерялось самолетными озонометрами конструкции Г. П. Гущина [2], которые каждый год градуировались по спектрофотометру Добсона в Воейково, а перед рейсами их показания сличались с данными озонометров М-83 во Владивостоке.

Количество водяного пара в вертикальном столбе атмосферы вычислялось по данным радиозондирований по формуле

$$w_{i} = \frac{1}{80} (D_{\rm B} + D_{\rm H}) (E_{\rm B} + E_{\rm H}) (r_{\rm B} + r_{\rm H}) (H_{\rm B} - H_{\rm H}), \qquad (1)$$

где  $w_i$  — содержание водяного пара в некотором слое атмосферы в сантиметрах осажденной воды;  $D = \frac{0,795 \cdot 10^{-2}}{1+0,0036t}$  (*t* — температура воздуха в °C); *E* — максимальная упругость водяного пара в миллибарах при температуре *t*; *r* — относительная влажность в процентах; *H* — высота в километрах. Индексы «в» и «н» относятся соответственно к верхней и нижней границам данного слоя. Для примера в табл. 1 показаны несколько случаев расчета по формуле (1) величин  $w_i$  для четырехкилометровых слоев атмосферы на разных широтах океанов.

Как видно из табл. 1, минимальное количество водяного пара наблюдалось над тропопаузой на высотах 16—20 км. Величины абсолютной влажности воздуха в этом слое находились в пределах Количество водяного пара в сантиметрах осажденной воды внутри четырехкилометровых слоев атмосферы над океанами

Границы слоев атмосферы, км	25 VIII 1969, 0° 58′с.ш., 88° 32′в.д.	23 VII 1967, 19° 48′ю.ш., 65° 12′в.д.	4 VI 1967, 30° 00′ю.ш., 59° 30′в.д.	16 IX 1969, 33° 38′ с.ш., 150° 10′ в.д.	19 IX 1969, 40° 00' с. ш., 151° 00' в. д.
$\begin{array}{r} 0-4\\ 4-8\\ 8-12\\ 12-16\\ 16-20\\ 20-24\\ 24-28\\ 28-32\\ 32-36\\ 36-40\\ \end{array}$	4,152 0,976 0,107 0,026 0,013 0,019	$\begin{array}{c} 2,483\\ 0,0200\\ 0,0010\\ 0,0003\\ 0,0021\\ 0,0040\\ 0,0100\\ 0,0333\end{array}$	$\begin{array}{c} 2,362\\ 0,0230\\ 0,0027\\ 0,0015\\ 0,0048\\ 0,0093\\ 0,0085\\ 0,0120\\ 0,0210\end{array}$	3,826 1,181 0,1750 0,0075 0,0008 0,0038 0,0063 0,0063	$\begin{array}{c} 1,560\\ 0,161\\ 0,0400\\ 0,0042\\ 0,0016\\ 0,0051\\ 0,0091 \end{array}$
Высота тропо- паузы, км	17,3	16,9	17,0	16,9	17,0

0,8—4,0 мг/м³. Подобная сухость воздуха на определенных высотах в стратосфере отмечалась многими исследователями [4, 6, 9]. В частности, Добсон обращал внимание на величины абсолютной влажности воздуха, меньшие 1 мг/м³ [6]. Такое низкое влагосодержание в стратосфере отмечалось также неоднократно и над океанами. Иллюстрацией сказанному может служить радиозондирование атмосферы, выполненное 23 июля 1967 г. в Индийском океане и показавшее на высотах 16—20 км очень малое количество водяного пара в среднем 0,8 мг/м³ (табл. 1).

Как уже было отмечено, над океанами слой наиболее сухого воздуха наблюдается выше тропопаузы. Этот факт находится в полном согласии с предшествующими исследованиями [9—11], в которых установлено, что «тропопауза влажности» располагается на высоте 0,6—3,0 км над обычной тропопаузой.

Выше 20 км и вплоть до 40 км (максимально наблюдавшейся высоты зондирования) влагосодержание слоев возрастает практически для всех распределений, использованных в данной работе. В слое 28—32 км величины  $w_i$  превосходят свои минимальные значения в 6—30 раз, а в слое 32—36 км — в 8—100 раз? Подобные вертикальные распределения влагосодержания воздуха отмечались также и ранее [4] и характерны для так называемой модели влажной стратосферы.

Таким образом, результаты определений влажности воздуха в стратосфере с помощью радиозондов РКЗ с достаточной точностью согласуются с измерениями, которые выполнены приборами, специально предназначенными для определения влажности воздуха при низких отрицательных температурах (например, гигрометром Добсона—Брюера [3] и электролитическим гигрометром-радиозондом Брейзфилда [5]). Сравнение средних дневных значений общего содержания озона ( $\Omega$ ) и количества водяного пара во всей толще атмосферы на разных широтах указывает в первом приближении на обратную связы между ними (рис. 1). Для количественной оценки степени связи были вычислены коэффициенты корреляции *г* между величинами  $\Omega$ и значениями  $w_i$  внутри каждого четырехкилометрового слоя атмосферы, начиная от поверхности океана.

Результаты расчетов (табл. 2, рис. 2) показывают, что коэффициент корреляции между величинами  $\Omega$  и  $w_i$  в тропосфере отрицательны и почти не меняются с высотой. На высоте около 12 км в вертикальном ходе величины *r* наблюдается резкий скачок, коэффициенты корреляции становятся положительными и остаются таковыми до высоты 32 км. Максимальная положительная корреляция между величинами  $\Omega$  и  $w_i$  отмечается на высоте около 22 км, отвечающей примерно уровню максимальной точности озона.

Таблица 2

#### Коэффициенты корреляции средних дневных величин общего содержания озона с количеством водяного пара на разных высотах (в скобках указано количество дней наблюдений)

Границы слоя атмосферы, км

A REAL PROPERTY.	1. State 1.	and the second second							6
0—4	48	8-12	12-16	16—20	2024	24-28	28-32	0-00	¢.
0,55 (22)	-0,51 (22)	0,40 (62)	0,13 (56)	0,33 (53)	0,39 (40)	0,23 (24)	0,11 (10)	-0,43 (160)	
	•	•	•	•					

Для всех случаев радиозондирований в океане между 30° ю. ш. и 40° с. ш., использованных в данной работе, средняя высота тропопаузы составила 16 км. Следовательно, отмеченное выше изменение знака коэффициента корреляции (рис. 2) происходит непосредственно над тропопаузой.

Для объяснения полученных связей между величинами  $\Omega$  и  $w_i$ нужно учесть, что географическое их распределение не одинаково. Если общее содержание озона растет от экватора к умеренным широтам, то общее содержание водяного пара, наоборот, уменьшается к 40° с. ш. и 40° ю. ш. (рис. 1). А поскольку около 97% общего количества водяного пара находится в слое 0—8 км (табл. 3), то для слоев атмосферы 0—4 и 4—8 км получаются отрицательные коэффициенты корреляции между рассматриваемыми величинами.

В стратосфере можно ожидать обратное тропосферному распределение водяного пара. В среднем стратосфера холоднее около экватора и теплеет к северу и югу от него. Эта закономерность часто прослеживается на аэрологических разрезах. Для примера на рис. 3 показано широтное распределение минимальной температуры на уровне тропопаузы  $(t_r)$ , полученное в 3-м рейсе НИС «Академик



Тихий океан: 1—27/IV—10/V 1965 г., 2—2I/XII 1965 г.—3/II 1966 г., 3—22—30/IV 1967 г., 4—8—20/IX 1969 г.; Индийский океан: 5—6/V—26/VI 1967 г., 6—13—25/VIII 1969 г.

Таблица З

Общее содержание водяного пара в вертикальном столбе атмосферы (w) и в слое 0—8 км (w₀₋₈) в сантиметрах осажденной воды в Тихом и Индийском океанах (17-й рейс НИС «А. И. Воейков»)

2						
3 1	Дата	Широта	Долгота	<b>W</b>	^w 08	$\frac{w_0-8}{w} \cdot 100\%$
	22 IV 1967 23 IV 26 IV 27 IV 28 IV 29 IV 30 IV 6 V 9 V 10 V 13 V 17 V 22 V 23 V 24 V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 130^\circ \ 00' \ B\\ 128 \ 30\\ 124 \ 00\\ 120 \ 00\\ 117 \ 00\\ 117 \ 00\\ 114 \ 00\\ 110 \ 00\\ 90 \ 30\\ 81 \ 36\\ 78 \ 00\\ 66 \ 42\\ 52 \ 00\\ 51 \ 00\\ 54 \ 00\\ 57 \ 18 \end{array}$	1,757 $1,752$ $4,007$ $5,161$ $5,226$ $5,566$ $5,650$ $5,730$ $5,401$ $5,890$ $5,652$ $3,290$ $4,203$ $2,759$ $2,969$	$1,644 \\ 1,683 \\ 3,938 \\ 5,017 \\ 5,141 \\ 5,416 \\ 5,536 \\ 5,545 \\ 5,298 \\ 5,646 \\ 5,506 \\ 3,256 \\ 4,052 \\ 2,665 \\ 2,885 $	94 96 98 97 98 97 98 97 98 96 98 96 98 99 99 96 97 97

Королев» и характеризующее в какой-то мере температурный режим всей стратосферы. В частности, понижение температуры и



Рис. 2. Изменение с высотой (H) коэффициента корреляции r между общим содержанием озона и количеством водяного пара в четырехкилометровых слоях атмосферы.

свидетельствует также о похолодании во всей стратосфере. Чем ниже температура  $t_{\rm T}$ , тем интенсивнее происходит сублимация водяного пара в верхней тропосфере и, следовательно, меньшее количество водяного пара сможет попасть в стратосферу. Кроме того, кристаллы льда, переносимые через тропопаузу, будут испаряться быстрее и в большем количестве в стратосферном воздухе субтропиков, так как в стратосфере на любой высоте температура в районах 30-40° широты выше, чем над экватором. Таким образом, в результате регулирующего действия температуры воздуха в стратосфере формируется широтное распределение количества водяного пара с минимумом около ( экватора (рис. 3). В каждом конкретном случае, конечно, возможны отклонения от этого среднего распределения величин *w_i*, как, например, отмеченное на рис. З некоторое уменьшение к 30° ю. ш. температуры  $t_{\rm T}$  (и соответственно и величины  $w_i$ ), которое было связано со смещением к югу суб-

тропического антициклона и затоком холодных стратосферных массвоздуха от экватора.

В результате всего изложенного выше напрашивается вывод о том, что полученное распределение коэффициентов корреляции

Таблица 4

#### Коэффициенты корреляции между средними дневными величинами общего содержания озона и количества водяного пара на разных высотах в районе 27—33° ю. ш. и 30—60° в. д. (в скобках указано количество дней наблюдений)

		Границы слоя	атмосферы, км		
0—8	8-12	12-16	16—20	2024	24-28
-0,25	-0,05	+0,46	+0,34	+0,34	+0,20
(14)	(14)	(14)	(14)	(14)	(14)

72,
(рис. 2) связано с использованием при их расчетах величин Ω и  $w_i$ , измеренных в разных географических районах.

У Однако и при наблюдениях на малом полигоне характер изменчивости коэффициента *r* с высотой сохраняется (табл. 4). Больше того коэффициенты корреляции между общим содержанием озона и количеством водяного пара в стратосферных слоях (выще 16 км) для ограниченного района и для всей акватории океанов практически совпадают (см. табл. 2 и 4).

При наблюдении в одной точке связи между величинами  $\Omega$  и  $w_i$  можно объяснить, полагая, что основной причиной колебаний общего содержания озона и количества водяного пара является адвекция воздуха. Перемещение воздушных масс из более высоких ши-





 $1 - t_r; \ 2 - w_i.$ 

рот приводит в пункте наблюдения к возрастанию общего содержания озона, к увеличению количества водяного пара в стратосфере и уменьшению его в тропосфере. При адвекции же экваториального воздуха, наоборот, количество озона и водяного пара в стратосфере уменьшается, а в тропосфере величины  $w_i$  возрастают.

Кроме того, при адвекции воздуха изменяется также минимальная температура тропопаузы. Поэтому, если при возрастании (уменьшении) количества озона над каким-либо пунктом происходит также возрастание (уменьшение) температуры  $t_{\rm T}$ , колебания озона обусловлены адвективными факторами. Причем связь между величинами  $\Omega$  и  $t_{\rm T}$  выражена достаточно четко (рис. 4). Коэффициент корреляции между этими величинами, рассчитанный по материалам наблюдений, полученным во время 12-го и 14-го рейсов НИС «А. И. Воейков» и во время 3-го рейса НИС «Академик Королев» (всего 42 случая), составил +0,83, а его вероятное отклонение ±0,03. Уравнение регрессии между общим содержанием озона и минимальной температурой тропопаузы в зоне 40° с. щ.—30° ю. ш. имеет вид

$$\Omega = 0.0033t_{\rm T} + 0.484.$$

(2)

Средняя квадратическая ошибка этого уравнения равна ±0,024.

Поскольку измерения озона на судах производились только по Солнцу, то при сопоставлении величин  $\Omega$  и  $t_{\rm T}$  использовались всегда данные дневных радиозондирований.

Как уже отмечалось выше, при понижении (повышении) температуры  $t_{\rm T}$  уменьшается (увеличивается) количество водяного пара в стратосфере. Однако эта зависимость, проявляющаяся при сглаживании или осреднении данных, далеко не всегда выражена явно



Рис. 4. График связи между общим содержанием озона Ω и минимальной температурой тропопаузы t_т.

Тихий океан: 1 — май—июнь 1965 г., 2 — декабрь 1965 г.—январь 1966 г.; Тихий и Индийский океаны: 3 — август—сентябрь 1969 г.

в каждом конкретном случае, что и обусловливает появление малых коэффициентов корреляции между величинами  $\Omega$  и  $\omega_i$ . Этот факт свидетельствует о том, что количество водяного пара в стратосфере не однозначно связано с температурой  $t_{\rm T}$ . Величины  $\omega_i$ , кроме того, могут зависеть, например, от стратификации стратосферы (изотермия, та или иная форма инвекции) и турбулентности на уровне тропопаузы.

Как отмечалось выше, адвекция воздуха из высоких широт приводит к возрастанию количества водяного пара в стратосфере. При этом следовало бы ожидать уменьшения общего содержания озона, так как, согласно теоретическим исследованиям [7, 8, 13], все рассматриваемые цепи реакций с участием водяного пара в конечном итоге приводят к разрушению озона. Наблюдениями же фиксируется обратное соотношение. Значит локальное разрушение озона при увеличении количества водяного пара в стратосфере маскируется более мощным возрастанием его в результате адвекции.

Проследить зависимость общего содержания озона от количества водяного пара, поступающего в стратосферу, возможно только в ограниченном до больших высот объеме воздуха, в котором регулируется перенос влаги в верхнюю тропосферу и стратосферу. Наиболее подходящим (и, пожалуй, единственным) для этой цели местом является внутритропическая зона конвергенции (B3K).

Внутри ВЗК развиваются мощные восходящие движения воздуха, способствующие выносу водяного пара в верхние слои атмосферы. Адвекция же воздуха в зону ВЗК, вероятно, очень затруднена, так как при перемещении барических образований ВЗК тоже смещается как единое целое в ту или другую сторону. Только при мощных вторжениях воздуха непрерывность и целостность ВЗК может нарущаться. Но подобные ситуации в данной работе не рассматривались. Отбирались лишь те случаи, когда синоптические и аэрологические данные точно подтверждали наличие ВЗК.

Рассмотреть зависимость  $\Omega$  от  $w_i$  внутри ВЗК не представилось возможным, так каж для дней измерения озона в большинстве случаев имеются неполные аэрологические данные, необходимые для



Рис. 5. Примеры вертикального распределения относительной влажности *г* в зоне конвергенции пассатных ветров. расчета количества водяного пара в стратосфере. Поэтому пришлось ограничиваться рассмотрением связи общего содержания озона с некоторым параметром *z*, характеризующим мощность вертикальных движений в зоне конвергенции.





Параметр z представляет собой высоту, до которой распространяются высокие значения относительной влажности. Для определения величины z использовались кривые вертикального распределения относительной влажности (рис. 5). За величину z принималась высота середины слоя, в котором происходило резкое уменьшение относительной влажности. На рис. 5— это слои AB и CK. Горизонтальными засечками отмечены высоты z. Случаи со значительными инверсиями относительной влажности на высотах не рассматривались, так как задерживающие слои атмосферы нарушают зависимость потока субстанции от мощности восходящих движений в приводном слое.

Чем интенсивнее восходящие движения в приводном слое, тем на больщую высоту выносится влага и большее количество водяного пара поступает в стратосферу. Следовательно, при увеличении высоты *z* следует ожидать уменьшения общего содержания озона, что и подтверждается наблюдениями (рис. 6).

Для зависимости общего содержания озона от параметра z в ра боте [1] была предложена формула

$$\Omega = \frac{0,255}{1+0,09z-0,002z^2}$$

(3

где z берется в километрах. Формула (3) подтверждена теперь уже более многочисленными измерениями и описывает зависимость, представленную на рис. 6.

В настоящей работе использовались данные по озону, в которые не введена аэрозольная поправка.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Гущин Г. К. Широтный ход и сезонные колебания общего содержания атмосферного озона в Индийском океане. — «Тр. ГГО», 1972, вып. 279, с. 85—93.
- 2. Гущин Г. П. Исследование атмосферного озона. Л., Гидрометеоиздат, 1963. 267 c.
- Добсон Р. М. Б., Брюер А. В., Квайлонг Б. М. Метеорология нижних слоев стратосферы. УФН, 1947, 31, № 1, с. 96—128.
   Малкевич М. С., Самсонов Ю. Б., Копрова Л. И. Водяной пар
- в стратосфере. УФН, 1963, 80, № 1, с. 93—124.
- 5. Brasefield C. J. Measurements of atmospheric humidity up to 35 kilometers. — "J. Meteorol.", 1954, 11, No. 51, p. 412-416.
- 6. Dobson G. M. B. Origin and distribution of poliatomic molecules in the atmosphere. — "Proc. Roy. Soc.", 1956, A 236, No. 1205.
- Hesstvedt E. On the photochemistry of ozone in the ozone Layer. "Geofys. Publ. Geophysica Norvegica", 1968, vol. XXVII, No. 5.
   Hunt B. G. Photochemistry of ozone in a moist atmosphere. "J. Geophys.
- Res", 1966, vol. 71, No. 5, p. 1385-1398.
- Me Kinnon D., Morewood H. W. Water vapor distribution in the lower stratosphere over North and South America. "J. Atmos. Sci.", 1970, 27, No. 3, p. 483-493.
- 10. Murgatroyd R. J., Goldsmith P., Hollings W. E. H. Some recent measurements of humidity from aircraft up to heights of about 50000 ft over southern.—"England. Quart. J. Roy. Meteorol. Soc.", 1955, 81, No. 350, p. 533—537.
- 11. Murgatroyd R. J., Goody R. M. Sources and sinks of radiative enerdy from 30 to 90 km. - "Quart. J. Roy. Meteorol. Soc.", 1958, 85.
- 12. Roach W. T. High altitude aircraft observations of the ozone and water vapour distribution from 80°N to 10°S.— "Monogr. Union geod. et geophys. internat.", 1963, No. 19.
- 13. Roney P. L. On the influence of water vapour on the distribution of stratospheric ozone. -- "J. Atmos. and Terr. Phys.", 1965, No. 27, N 11/12, p. 1177-1190.

# Г. П. ГУЩИН

# МЕТОДИКА И ПРИБОР ДЛЯ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОЙ ПРОЗРАЧНОСТИ АТМОСФЕРЫ И ХАРАКТЕРИСТИК АТМОСФЕРНЫХ АЭРОЗОЛЕЙ

## 1. Введение

Спектральная прозрачность является важной геофизической характеристикой, с помощью которой определяются газовые и аэрозольная компоненты атмосферы. Видимость космических объектов через атмосферу снизу и видимость поверхности земли сверху через разрывы в облаках определяется в основном спектральной прозрачностью атмосферы.

Систематические сведения о спектральной прозрачности атмосферы позволяют следить за аэрозольной и газовой загрязненностью всей толщи атмосферы. Данные о газовых и аэрозольной компонентах используются для исследования радиационного и теплового режима и конденсационных процессов в атмосфере. При этом хорошо известно, что режим естественной освещенности и ультрафиолетовый климат планеты находятся в тесной зависимости от таких компонентов атмосферы, как атмосферный аэрозоль и озон.

Регулярные сведения о спектральной прозрачности атмосферы, собранные с территории страны, необходимы для выбора мест под строительство астрономических станций и обсерваторий и некоторых медицинских учреждений.

В отличие от интегральной прозрачности атмосферы, измеряемой на актинометрических станциях, спектральная прозрачность является однозначной характеристикой оптических свойств атмосферы, не подверженной осложняющему влиянию эффекта Форбса [1].

До настоящего времени отсутствовали систематические данные о спектральной прозрачности атмосферы и аэрозолей, полученные одновременно в разных географических районах СССР [2—4]. При этом в наибольщей степени отсутствовали сведения о спектральной прозрачности атмосферы в ультрафиолетовой области спектра.

Указанные выше обсто тельства определяют научное и практическое значение настоящей работы, которая по своему содержанию является продолжением ранее опубликованных работ автора [5—9] и будет продолжена дальше по мере накопления данных по спектральной прозрачности атмосферы.

Основной целью настоящей работы являлось:

а) создание методики и аппаратуры для измерения на сети станций спектральной прозрачности атмосферы и характеристик

атмосферного аэрозоля, испытание ее и внедрение на сети станций ГУГМС;

б) организация и проведение измерений спектральной прозрачности атмосферы в течение сравнительно длительного периода времени в разных районах СССР.

Сведения о метеорологических станциях, на которых производились измерения спектральной прозрачности атмосферы и характеристик атмосферного аэрозоля, приводятся в табл. 1. Как видно из таблицы, сеть указанных станций в настоящее время сравнительно небольшая, состоит из 28 станций, большинство из которых проработало менее трех лет.

Таблица 1

№ пп.	Станция	угмс	Широта	Долгота	Год (начало наблюде- ний)
1 2 3 4 5 6	Алма-Ата Аральское Море Ашхабад Большая Елань Владивосток Воронеж	Казахской ССР Узбекской ССР Туркменской ССР Сахалинское ДВ НИГМИ Центрально-Чер-	43° 14′ C 46 47 37 58 46 55 43 07 51 42	$\begin{array}{c} 76^\circ \ 56^\circ \ B \\ 61 \ \ 40 \\ 58 \ \ 20 \\ 142 \ \ 44 \\ 131 \ \ 54 \\ 39 \ \ 10 \end{array}$	1969 1969 1970 1969 1969 1969
7 8 9 10	Гурьев Иркутск Караганда Феодосия (Кара-	ноземных областеи Казахской ССР Иркутское Казахской ССР ГГО	$\begin{array}{cccc} 47 & 01 \\ 52 & 16 \\ 49 & 48 \\ 45 & 02 \end{array}$	$\begin{array}{cccc} 51 & 51 \\ 104 & 21 \\ 73 & 08 \\ 35 & 23 \end{array}$	1969 1970 1969 1967
$11 \\ 12 \\ 13$	Красноярск Куйбышев Ленинград (Воей-	Красноярское Приволжское ГГО	$\begin{array}{cccc} 56 & 00 \\ 53 & 15 \\ 59 & 58 \end{array}$	$\begin{array}{rrrr} 92 & 53 \\ 50 & 27 \\ 30 & 18 \end{array}$	1969 1970 1969
14 15 16 17	ково) Львов Мурманск Нагаево Николаевск-на-	Украинской ССР Мурманское Колымское Дальнего Востока	49 49 68 58 59 35 53 09	$\begin{array}{cccc} 23 & 57 \\ 33 & 03 \\ 150 & 47 \\ 140 & 42 \end{array}$	1971 1969 1969 1971
18 19	Амуре Омск Петропавловск- Камиатский	Омское Камчатское	$54 56 \\ 52 58$	$\begin{array}{ccc} 73 & 24 \\ 158 & 45 \end{array}$	1968 1969
20 21 22 23 24 25 26 27	Пачатскии Печора Свердловск Семипалатинск Сковородино Рига Тиксн Тура Цимлянское	Северное Уральское Казахской ССР Дальнего Востока Латвийской ССР Тиксинский РМЦ Красноярское Северо-Кавказ- ское	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1969 1968 1972 1970 1970 1970 1970 1970 1970
28	Чарджоу	Туркменской ССР	39 05	63 36	1970

Метеорологические станции ГУГМС, на которых измеряются спектральная прозрачность атмосферы и характеристики атмосферного аэрозоля

В выполнении работы, кроме Главной геофизической обсерваэтории, принимали участие ряд ГМО УГМС (табл. 1). В подготовке материала для написания настоящей работы и в ее обсуждении принимали участие сотрудники отдела актинометрии и атмосферной оптики ГГО К. И. Ромашкина, А. М. Шаламянский, Т. А. Павлюченкова.

# 2. Основные определения и формулы

Введем несколько определений, необходимых для дальнейшего изложения.

Спектральной прозрачностью атмосферы  $P_{\lambda}$  называется отношение потока монохроматического или квазимонохроматического излучения, прошедшего через атмосферу в виде параллельного пучка в направлении вертикали, к потоку излучения тех же длин волн на верхней поверхности атмосферы. Под квазимонохроматическим излучением здесь понимается излучение, характеризующееся относительно малым интервалом длин волн (несколько единиц или несколько десятков нанометров).

Спектральная прозрачность атмосферы определяется формулой

$$P_{\lambda} = \left(\frac{S_{\lambda}}{S_{\lambda,0}}\right)^{1/m}, \qquad (1)$$

где  $S_{\lambda}$  — прямая солнечная радиация с длиной волны  $\lambda$  у поверхности земли;  $S_{\lambda,0}$  — прямая солнечная радиация с длиной волны  $\lambda$  на внешней поверхности атмосферы; m — оптическая масса атмосферы, соответствующая угловой высоте диска Солнца в момент измерения  $S_{\lambda}$ .

Ввиду того что высоты пунктов, где производятся измерения спектральной прозрачности атмосферы, могут быть различными, для сравнимости применяется нормализованная спектральная прозрачность

$$P_{\lambda, H} = \left(\frac{S_{\lambda}}{S_{\lambda, 0}}\right)^{\rho_0/pm}, \qquad (2)$$

где  $p_0$  и p — давление на уровне моря и в пункте наблюдений соответственно.

В качестве характеристик атмосферных аэрозолей в работе используются в основном следующие:

а) показатель аэрозольного ослабления атмосферы  $\delta_{\lambda}$ ,

б) показатель Юнге п,

>

в) показатель Онгстрема b,

г) количество больших аэрозольных частиц в вертикальном столбе атмосферы сечением 1 см $^2 N_5$ .

Показателем аэрозольного ослабления атмосферы  $\delta_{\lambda}$  называется оптическая плотность аэрозольных частиц во всей атмосфере, рассчитанная на единицу оптической массы. При этом под

оптической плотностью понимается десятичный логарифм величины, обратной коэффициенту пропускания аэрозольных частиц, располо женных во всей атмосфере.

Величина  $\delta_{\lambda}$  входит в показатель степени формулы Бугера—Беера

$$S_{\lambda} = S_{\lambda,0} \cdot 10^{-(\mu 2 \alpha_{\lambda} + m \beta_{\lambda} + m_{1} \delta_{\lambda})}.$$

(3)

(4)

где  $\mu$  — оптическая масса озона атмосферы,  $\Omega$  — общее содержание атмосферного озона,  $\alpha_{\lambda}$  — показатель поглощения озона,  $m_1$  — оптическая масса аэрозоля атмосферы,  $\beta_{\lambda}$  — показатель релеевского рассеяния атмосферы. Формула (3) применима в видимой и ультрафиолетовой областях спектра.

Одной из основных характеристик атмосферного аэрозоля является распределение аэрозольных частиц по размерам. До настоящего времени не существует достаточно точного метода измерения размеров аэрозольных частиц, позволяющего однозначно определить функцию их распределения по размерам. Известно несколько эмпирических формул, выражающих указанную функцию. Из них наибольшее распространение получила формула Юнге [11]

$$\frac{dN}{dr} = cr^{-n},$$

где N — общее число аэрозольных частиц (в рассматриваемом здесь случае — общее число частиц в вертикальном столбе атмосферы сечением 1 см²), радиус которых меньше r; n и c — параметры Юнге. Формула (4) применяется при 0,08 < r < 10 мкм [11].

Зависимость показателя аэрозольного ослабления атмосферы от длины волны характеризуется эмпирической формулой А. Онгстрема [1]

$$\delta_{\lambda} = c_1 \lambda^{-b}, \tag{5}$$

где *b* и *c*₁ — параметры Онгстрема.

Методы измерения спектральной прозрачности атмосферы, показателя аэрозольного ослабления атмосферы, параметров Юнге и Онгстрема, а также количества аэрозольных частиц в вертикальном столбе атмосферы единичного сечения изложены в работах [5—9]. Кроме указанных работ, по вопросу измерения спектральной прозрачности атмосферы, показателя аэрозольного ослабления атмосферы и параметров Онгстрема имеется обширная литература, список которой, в частности, приводится в монографии [2].

Спектральная прозрачность атмосферы  $P_{\lambda}$  находится из формулы (2). Для ее нахождения необходимо знать следующие величины:  $S_{\lambda}$ ,  $S_{\lambda, 0}$ , *m* и *p*. Величина  $S_{\lambda}$  измеряется в относительных единицах спектрофотометрическим прибором, *m* находится из известных таблиц [9] по значению угловой высоты диска Солнца в момент измерения  $S_{\lambda}$ , а *p* обычно принимается равной среднему давлению в пункте наблюдения.

Величина  $S_{\lambda,0}$  находится косвенным методом путем построения прямых Бугера. Из формулы (3) следует, что при допущении

 $m = \mu = m_1$  (это равенство с достаточной точностью справедливо при угловой высоте диска Солнца  $\theta \ge 15^\circ$ )

$$\lg S_{\lambda} = \lg S_{\lambda, 0} - m \left( \Omega \alpha_{\lambda} + \beta_{\lambda} + \delta_{\lambda} \right). \tag{6}$$

Как видно из формулы (2), при  $\Omega = \text{const}$  и  $\delta_{\lambda} = \text{const}$  зависимость между  $\lg S_{\lambda}$  и *m* линейная. Условно  $\Omega = \text{const}$  имеет при этом значение только в тех случаях, когда измерение  $S_{\lambda}$  производится в полосах поглощения озона.

Для нахождения  $\lg S_{\lambda,0}$  строится линейный график зависимости  $\lg S_{\lambda}$  от *m* и на оси ординат при m = 0 находится значение  $\lg S_{\lambda,0}$ . Однако, как будет показано ниже (п. 4), условие  $\delta_{\lambda} = \text{const}$  далеко не всегда выполняется в атмосфере в период измерения  $S_{\lambda}$ . Поэтому для нахождения  $\lg S_{\lambda,0}$  приходится прибегать к особой статистической обработке данных измерений величины  $S_{\lambda,0}$ .

Показатель аэрозольного ослабления атмосферы  $\delta_{\lambda}$  находится из формулы (6). Обозначая  $l_{\lambda} = \lg S_{\lambda}$  и  $l_{\lambda,0} = \lg S_{\lambda,0}$  и решая (6) относительно  $\delta_{\lambda}$ , получим

$$\delta_{\lambda} = \frac{l_{\lambda,0} - l_{\lambda}}{m} - \beta_{\lambda} - \Omega \alpha_{\lambda}.$$
⁽⁷⁾

Значения  $\alpha_{\lambda}$  и  $\beta_{\lambda}$  для используемых в работе длин волн приводятся в табл. 2, а более подробно в [7, 9]. Значения длин волн  $\lambda$ , указанные в табл. 2, совпадают с максимумами спектральной чувствительности прибора М-83, который применялся для измерения спектральной прозрачности атмосферы и характеристик атмосферных аэрозолей.

Таблица 2

# Показатель поглощения озона $\alpha_{\lambda}$ и показатель релеевского рассеяния атмосферы $\beta_{\lambda}$ для разных длин волн

λнм	326	344	369	463	530	572	627
α _λ см-1	0,115	0,000	0,000	0,004	0,030	0,055	0,040
$\beta_{\lambda}$	0,369	0,296	0,220	0,086	0,050	0,036	0,025

Как видно из формулы (7), показатель аэрозольного ослабления атмосферы находится на основании измерения прямой солнечной радиации в относительных единицах, а при наличии озонного поглощения — общего содержания атмосферного озона.

Если в атмосфере распределение аэрозольных частиц по размерам подчиняется формуле Юнге, то по данным измерений прямой солнечной радиации в двух участках спектра можно определить показатель Юнге *n*. Известно, что показатель аэрозольного ослабления атмосферы  $\delta$  [2, 9], обусловленный рассеянием, выражается формулой Мн

$$\delta_{\lambda} = 0.434 \int_{r_1}^{r_2} \pi r^2 k(\rho) \frac{dN}{dr} dr, \qquad (8)$$

где  $r_1$  и  $r_2$  — наибольший и наименьший радиусы частиц в вертикальном столбе атмосферы единичного сечения,  $k(\rho)$  — фактор

6 Зак. № 262

эффективности ослабления, зависящий от параметра

 $\rho = \frac{2\pi r}{\lambda}.$ 

Подставляя в (8) вместо dN/dr правую часть (4), получим в результате замены переменной r на переменную  $\rho$  и последующего интегрирования (8) следующую формулу:

$$\delta_{\lambda} = 0.434 \pi c \left(\frac{\lambda}{2\pi}\right)^{3-n} \int_{\rho_{1}}^{\rho_{2}} \rho^{2-n} \hat{k}(\rho) \, d\rho. \tag{10}$$

Определенный интеграл в выражении (10) при n > 3 и 300 нм <  $<\lambda < 650$  нм, как показывают расчеты [8], практически не зависит от  $\lambda$ . Обозначая величину определенного интеграла в выражении (10) через R, будем иметь

$$\delta_{\lambda} = 0.434\pi c \left(\frac{\lambda}{2\pi}\right)^{3-n} R.$$
(11)

<u>(9</u>

(14)

(15)

Отношение показателей аэрозольного ослабления атмосферы, измеренных в один и тот же момент времени для двух длин волн  $\lambda_1$  и  $\lambda_2$  на основании (11) будет равно

$$\frac{\delta_{\lambda_1}}{\delta_{\lambda_2}} = \left(\frac{\lambda_1}{\lambda_2}\right)^{3-n}$$

Из выражения (12) следует формула

$$n = 3 + \frac{1}{\lg \lambda_2 - \lg \lambda_1} \lg \frac{\delta_{\lambda_1}}{\delta_{\lambda_2}}.$$
 (13)

Следовательно, зная отношение показателей аэрозольного ослабления атмосферы для двух длин волн  $\lambda_1$  и  $\lambda_2$ , можно из формулы (13) определить показатель Юнге *n*. Заметим, что указанный метод определения показателя Юнге *n* будет корректным при наличии ослабления света атмосферным аэрозолем как вследствие рассеяния, так и вследствие поглощения, поскольку на формулы (10) и (12) не накладывается никаких ограничений, связанных с этими двумя типами ослабления света. Указанный метод определения *n* по этой же причине не зависит также от показателя преломления аэрозольных частиц.

Более подробные сведения о методике нахождения показателя Юнге n приводятся в работе [9].

Второй параметр Юнге с находится из формулы (11)

$$c = \frac{\delta_{\lambda}}{B_{\lambda}}$$
,

где

$$B_{\lambda} = 0.434\pi \left(\frac{\lambda}{2\pi}\right)^{3-n} R.$$

Как видно из формул (15), (10) и (14), размерность величины B равна см³⁻ⁿ, размерность c равна смⁿ⁻³. В отличие от показателя n,

параметр с зависит от показателя преломления аэрозольных частиц, что дополнительно увеличивает погрешность параметра с. Параметр формулы Онгстрема b находится из сравнения фор-

мулы (5) с формулой (11):

$$b = n - 3 \tag{16}$$

а параметр с₁ — из формулы (5)

$$c_1 = \frac{\delta_{\lambda}}{\lambda^{-b}} . \tag{17}$$

Представляет значительный интерес оценка числа аэрозольных частиц в вертикальном столбе атмосферы сечением 1 см². Оценка числа аэрозольных частиц в вертикальном столбе атмосферы по измерению показателя аэрозольного ослабления атмосферы в двух участках спектра была впервые проделана автором в 1963 г. в работе [7], а в 1968 г. [8] усовершенствован метод такой оценки и опубликованы результаты измерений и расчетов. Сущность указанного метода сводится к следующему. Если в соотношении (4) разделить переменные N и r и проинтегрировать полученное дифференциальное уравнение, то получим

$$\int_{V_1}^{N_2} dN = c \int_{r_1}^{T_2} r^{-n} dr, \qquad (18)$$

что дает

$$N_{1,2} = N_2 - N_1 = \frac{c}{n-1} \left( r_1^{1-n} - r_2^{1-n} \right), \tag{19}$$

где  $0 < r_1 < r_2$ , а  $N_{1,2}$  — общее число частиц с радиусом  $r_1 < r < r_2$ . Естественные аэрозольные частицы по своим размерам делятся на три группы: малые частицы или частицы Айткена (r < 0,1 мкм), большие частицы (0,1 мкм $\leq r \leq 1,0$  мкм) и гигантские частицы (1,0 мкм< r < 10,0 мкм). Полагая в формуле (19)  $r_1 = 0,1$  мкм =  $= 10^{-5}$  см,  $r_2 = 1$  мкм $= 10^{-4}$  см, получим следующее выражение для числа больших аэрозольных частиц в вертикальном столбе атмосферы сечением 1 см²:

$$N_6 = \frac{c}{n-1} \cdot 10^{5 \ (n-1)}.$$
 (20)

Аналогично полагая  $r_1 = 10^{-4}$  см и  $r_2 = 10^{-3}$  см, из выражения (19) получим, что число гигантских частиц в вертикальном столбе атмосферы сечением 1 см²

$$N_{\rm r} = \frac{c}{n-1} \cdot 10^{4 \ (n-1)}. \tag{21}$$

Отношение числа больших частиц к числу гигантских частиц, согласно выражениям (20) и (21), равно

 $\frac{N_6}{N_r} = 10^{n-1}.$  (22)

Размерность величин  $N_5$  и  $N_r$ , согласно выражению (19), равна см⁻².

6*

# 3. Прибор М-83

Измерения спектральной прозрачности и характеристик атмосферных аэрозолей производились на станциях (см. табл. 1) прибором М-83 конструкции Г. П. Гущина. Прибор М-83 представляет собой фильтровый электрофотометр, которым можно измерять спектральную прозрачность атмосферы в семи участках спектра и общее содержание атмосферного озона [7, 9]. Подробное описание прибора М-83 дано в работе [9].

В приборе М-83 имеется восемь светофильтров, состоящих из различных комбинаций цветных стекол, выпускаемых отечественной промышленностью. В табл. 3 приводятся данные об этих светофильтрах.

Таблица З

(23)

Светофильтр	Марка и толщина светофильтров, мм	Длина волны, совпадающая с максимумом спектральной чувствитель- ности, нм	Ширина кри- вой спектраль- ной чувстви- тельности на половине высоты, нм	Примечание
1-й	$\Psi \Phi C - 2 (3,5) + \mathcal{K}C - $	298	21	Для измерения
2-й	-20 (9) $y \Phi C - 2 (8,5) + WC -$ -3 (2) + C3C - 21 (1) +	326	21	озона Для измерения спектральной
3–й	+ CC $- 4$ (1) $y \Phi C - 2$ (8,5) $+$ $KC -$	344	31	прозрачности
4-й	$\begin{vmatrix} -3 & (1) + CC - 5 & (1) \\ C3C - 9 & (2) + Y \Phi C - \end{vmatrix}$	369	22	
5-й 6-й 7-й 8-й	$\begin{array}{c} -2 (3,5) \\ 3C - 2 (7,5) \\ \text{WC} - 16 (6) + CC - 4 (5) \\ 3C - 2 (2) + OC - 14 (2) \\ C3C - 21 (1) + KC - \end{array}$	530 463 572 627	60 17 33 32	То же "

Характеристика светофильтров, применяемых в приборе М-83

Одной из основных характеристик спектрофотометрического прибора является его спектральная чувствительность. Спектральной чувствительностью  $W_{\lambda}$  называется реакция прибора на монохроматический поток излучения

$$W_{\lambda} = \frac{dU_{\lambda}}{d\Phi_{\lambda}},$$

где  $dU_{\lambda}$  — реакция прибора (отсчет), вызываемая падающим на него монохроматическим потоком излучения  $d\Phi_{\lambda}$ .

Спектральная чувствительность прибора М-83 определяется монохроматическим коэффициентом пропускания его светофильтров и спектральной чувствительностью фотоэлемента Ф-4. При этом для целей настоящей работы достаточно знать относительную спектральную чувствительность wa, представляющую собой отношение

$$w_{\lambda} = \frac{W_{\lambda}}{W_{\lambda, m}}, \qquad (24)$$

где  $W_{\lambda, m}$  — максимальное значение спектральной чувствительности в интервале длин волн  $\lambda$ , выделяемым каким-нибудь светофильтром. Определение относительной спектральной чувствительности производилось на специальной установке, созданной в отделе актинометрии и атмосферной оптики ГГО. Эта установка состояла из монохроматора, входящего в комплект спектрофотометра СФ-4, вакуумной термопары Б. П. Козырева, фотоэлектрооптического усилителя Б. П. Козырева, ФЭОУ-18 и самописца ЭПП-09. В качестве источника света применялась лампа накаливания из комплекта спектрофотометра СФ-4. Сначала производилось измерение реакции  $dU_{\lambda}$  прибора М-83 в восьми участках спектра на монохроматический поток  $d\Phi_{\lambda}$ , создаваемый монохроматором. Эта реакция (отсчет) была, согласно (23), равна

$$dU_{\lambda} = k_1 W_{\lambda} d\Phi_{\lambda}, \qquad (25)$$

где  $k_1$  — коэффициент пропорциональности, не зависящий от длины волны. Затем измерялась реакция  $dU'_{\lambda}$  вакуумной термопары с черной приемной поверхностью на тот же монохроматический поток  $d\Phi_{\lambda}$ . В этом случае реакция (отсчет) была равна

$$dU_{\lambda} = k_2 \, d\Phi_{\lambda}, \tag{26}$$

где  $k_2$  — коэффициент пропорциональности, не зависящий от длины волны.

Отношение указанных реакций равно

$$\frac{dU_{\lambda}}{dU_{\lambda}'} = k W_{\lambda}, \qquad (27)$$

где  $k = k_1/k_2$ .

С помощью выражения (27) находится относительная спектральная чувствительность

$$w_{\lambda} = \frac{kW_{\lambda}}{kW_{\lambda,m}} = \frac{W_{\lambda}}{W_{\lambda,m}}, \qquad (28)$$

где  $W_{\lambda, m}$  — максимальное значение  $W_{\lambda}$  (в рассматриваемом случае на графике находится максимум величины  $kW_{\lambda}$ ).

Спектральная чувствительность прибора М-83 № 94, найденная указанным выше способом, приведена на рис. 1.

Важным обстоятельством при использовании приборов со светофильтрами для спектрофотометрических измерений является применимость закона Бугера—Беера к первичным данным, получаемым по этим приборам. Как мы видели выше, спектральная прозрачность атмосферы и показатель аэрозольного ослабления атмосферы рассчитываются на основании применения закона Бугера—Беера. Применимость закона Бугера—Беера к данным конкретного прибора (в том числе прибора M-83) определяется близостью эффективной прозрачности  $P_{\partial\phi}$ , измеряемой в действительности этим прибором, к спектральной прозрачности  $P_{\lambda}$ , относящейся к длине волны  $\lambda$ , совпадающей с максимумом спектральной чувствительности прибора.



Рис. 1. Относительная спектральная чувствительность прибора М-83 в области восьми светофильтров.

В качестве критерия применимости закона Бугера—Беера к данмому спектрофотометрическому прибору с этой точки зрения пригодно выражение

$$\frac{P_{\mathfrak{s}\phi} - P_{\lambda}}{P_{\lambda}} \cdot 100 \left| < 2^{0} /_{o}. \right.$$
⁽²⁹⁾

(30)

Величина Роф, как известно [12], выражается формулой

É	· ).	m	
	$\int w_{\lambda} S_{0,\lambda} P_{\lambda}^{m} d\lambda$	1	
$P_{ab} =$	λ ₁	<b>,</b>	
	$\int_{1}^{2} w_{\lambda} S_{0} , d\lambda$		
L	$-\lambda_1$ -	<b>]</b>	

где  $\lambda_1$  и  $\lambda_2$  — границы интервала относительной спектральной чувствительности прибора  $w_{\lambda}$  для данного светофильтра.

Выражение (29) применимо в видимой и ультрафиолетовой областях спектра.

С помощью критерия (29) рассчитываются интервалы высот Солнца, где закон Бугера—Беера применим к данному конкретному прибору. Если данный прибор удовлетворяет критерию (29)

:86

в интервале высот Солнца 10° ≤ θ ≤ 90°, то он пригоден для измерения спектральной прозрачности и показателя аэрозольного ослабления атмосферы в этом интервале. При этом прямые Бугера для этого прибора достаточно корректно можно строить для высот Солнца 10° ≤ θ ≤ 90°, а значения спектральной прозрачности и показателя аэрозольного ослабления атмосферы относить к длине волны λ, совпадающей с максимумом спектральной чувствительности прибора для рассматриваемого светофильтра.

С помощью критерия (20) может быть проверен любой спектрофотометрический прибор с точки зрения применимости к нему закона Бугера—Беера. Проверка прибора М-83 по критерию (29) производилась путем расчета на ЭВМ величины  $F(\theta, \Omega)$ , являющейся правой частью неравенства (29), для семи участков спектра, выделяемых соответствующими светофильтрами (рис. 1) при условии  $\delta_{\lambda} = \text{const.}$ 

Результаты расчета величины  $F(\theta, \Omega)$  для 4-го светофильтра приведены в табл. 4. Как видно, для всех реально использующихся значений  $\theta$  и  $\Omega$  величина  $F(\theta, \Omega)$  меньще 2, что означает применимость закона Бугера—Беера к прибору М-83 с 4-м светофильтром. Соответствующие расчеты для 3, 5, 6, 7 и 8-го светофильтров привели к аналогичным результатам, т. е. что  $F(\theta, \Omega) < 2$ . Для 2-го светофильтра величина  $F(\theta, \Omega)$  изменяется в пределах 0—4,0. Это означает, что прибор М-83 удовлетворяет критерию применимости закона Бугера—Беера (29) при 10° $\leq \theta \leq 90^{\circ}$  и 0,160 см $\leq \Omega \leq 0,600$  см, за исключением небольшого отклонения, не превышающего 4% для 2-го светофильтра.

Что касается величины  $F(\theta, \Omega)$  для 1-го светофильтра, предназначенного для измерения озона, то расчеты показывают, что эта величина значительно превышает 2. Следовательно, вследствие эффекта Форбса закон Бугера—Беера не применим к 1-му светофильтру прибора М-83. Это обстоятельство учитывается в методике, применяемой для измерения озона прибором М-83 [7]. Для измерения спектральной прозрачности атмосферы 1-й светофильтр не применяется.

Важной особенностью прибора М-83 является наличие в нем стабилизированной контрольной лампы, с потоком излучения которой сравниваются измеряемые потоки.

Из формул (1), (2), (7), которые применяются для расчета спектральной прозрачности и характеристик атмосферного аэрозоля, следует, что прямую солнечную радиацию в выбранных участках спектра достаточно измерять в относительных единицах. При этом соответствующие коэффициенты пропорциональности к величинам  $S_{\lambda}$  и  $S_{\lambda,0}$  в этих формулах сокращаются или взаимно уничтожаются.

Вследствие линейности прибора М-83 его отсчеты прямо пропорциональны величинам прямой солнечной радиации в том или ином участке спектра. Эта пропорциональность соблюдается в том случае, если в значения отсчетов введены температурные поправки, разные для каждого светофильтра. Температурные поправки прибора М-83 находятся с помощью специального термостата

Таблица 4

либор М-83, 4-й светофильтр		480 0,520 0,560 0,600	90 1,290 1,290 1,290 1,290	67 0,167 0,167 0,167	19 0,419 0,419 0,419 0,419	769 0,769 0,769 0,770	999 0,999 0,999 0,999	327 1,328 1,328 1,328	00 1,500 1,501 1,501	05 1,605 1,606 1,606	375 1,675 1,676 1,676	25 1,725 1,726 1,726	'61         1,762         1,762         1,763	89 1,789 1,790 1,791	10 1,811 1,812 1,812	27 1,828 1,828 1,829	40         1,841         1,841         1,842	<b>50 1,851 1,851 1,852</b>	1,858         1,859         1,860	1,864 1,864 1,865 1,865 1,865	1,868         1,869         1,869	70 1,870 1,871 1,872	71 1,871 1,872 1,872		-
содержания озона	8	0,400 0,440	1,290 1,290	0,167 0,167	0,419 0,419	0,769 0,769	0,998 0,999	1,327 1,327	1,499 $1,499$	1,604 1,604	1,674 1,674	1,724 1,724	1,760 1,761	1,788 1,788	1,809 1,810	1,826 1,826	1,839 1,839	1,849 1,849	1,857 1,857	1,862 1,863	1,866 1,867	1,868 1,869	1,869 1,870		
ta è и oóщero		0,360	1,290	7 0,167	) 0,419	0,769	3 0,998	3 1,326	3 1,499	3 1,603	3 1,673	2 11,723	9 1,760	7 1,787	3 1,809	5 1,825	3 1,838	3 1,848	5 1,856	1 1,862	5 1,866	7 1,868	8 1,869	-	1
т высоты Солні		0,280 0,320	1,290 1,290	0,167 0,167	0,419 0,419	0,769 0,769	0,998 0,998	1,326 1,326	1,498 1,498	1,603 1,603	1,673 1,673	1,722 1,72	1,759 1,750	1,786 1,78	1,807 1,808	1,824 1,82	1,837 1,838	1,847 1,84	1,855 1,85	1,860 1,86	1,864 1,86	1,867 1,86	1,867 1,86		
ависимости о		0,240	1,290	0,167	0,419	0,768	0,998	1,326	1,497	1,602	1,672	1,722	1,758	1,785	1,807	. 1,823	1,836	1,846	1,854	1,860	1,864	1,866	1,867		
(0, 2) в 33		0,200	1,290	1,167	0,419	0,768	0,997	1,325	1,497	1,602	1,671	1,721	1,757	1,785	1,806	1,823	1,836	1,846	1,854	1,859	1,863	1,865	1,866		(
Зеличина F		0,160	1,290	1,167	0,419	0,768	0,997	1,325	1,498	1,601	1,671	1,721	1,757	1,784	1,806	1,822	1,835	1,845	1,853	1,859	1,863	1,865	1,866		
		eff	5	4	9	8	10	15	20	25	30	35	40	45	50	55	09	65	02	75	80	85	90		

с оптическим входом в лабораторных условиях. В работе 191 значения этих поправок (температурных коэффициентов) приведены для широкого диапазона температур.

Исправленный (или приведенный) отсчет по прибору М-83, который затем применяется для расчетов, исходя из вышесказанного, равён

$$I_i = \frac{a_i r q_{\tau, i} \cdot 100}{a_{\kappa}}, \qquad (31)$$

где  $a_i$  — отсчет при *i*-том светофильтре, r — коэффициент перехода к основной чувствительности (обычно к 3-й),  $q_{\mathrm{T},i}$  — температурный

Dz/Qz

коэффициент, ак -- отсчет по стабилизированной контрольной лампе. Ввиду того что исправленный отсчет І находится как отношение отсчета по прямому солнечному свету аі к отсчету по контрольной лампе  $a_{\kappa}$ , величина  $I_i$  не  $a_{0.05}$ г зависит от изменения чувствительности прибора, связанной со старением фотоэлемента и коле- 0,05 г баниями коэффициента усиления 0.02 Контрольная лампа усилителя. работает в режиме недокала, 0,05г а стабилизация ее светового пото- 0.02 ка достигается путем стабилизации тока, проходящего через эту лампу.

При измерении спектральной прозрачности и характеристик атмосферного аэрозоля в прибор М-83, помимо прямого солнечного излучения, попадает в пределах его телесного угла рассеянное околосолнечное излучение, являющееся помехой при такого рода измерениях.



Солнца 0 и длины волны  $\lambda$ . Карадаг, 16 сентября 1968 г.

Для выяснения влияния околосолнечного излучения на показания прибора М-83 [13] была проделана серия экспериментов с экранами, перекрывающими поток прямой солнечной радиации, нооставляющими открытым доступ в прибор рассеянной радиации. Эксперименты проводились при отсутствии облачности в районе Солнца и при разных его угловых высотах на базах Главной геофизической обсерватории в Воейково и Карадаге (Феодосия).

Перед входной диафрагмой прибора М-83 на его оси устанавливались два небольших круглых непрозрачных экрана (диаметром 14 и 15,5 мм), которые закрывали доступ в прибор радиации в пределах телесного угла, равного 2°. Поскольку предельный телесный угол прибора М-83 равен 6°, в прибор с экранами поступала только

рассеянная радиация  $D_{\lambda}$  от кольцевой околосолнечной области от 2 до 6°. Два экрана применялись для ослабления влияния дифракции на их краях, поскольку второй большой экран, расположенный на большем расстоянии от прибора, был «невидим» из центра внутренней диафрагмы прибора (диаметр внутренней диафрагмы равен 4 мм). При снятых экранах в прибор поступала суммарная радиация  $Q_{\lambda}$  в пределах телесного угла 6°. Определялось отношение  $D_{\lambda}/Q_{\lambda}$ для разных высот Солнца и разных длин волн. Выделение спектральных интервалов производилось с помощью стандартных светофильтров.

На рис. 2 приводятся результаты одной серии измерений отношения  $D_{\lambda}/Q_{\lambda}$  для шести длин волн. Из рисунка следует, что отношеиие  $D_{\lambda}/Q_{\lambda}$  увеличивается с уменьшением высоты Солнца и длины волны. Величина отношения  $D_{\lambda}/Q_{\lambda}$  не превышала 0,05 для  $\lambda \ge 369$  нм и  $\theta \ge 10^{\circ}$ . Для  $\theta \ge 20^{\circ}$  и  $\lambda \ge 369$  нм отношение  $D_{\lambda}/Q_{\lambda}$  не превышало 0,02. В результате измерений этого отношения в другие дни были получены величины, близкие к показанным на рис. 2.

Таким образом, в подавляющем числе случаев помеха, вызываемая рассеянным околосолнечным излучением в интервале высот Солнца  $15^{\circ} \leqslant \theta \leqslant 90^{\circ}$ , не превышала 2%.

# 4. Отличительные особенности методики градуировки прибора М-83

Основными величинами, которые находятся при градуировке прибора M-83, являются внеатмосферные спектральные постоянные  $l_{0,i} = \lg S_{0,i}$ , где индекс *i* означает номер светофильтра.

Определение  $l_{0, i}$  производится, как уже отмечалось, путем построения прямых Бугера [2, 7, 8]. Пример построения графика зависимости  $l_{0, i}$  от *m* показан на рис. З. Имеются известные трудности при нахождении значений  $l_{0, i}$ . В одних случаях предлагается измерения  $S_{\lambda}$  проводить в дни с очень высокой прозрачностью атмосферы, в других случаях — в дни с высокой стабильностью оптических условий в атмосфере. На практике оказывается, что количество дней с указанными условиями составляет несколько единиц в год, причем распределение таких дней в году бывает случайным. Это обстоятельство накладывает повышенные требования к стабильности применяемых приборов (поскольку в величину  $l_{0, i}$  входит в виде слагаемого постоянная прибора) и все вместе очень сильно ограничивает возможности получения надежных значений  $l_{0, i}$ .

В настоящей работе используется иной подход к решению задачи о нахождении надежных значений  $l_{0, i}$ , основаннный на статистической обработке данных измерений, одновременно с сохранением требования о повышенной стабильности прибора. При этом определение значений  $l_{0, i}$  производится в любой день, когда облака не закрывают диск Солнца и когда продолжительность солнечного сияния такова, что охватывается промежуток времени с изменением атмосферной массы более чем на две единицы. В этих условиях большой (за период три месяца) ряд значений  $l_{0, i}$ , полученный в результате построения графиков с прямыми Бугера, следует считать состоящим из случайных и независимых друг от друга величин, к которым применима обычная статистическая обработка.

Цель статистической обработки состоит в том, чтобы: a) отбраковать грубые ошибки  $l_0$ , i, б) определить надежные средние значения  $l_0$ , i и оценить погрешность этих величин. Методика указанной обработки изложена в работе [9].



Рис. 3. Зависимость *l_i* от оптической массы *m*. Воейково, 10 июля 1971 г. Прибор М-83 № 94.

1)  $\lambda = 326 \text{ hm}, \ l_{0, 2} = 2.01; 2$ )  $\lambda = 344 \text{ hm}, \ l_{0, 3} = 1.31; 3$ )  $\lambda = 369 \text{ hm}, \ l_{0, 4} = 3.06; 4$ )  $\lambda = 530 \text{ hm}, \ l_{0, 5} = -2.32; 6$ )  $\lambda = 565 \text{ hm}, \ l_{0, 7} = 2.96; 6$ )  $\lambda = 605 \text{ hm}, \ l_{0, 8} = 2.91.$ 

Определение погрешности величины  $\overline{l_0}$ , *і* производилось по формуле

 $\overline{i}_{0, i} = \sqrt{\frac{\sum_{j=1}^{n} (i_{0, i, j} - \overline{i}_{0, i})^2}{n (n-1)}}.$ (32)

Результаты расчетов величины  $\sigma_{\overline{l}_{0,i}}$  для Воейково приводятся. в табл. 5 (последняя строка). Там же даны значения  $l_{0,i}$  и  $\overline{l}_{0,i}$ . Как видно из таблицы, абсолютная погрешность значения  $\overline{l}_{0,i}$  близка к 0,01.

Следует заметить, что уменьшение погрешности  $l_{0,i}$  за последние годы произошло вследствие того, что в приборе M-83 стали применяться миллиамперметры M-903 вместо микроамперметров M-24 (на блоке для ночных измерений и контроля), что позволило заметно уменьшить температурную погрешность.

Для характеристики устойчивости значений  $l_{0,i}$  приводится табл. 6, в которой даны значения  $\overline{l_{0,i}}$  на май 1971 г. — октябрь 1972 г. Как видно из таблицы, значения  $\overline{l_{0,i}}$  обладают заметной устойчи востью. Амплитуда колебаний этих величин за 18 месяцев составляет 2%. Это обстоятельство свидетельствует об устойчивости показаний прибора M-83.

Таблица 5

	·		• • •				
Дата	l _{0, 2}	l _{0,3}	1 _{0,4}	l _{0,5}	l _{0,6}	l _{0, 7}	l _{0,8}
14 V 25 31 16 VI 22 23 28 10 VII 24 26 30 31	1,98 2,03 2,02 1,95 1,99 2,03 1,88 1,90 2,03 2,05 2,05 2,05 1,96 1,92	1,56 1,66 1,64 1,58 1,63 1,63 1,63 1,63 1,63 1,65 1,59 1,55	3,12 3,15 3,15 3,13 3,13 3,15 - 3,15 3,09 3,19 3,10 3,10 3,12	2,62 2,63 2,61 2,61 2,60 2,64 	3,74 3,79 3,79 3,78 3,78 3,81 	2,92 2,91 2,90 2,90 2,88 2,91 2,84 2,80 2,91 2,84 2,91 2,90 2,88 2,95	2,82 2,83 2,80 2,81 2,80 2,83 2,73 2,77 2,81 2,83 2,79 2,81
l _{0, i} ^T l _{0, i}	1,98 0,016	1,61 0,011	3,13 0,009	2,62 0,005	3,78 0,008	2,89 0,011	2,80 0,008

Значения внеатмосферных постоянных l₀, ... Воейково, май—июль 1971 г., прибор М-83 № 94

# 5. Оценка погрешностей данных измерений спектральной прозрачности и характеристик атмосферного аэрозоля

Погрешность значений спектральной прозрачности атмосферы и характеристик атмосферного аэрозоля, получаемых с помощью прибора М-83, можно оценить по погрешностям непосредственно измеряемых прибором величин, от которых зависят  $P_{\lambda}$ ,  $\delta_{\lambda}$ , n и  $N_{5}$ .

а) Погрешность величин  $P_{\lambda}$ .

Дифференцируя выражение (1), получим

$$\frac{dP_{\lambda}}{P_{\lambda}} = \frac{1}{m} \left( \frac{dS_{\lambda}}{S_{\lambda}} - \frac{dS_{\lambda,0}}{S_{\lambda,0}} - \ln P_{\lambda} \frac{dm}{m} \right).$$
(33)

Отсюда предельная относительная погрешность величины  $P_{\lambda}$  равна

$$\frac{\Delta P_{\lambda}}{P_{\lambda}} \cdot 100 = \frac{1}{m} \left( \frac{|\Delta S_{\lambda}|}{S_{\lambda}} + \frac{|\Delta S_{\lambda,0}|}{S_{\lambda,0}} + |\ln P_{\lambda}| \frac{\Delta m}{m} \right) \cdot 100.$$
(34)

Таблица б

Средние значения внеатмосферных постоянных  $l_0$ , і за месяц

2			1971 г.										
	Станция	l _{0, i}	V	VI		/11	VIII	IX	x		xı	XII	
-	Карадаг	l _{0,4}	3,08	3,0	6		3,05	3,05	3,0	4 3	,15	3,08	
	-	$l_{0, 5}$	2,55	2,5	3		2,53	2,54	2,5	3 2	,61	2,58	
	•	l _{0,6}	3,33	3,3	io		3,30	3,29	3,3	30 3	,35	3,37	
		l _{0,7}	2,79	2,7	8		2,76	2,76	2,7	8 2	,82	2,82	
		l _{0,8}	2,76	2,7	4		2,73	2,73	2,7	3 2	,78	2,77	
	Воейково	l _{0,4}	3,12	3,1	2 3	,13	3,13	3,13	3,1	3 3	,13	—	
		l _{0,5}	2,62	2,6	2 2	,62	2,62	2,62	2,6	52 2	,62		
		l _{0,6}	3,76	3,7	6 3	,78	3,78	3,78	3,7	78   3	,78		
_		l _{0,7}	2,91	2,9	0 2	,89	2,91	2,91	2,9	91   2	,91		
}		l _{0,8}	2,82	2,8	0 2	,80	2,81	2,81	2,8	31 2	,81		
3	Большая	$l_{0, 4}$			1	ĺ		2,90	2,9	2 2	,92		
· .	Елань	l _{0,5}					ς	2,49	2,5	52 2	,53		
_				-  - -		-	· .				ľ		
							1 <b>9</b> 72	г.					
	Станция	¹ 0,-i	I	II	III	IV	v	VI	VII	≩VIII	IX	x	
3 -	Карадаг	l _{0,4}	3,05	3,04	3,03	3,02	3,04	3,05	3,05	3,05	3,04	3,07	
		l _{0,5}	2,55	2,56	2,57	2,54	2,55	2,53	2,53	2,53	2,52	2,56	
		l _{0,6}	3,33	3,34	3,31	3,30	3,29	3,28	3,28	3,28	2,721	2,74	
		l _{0,7}	2,83	2,82	2,81	2,78	2,74	2,73	2,73	2,73	2,72	2,76	
		l _{0,8}	2,74	2,76	2,72	2,71	2,70	2,70	2,70	1,791	1,79	1,82	
	Воейково	l _{0,4}	_	3,14	3,14	3,14	3,13	3,13	3,13	3,13	3,14	3,14	
2		l _{0,5}		ຼິ,63	2,63	2,63	2,62	2,62	2,62	2,62	2,63	2,63	
)		l _{0,6}	-	3,77	2,871	2,87	2,86	2,86	2,86	2,86	2,87	2,87	
s a		l _{0,7}	-	2,90	2,90	2,90	2,89	2,89	2,89	2,89	2,90	2,90	
ţ		l _{0,8}		2,83	2,83	2,83	2,011	2,01	2,01	2,01	2,02	2,02	
)	Большая	l 10, 4	_	2,90	2,91	2,91	2,93	2,94	2,90	2,91	-	-	
	Елань	l _{0,5}	-	2,51	2,55	2,54	2,55	2,54	2,50	2,52	-	-	
		1	L	1	1	1	1	i i	1	1	1	1	

1 Произошла смена светофильтра.

Произведем оценку всех входящих в выражение (34) членов. При этом выберем средние условия с точки зрения оценки погрешности  $P_{\lambda}$ . Положим m = 2;  $P_{\lambda} = 0,6$ ;  $\Delta S_{\lambda}/S_{\lambda} = 0,02$ ;  $\Delta m/m = 0,005$ . Из соот ношения  $l_{\lambda,0} = \lg S_{\lambda,0}$  после дифференцирования и перехода к конечным приращениям получим  $\Delta S_{\lambda,0}/S_{\lambda,0} = 2,3 \Delta l_{\lambda,0}$ . Откуда, принимая в соответствии с оценкой величины  $l_{\lambda,0}$  в п. 4  $\Delta l_{\lambda,0} = 0,01$ , по лучим  $\Delta S_{\lambda,0}/S_{\lambda,0} = 0,02$ . Окончательно из (34) будем иметь

$$\frac{\Delta P_{\lambda}}{P_{\lambda}} \cdot 100 = \frac{1}{1.5} (0.02 + 0.02 + 0.5 \cdot 0.005) \cdot 100 = 2.2^{0}/_{0}.$$

При средних условиях предельная относительная погрешность величины  $P_{\lambda}$  составляет 2%. Абсолютная погрешность величины  $P_{\lambda}$ (на основании (34)) будет равна 0,01—0,02.

б) Погрешность величины δ_λ.

Дифференцируя выражение (7) и заменяя дифференциалы конечными приращениями, получим

$$\Delta \delta_{\lambda} = \frac{1}{m} \left| \Delta l_{\lambda, 0} \right| + \frac{1}{m} \left| \Delta l_{\lambda} \right| + \frac{l_{0, \lambda} - l_{\lambda}}{m^2} \left| \Delta m \right| + \left| \Delta \beta_{\lambda} \right| + \Omega \left| \Delta \alpha_{\lambda} \right| + \alpha_{\lambda} \left| \Delta \Omega \right|.$$
(35)

Полагая для средних условий m = 2;  $l_{0, \lambda} - l_{\lambda} = 1,0$ ;  $\Omega = 0,3$  см;  $\alpha_{\lambda} = 0,1$  см⁻¹;  $\Delta l_{\lambda, 0} = \Delta l_{\lambda} = 0,01$ ;  $\Delta m = 0,003$ ;  $\Delta \beta_{\lambda} = 0,005$ ;  $\Delta \alpha_{\lambda} = 0,01$  см⁻¹;  $\Delta \Omega = 0,01$  см, получим предельную абсолютную погрешность  $\delta_{\lambda}$ :

$$\Delta \delta = 0,005 + 0,005 + 0,001 + 0,005 + 0,003 + 0,001 = 0,02.$$

Предельная относительная погрешность этой величины в зависимости от  $\delta_{\lambda}$  будет следующая:

$$δλ . . . . . . . 0,100 0,200 0,400

 $\frac{\Delta δ_{\lambda}}{\delta_{\lambda}} \cdot 100^{0}/_{0} . . . . 20 10 5$$$

в) Погрешность величины *n*.

Дифференцируя выражение (13) и заменяя дифференциалы конечными приращениями, получим

$$\Delta n = \frac{0.434}{\lg \lambda_1 - \lg \lambda_2} \left[ \frac{|\Delta \delta_{\lambda_1}|}{\delta_{\lambda_1}} + \frac{|\Delta \delta_{\lambda_2}|}{\delta_{\lambda_2}} \right]. \tag{36}$$

Полагая для средних условий  $\frac{\Delta \delta_{\lambda_1}}{\delta_{\lambda_1}} = \frac{\Delta \delta_{\lambda_2}}{\delta_{\lambda_2}} = 0,1; \lambda_1 = 369$  нм;  $\lambda_2 = 530$  нм, будем иметь

$$\Delta n = \frac{0,434}{0,158} (0,1+0,1) = 0,55.$$

Предельная относительная погрешность n при n=4 будет равна

$$\frac{\Delta n}{n} \cdot 100 = \frac{0.55}{4} \cdot 100 = 14^{\circ}/_{0}$$

Заметим, что найденная таким способом погрешность *n* представляется нам завышенной, что следует из сравнения этой погрешмости с дисперсией величины *n*.

Предельная абсолютная погрешность величины b = n - 3 будет, очевидно, равна  $\Delta b = \Delta n$ .

г) Погрешность величины N_б.

Из формулы (20) следует, что предельная относительная погрешность величины N₆ равна

$$\frac{\Delta N_6}{N_6} \cdot 100 = \left(\frac{|\Delta c|}{c} + \frac{|\Delta n|}{n-1} + \frac{n-1}{2} |\Delta n|\right) \cdot 100.$$
(37)

В работе [8] приводится оценка предельной относительной погрешности величины *с* для случая капелек воды. Она составляет около 100%. Если положить, что  $\Delta c/c = 1$ ; n = 4;  $\Delta n = 0,5$ , то из (37) получим

$$\frac{\Delta N_6}{N_6} \cdot 100 = (1 + 0.17 + 0.75) \cdot 100 = 192^{\circ}/_{0}$$

Следовательно, можно получить только грубую оценку величины  $N_6$ , пользуясь предложенным методом. При этом следует учитывать, что в настояшее время нет других практических способов измерения количества больших аэрозольных частиц в вертикальном столбе атмосферы единичного сечения.

# 6. Сравнение данных о спектральной прозрачности атмосферы, измеренных разными приборами

В мае и июне 1972 г. в Воейково были произведены одновременные измерения спектральной прозрачности и характеристик атмосферы пятью различными приборами:

1) прибором М-83 № 94;

2) фотометром Фольца ДА-34;

3) фотометром Фольца ДА-35;

4) актинометром Фейснера с интерференционными светофильтрами;

5) актинометром АТ-50 с односторонне режущими светофильтрами.

Фотометры Фольца [14] выделяли два участка спектра с центрами, совпадающими с длинами волн 380 и 500 нм. Актинометр Фейснера со светофильтрами выделял 11 участков спектра в области 350—1000 нм. Актинометр АТ-50 со стеклянными светофильтрами отрезал коротковолновые участки спектра с границами, совпадающими с длинами волн 380, 470, 530, 630 и 710 нм. При этом разность отсчетов по двум таким светофильтрам была пропорциональна прямой солнечной радиации в участках спектра. 380—470, 470—530 нм и т. д.

К сожалению, по погодным условиям и по некоторым другим причинам не удалось провести длинный ряд одновременных наблюдений всеми приборами. Тем не менее полученные результаты измерений представляют значительный научный интерес.

В табл. 7 приводятся результаты измерений показателя аэро зольного ослабления атмосферы  $\delta_{\lambda}$  и показателя Юнге *n* разными приборами. Как видно из таблицы, значения показателя аэрозольного ослабления  $\delta_{\lambda}$ , полученные по разным приборам, близки друг к другу. В подавляющем числе случаев различия между показателями аэрозольного ослабления для двух близких групп длин волн (369—380 и 500—530 нм) не превышают предельной относительной погрешности величины  $\delta_{\lambda}$  (см. п. 5).

Значения показателя Юнге n, в отличие от показателя  $\delta_{\lambda}$ , близки между собой только для приборов ДА-34, ДА-35 и М-83 № 94. Значения *n*, полученные по актинометру Фейснера со светофильтрами, заметно больше соответствующих значений n, полученных по приборам ДА-34, ДА-35, М-83 № 94. Так, 18 мая это различие между приборами ДА-34 и актинометром Фейснера со светофильтрами достигла в среднем 20%, а в отдельных случаях в этот день равнялась 40%. Еще в большей степени отличаются значения *n*, полученные по прибору АТ-50 со светофильтрами, от данных по другим приборам. Так, 18 мая 1972 г. эти различия в отдельные сроки превышали 40%. Следует отметить также, что у прибора АТ-50 со светофильтрами наблюдается весьма большой разброс значений п в течение дня, заметно превышающий разброс этой величины у других приборов. Одной из основных причин, вызвавшей различия в значениях п, была разная методика нахождения показателя п. Для приборов М-83 № 94, ДА-34 и ДА-35 методика нахождения *п* была одинаковой и основывалась на применении формулы (12). При этом использовались следующие близкие между собой пары длин волн: для М-83 № 94—369 и 530 нм, для ДА-34 и ДА-35—380 И 500 нм.

Методика нахождения *n* при применении актинометра Фейснера со светофильтрами основывалась на построении линейного графика вида  $\lg \delta_{\lambda} = \lg c_1 - b \lg \lambda$ , вытекающего из формулы (5), и определении наклона полученной прямой к оси абсцисс. При этом использовались 11 длин волн, соответствующих максимумам пропускания интерференционных светофильтров.

Для большей наглядности данные сравнений представлены на рис. 4 (значения  $\delta_{\lambda}$ ) и на рис. 5 (значения *n*). Цифрой 4 на обоих рисунках отмечены данные, полученные по актинометру Фейснера со светофильтрами. На рис. 5 показана дополнительная кривая 5, которая построена для значений *n*, полученных по актинометру Фейснера со светофильтрами, но рассчитанных по двум длинам волн ( $\lambda_1 = 375$  нм и  $\lambda_2 = 503$  нм). Как видно из рис. 5, значения *n*, вычисленные по методу двух длин волн (кривая 5), в среднем ближе к соответствующим значениям, полученным по другим приборам.

1				
ца 7.		03-TA		
абли		вqэнэйэФ-ТА		
	u .	<b>д8-АД</b>	· .	
		₽8-A∏		
2 Ľ		₱6 N 88-W		4 හ. හ. හ. හ. ට බ බ ග. හ.
ово, 197		мн 005 ,05-ТА		1111
и. Воейн		АТ-Фейснера, 503 нм		1
риборам		мн соз., 26-АЦ		
е Иными п		мн 003 ,48-АД	5 мая	$\begin{array}{c} 0,150\\ 0,150\\ 0,150\\ 0,150\\ 0,150\\ 0,190\\ \end{array}$
е различ		мн 053 ,46 90 г.М		$\begin{array}{c} 0,117\\ 0,185\\ 0,180\\ 0,180\\ 0,283\\ 0,243\\ \end{array}$
меренны		мн 085,0д-ТА		1 1 1 1 1
и <i>п</i> , из		АТ-Фейснера, 375 нм		
, чения б _у		мн 085, дб-АД		11111
Знач	-	мн сяе ,+Е-АД		0,220 0,220 0,230 0,230 0,230
		wh 698 ' <del>1</del> 6 <b>N 88-</b> М		$\begin{array}{c} 0,168\\ 0,228\\ 0,223\\ 0,316\\ 0,287 \end{array}$
)		Высота солнца, град		18,7 25,9 33,1 46,4
• • • • • • • • • • • • • • • • • • •		Время (мос- ков- ское) ч мин		7 30 9 30 13 00
	•			

	· · ·
	0.22.03.4.5.7
	444 8,6,4 8,0,4 8,0,4 8,0,4
	46 33 33 54 54 54 54 50 54 50 54 50 50 50 50 50 50 50 50 50 50 50 50 50
	44000,44 ,2200,851 ,2200,8
	44440444 4440001
	0,0000000000000000000000000000000000000
	$\begin{array}{c} 0,085\\ 0,089\\ 0,089\\ 0,074\\ 0,074\\ 0,067\\ 0,067\\ 0,062\\ \end{array}$
	$\begin{array}{c} 0,085\\ 0,102\\ 0,078\\ 0,065\\ 0,060\\ 0,060\\ 0,060\\ 0,060\\ \end{array}$
18 мая	0,086 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070 0,070
	0,067 0,081 0,067 0,067 0,068 0,064 0,064 0,064
	0,0010000000000000000000000000000000000
	$\begin{array}{c} 0.124\\ 0.109\\ 0.118\\ 0.097\\ 0.098\\ 0.098\\ 0.095\\ 0.095\\ \end{array}$
	$\begin{array}{c} 0,120\\ 0,120\\ 0,080\\ 0,070\\ 0,070\\ 0,070\\ 0,070\\ \end{array}$
	$\begin{array}{c} 0,120\\ 0,110\\ 0,100\\ 0,080\\ 0,090\\ 0,070\\ 0,070\\ \end{array}$
	0,128 0,132 0,132 0,108 0,108 0,093 0,093
	20,7 25,7 25,7 29,3 49,6 44,0 27,3 27,3
	7 25 8 35 9 30 115 00 115 00 11 30 117 30

Зак. № 262 

1.1		_							<u>``</u>	
	08-TA		4,1 3,6	·	0,0,0,0 1,0,0,0 1,0,0,0,0,0	_	3, 7		3,7	(-
	вqэнэйэФ-ТА		11	•			4,4		11.	
u	<b>76-А</b> Д		1.1		11111	×	11		[ ] [	Ć
	₽£-A∏		2,1	- -	44444 v.v.v.v.o.		4,0		4,0 3,7	•
	76 N 88-W		4,2		44444 70,00,00	-	3,7		4,0	-
``	АТ-50, 500 нм		0,12	-	0,14 0,16 0,13 0,12 0,12	-	0,17		0,11 0,12	
	АТ-Фейснера, 503 нм		1 ° T			ר	0,203		11	•
	мн 003, 35-АД		11				11		1.1	<u> </u>
	мн 003 ,45-АД	внони	0,025 0,110	вионя	$\begin{array}{c} 0,140\\ 0,150\\ 0,140\\ 0,140\\ 0,115\\ 0,115\end{array}$	, הנוסת עומות	0, 220	2 июня	$\begin{array}{c} 0,115\\ 0,125 \end{array}$	
~	мн оед ,46 ул ев-м		0,125 0,120		$\begin{array}{c} 0,124\\ 0,147\\ 0,127\\ 0,132\\ 0,137\\ 0,137\end{array}$		$\left[ \begin{array}{c} 0,194\\ 0,177 \end{array} \right]$	μi,	0,123	
<b>60</b>	мн 088, 05-ТА		0,13	-	$\begin{array}{c} 0,25\\ 0,20\\ 0,16\\ 0,26\\ 0,26\end{array}$	<b>-</b>	$\begin{array}{c} 0,21\\ 0,18\\ 0,18 \end{array}$		0,13	¢
	АТ-Фейснера, 375 нм		.  	_		-	0,320			•
	мн 085, 35-АД		1-1				1.1		11	
	мн 085, 46-АД		$\left  \begin{array}{c} 0,015\\ 0,140 \end{array} \right $		0,200 0,215 0,200 0,200 0,150		$0,290 \\ 0,220 \\ 0$		0,150	
2 2 2 2	мн 69£ '‡6 № 88-М		$\left  \begin{array}{c} 0,191\\ 0,174\\ \end{array} \right $	_	0,212 0,234 0,207 0,207 0,200		$\left[ \begin{array}{c} 0,297\\ 0,232 \end{array} \right]$		$\left  \begin{array}{c} 0,180\\ 0,173\\ 0,173 \end{array} \right $	
• <b>n</b>	Высота солнца, гра		27.7 46.6	-	23,7 27,5 31,3 52,7 52,7		42,2 52,8		31.7 35.2	
d and	и мин ков- ское) ч мин		8 05 15 00		7 30 8 30 13 00 13 00 13 00		10 03 13 00		00 8 00 8 0	
										10

Методика нахождения *п* при применении актинометра AT-50 с отрезными светофильтрами [15] отличалась от двух упомянутых выше методик. Определенное отрицательное значение имело при



Рис. 4. Показатель аэрозольного ослабления атмосферы  $\delta_{\lambda}$  в период сравнения показаний различных приборов. Воейково. *а*) 7 июня 1972 г., *б*) 18 мая 1972 г.; *1*) М-83 № 94, 2) ДА-34, 3) ДА-35, *4*) актинометр с фильтрами.



Рис. 5. Показатель Юнге *n* в период сравнения показаний различных приборов. Воейково.



применении этого прибора то обстоятельство, что величина прямой солнечной радиации для ограниченных участков спектра находилась как сравнительно небольшая разность двух больших величин (двух отсчетов по двум светофильтрам).

7*

Некоторое определенное значение имело различие в инерционности применявшихся приборов. Приборы фотоэлектрические (М-83 № 94, ДА-34 и ДА-35) были сравнительно малоинерционными, приборы термоэлектрические (актинометры) были, наоборот, инерционными. При нестабильном состоянии атмосферы на взятие отсчетов по термоэлектрическим приборам уходило много времени, а в некоторых случаях отсчеты не удавалось взять совсем. По фотоэлектрическим приборам в это время измерения велись сравнительно легко.

В заключение следует пожелать для большей объективности провести в дальнейшем длительные сравнения различных приборов. измеряющих спектральную прозрачность атмосферы и характеристики атмосферного аэрозоля.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Сивков С. И. Методы расчета характеристик солнечной радиации. Л., Гидрометеоиздат, 1968. 232 с.
- 2. Радиационные характеристики атмосферы и земной поверхности. Под ред. К. Я. Кондратьева. Л., Гидрометеоиздат, 1969, 564 с.
- 3. Георгиевский Ю. С. и др. Прожекторный луч в атмосфере. М., Изд. AH CCCP, 1960. 243 c.
- 4. Иванов А. И. и др. Рассеяние света в атмосфере. Алма-Ата, «Наука»,
- 1968. 196 с. 5. Гущин Г. П. Измерение оптической толщи аэрозолей в атмосфере. «Тр. ГГО», 1960, вып. 105, с. 43—50.
- 6. Гущин Г. П. Изучение атмосферных аэрозолей. «Тр. 2-го Межведомственного совещания по актинометрии, и атмосферной оптике». Л., Гидрометеоиздат, 1961, с. 218-227.
- 7. Гущин Г. П. Исследование атмосферного озона. Л., Гидрометеоиздат, 1963. 269 c.
- 8. Гущин Г. П. Спектрофотометрические исследования характеристик атмосферного аэрозоля в различных географических районах СССР. - «Тр. ГГО», 1968, вып. 223, с. 65—80.
- 9. Методические указания по производству и обработке наблюдений за спек- 🎻 тральной прозрачностью атмосферы и характеристиками атмосферных аэрозолей. Сост. Г. П. Гущин. Л., Гидрометеоиздат, 1972. 53 с.
- 10. Розенберг Г. В. Оптические исследования атмосферного аэрозоля. УФН, 1968, т. 95, № 1, с. 159—208. 11. Юнге Х. Химический состав и радиоактивность атмосферы. М., «Мир», 1965.
- 424 c.
- 12. Розенберг Г. В. Сумерки. М., Физматгиз, 1963. 380 с.
- 13. Гущин Г. П., Александров П. А. О влиянии рассеянной околосолнечной радиации на показания прибора М-83. — «Тр. ГГО», 1970, вып. 255. c. 69—72.
- 14. Volz type sun photometer. Climet model 019-1. Instructional Climet Instrument Inc., 1969. 10 p.
- 15. Кондратьев К. Я. Актинометрия. Л., Гидрометеоиздат, 1965. 691 с.

## Г. П. ГУЩИН

# СОПОСТАВЛЕНИЕ НЕКОТОРЫХ ХАРАКТЕРИСТИК ПРОЗРАЧНОСТИ АТМОСФЕРЫ И АЭРОЗОЛЯ

# 1. О связи между спектральной, интегральной и горизонтальной прозрачностью атмосферы

Сведения о спектральной прозрачности атмосферы и оптических характеристиках атмосферных аэрозолей, полученные на сети станций, расположенных на территории СССР, опубликованы в работах [1, 2]. В настоящей статье представлены дополнительные данные, характеризующие прозрачность атмосферы в разных участках спектра и в разных направлениях.

В течение четырех последних лет на научно-экспериментальной базе ГГО в Воейково осуществляются систематические комплексные измерения прозрачности атмосферы. При этом измеряются следующие характеристики прозрачности атмосферы:

1) спектральная прозрачность атмосферы  $P_{\lambda}$  в семи участках спектра в области 320—630 нм, измеряемая прибором М-83;

2) интегральная прозрачность атмосферы *P*, измеряемая по методике С. И. Сивкова [4] актинометром AT-50;

3) горизонтальная прозрачность в приземном слое атмосферы *P*_в, измеряемая приборами М-37 и РДВ-2.

Торизонтальная прозрачность атмосферы измерялась в Воейково в трех местах. Для отчета использовались данные, полученные эв районе служебного здания отдела актинометрии и атмосферной оптики (*P*_{в. a}) и в районе полигона у озера (*P*_{в. п}). Расстояние между служебным зданием отдела и полигоном составляет около 1 км по всхолмленной местности, причем полигон расположен примерно на 60 м ниже здания.

Интегральная прозрачность атмосферы измерялась на метеорологической площадке Воейково, спектральная прозрачность с крыши служебного здания отдела актинометрий и атмосферной оптчки, отстоящего от метеоплощадки на расстоянии 300 м.

На рис. 1 в качестве примера показан совместно дневной ход спектральной ( $P_{\lambda}$ ), интегральной (P) и горизонтальной ( $P_{B,a}$ ) прозрачности атмосферы в Воейково за три различных дня. Из рисунка следует, что имеется тесная корреляционная связь между спектральной и интегральной прозрачностью атмосферы. Связь между спектральной и горизонтальной прозрачностью менее тесная.

Ценные сведения о связи между различными характеристиками прозрачности атмосферы дают коэффициенты линейной корреляции между ними. С этой целью на ЭВМ были рассчитаны коэффициенты корреляции между  $P_{\lambda}$ , P,  $P_{B,a}$  и  $P_{B,\pi}$ . Результаты указанных расчетов приводятся в табл. 1 и 2.

Как видно из табл. 1, коэффициенты корреляции между интегральной прозрачностью P и спектральной прозрачностью  $P_{\lambda=369}$ и  $P_{\lambda=580}$  велики, они изменяются в пределах 0,80—0,97, что говорит о тесной связи между этими характеристиками прозрачности атмо-





€.

а) 5 мюня 1972 г., б) 24 мюня 1970 г., в) 21 августа 1970 г.; 1) P; 2)  $P_{\lambda=530}$  нм; 3)  $P_{\rm B.~a.}$ 

сферы. Еще более тесная связь существует между  $P_{\lambda=369}$  и  $P_{\lambda=530}$ . Коэффициенты корреляции между этими характеристиками колеблются от 0,85 до 0,98. Столь же тесная связь между указанными характеристиками прозрачности атмосферы (и дополнительно  $P_{\lambda=572}$ ) наблюдается в Карадаге (табл. 2). Однако следует отметить, что связь между интегральной и спектральной прозрачностью в Карадаге, как и в Воейково, менее тесная, чем между спектральной прозрачностью для разных длин волн ( $P_{\lambda=369}$ ,  $P_{\lambda=530}$ ,  $P_{\lambda=572}$ ). Этот важный вывод подтверждает отмеченное ранее отличие интегральной прозрачности от спектральной, а именно, что на интегральную прозрачность атмосферы, в отличие от спектральной, оказывает ис-

#### Таблица 1

#### Значения коэффициентов корреляции между различными характеристиками прозрачности атмосферы в Воейково

	Voru	l		Элементы	корреляции	1	
Месяц, год	чество пар	P; $P_{\lambda=369}$	$P; P_{\lambda = 530}$	$\begin{vmatrix} P_{\lambda=369:} \\ P_{B, \Pi} \end{vmatrix}$	Р; Р _{в. а}	$\begin{vmatrix} P_{\lambda} = 369; \\ P_{\lambda} = 530 \end{vmatrix}$	$\begin{vmatrix} P_{\lambda=369} \\ P_{B.a} \end{vmatrix}$
V 1970 VI VII VIII II 1971 III	83 89 59 63 16 22	0,91 0,86 0,88 0,90 0,94 0,95	0,82 0,80 0,87 0,83 0,97 0,95	0,22 0,32 0,58 0,024 0,80 0,43	0,34 0,57 0,36 0,73 0,65 0,81	0,85 0,93 0,92 0,92 0,98 0,98	0,37 0,56 0,50 0,71 0,70 0,78

Таблица 2

Значения коэффициентов корреляции между различными характеристиками прозрачности атмосферы в Карадаге

· .			Элем	иенты корреля	ции	
Месяц, год	Количество пар	$P_{\lambda} = 369;$ $P_{\lambda} = 530$	$P_{\lambda=369;}$ $P_{\lambda=572}$	$P_{\lambda=368;}$	$P_{\lambda=530;}$	$P_{\lambda=572;}$
IV 1970 V VI VII VII IX XI XII II 1971 III IV V	$\begin{array}{c} 48\\ 32\\ 50\\ 60\\ 50\\ 54\\ 24\\ 8\\ 18\\ 17\\ 48\\ 68\\ \end{array}$	$\begin{array}{c} 0,98\\ 0,83\\ 0,96\\ 0,95\\ 0,98\\ 0,94\\ 0,94\\ 0,94\\ 0,97\\ 0,98\\ 0,98\\ 0,98\\ 0,94\\ 0,95\\ \end{array}$	$\begin{array}{c} 0,97\\ 0,75\\ 0,96\\ 0,94\\ 0,96\\ 0,93\\ 0,91\\ 0,98\\ 0,92\\ 0,97\\ 0,87\\ 0,95\\ \end{array}$	$\begin{array}{c} 0,70\\ 0,52\\ 0,86\\ 0,90\\ 0,83\\ 0,63\\ 0,62\\ 0,75\\ 0,64\\ 0,89\\ 0,71\\ 0,81\\ \end{array}$	$\begin{array}{c} 0,73\\ 0,71\\ 0,84\\ 0,93\\ 0,84\\ 0,89\\ 0,67\\ 0,88\\ 0,67\\ 0,88\\ 0,69\\ 0,95\\ 0,80\\ 0,87\\ \end{array}$	$\begin{array}{c} 0,77\\ 0,77\\ 0,84\\ 0,92\\ 0,83\\ 0,89\\ 0,67\\ 0,84\\ 0,71\\ 0,94\\ 0,76\\ 0,86\end{array}$

кажающее влияние эффект Форбса, вследствие чего эта характеристика прозрачности атмосферы становится неоднозначной.

Из табл. 1 следует ряд других выводов. Коэффициенты корреляции между спектральной и горизонтальной прозрачностью атмосферы положительны и изменяются от 0,02 до 0,80. При этом отрицательных значений указанных коэффициентов корреляции отмечено не было.

Был также вычислен коэффициент корреляции между горизонтальной прозрачностью  $P_{B,a}$  и  $P_{B,n}$ . Он оказался равным 0,45. При его вычислении использовались значения горизонтальной прозрачности  $P_B < 0,9$  (база 1 км). Этот результат говорит о заметном влиянии неоднородности атмосферы и местных условий на величину  $P_B$ .

Наконец были рассчитаны коэффициенты корреляции между показателями аэрозольного ослабления атмосферы  $\delta_{\lambda}$  в Воейково и Карадаге для  $\lambda_1 = 369$  нм,  $\lambda_2 = 530$  нм и  $\lambda_3 = 572$  нм. Результаты этих

#### Таблица З

# Значения коэффициентов корреляции между показателями аэрозольного ослабления атмосферы $\delta_{\lambda}$ для разных длин волн в Воейково и Карадаге в 1972 г.

and a second	TA	Элементы корреляции					
Месяц	количество пар	$ \begin{array}{c} \delta_{\lambda} = 369 \\ \delta_{\lambda} = 530 \end{array} $	$\delta_{\lambda} = 369$ $\delta_{\lambda} = 572$	$ \begin{array}{c} \delta_{\lambda} = 530 \\ \delta_{\lambda} = 572 \end{array} $			
	· · · · · · · · · · · · · · · · · · ·	Воейково		······			
V VI VII VIII	16 22 20 19	0,96 0,98 0,98 0,99	0,95 0,97 0,97 0,98	0,996 0,996 0,99 0,99			
		Карадаг					
V VI VII VIII	26 29 26 22	0,90 0,97 0,99 0,96	0,86 0,93 0,96 0,92	0,92 0,97 0,99 0,95			

вычислений приводятся в табл. 3. Как видно из таблицы, коэффициенты корреляции между  $\delta_{\lambda}$  при разных  $\lambda$  очень высоки (от 0,86 до 0,996). Это свидетельствует о почти функциональной связи между этими характеристиками атмосферного аэрозоля. Существование такой связи подтверждает известная формула Онгстрема [3, 4]. С другой стороны, сама формула Онгстрема подтверждается отмеченной тесной корреляционной связью.

# 2. Оценка количества больших и гигантских аэрозольных частиц в вертикальном столбе атмосферы

Оптическое зондирование атмосферы в направлении на солнечный диск, осуществляемое в разных участках спектра, дает возможность приближенно оценить общее количество больших и отдельно гигантских аэрозольных частиц в вертикальном столбе атмосферы единичного сечения [1, 2, 3]. Других наземных методов для такой оценки в настоящее время не существует.

Результаты расчета числа больших аэрозольных частиц (0,1 мкм < r < 1,0 мкм) в вертикальном столбе атмосферы сечением 1 см² ( $N_6$ ) по данным измерения прямой солнечной радиации прибором M-83 в двух участках спектра ( $\lambda_1 = 369 \text{ нм}, \lambda_2 = 530 \text{ нм}$ ) приведены в качестве примера на рис. 2. Как видно из рисунка, величина  $N_6$  испытывает колебания от 0,3 · 10⁸ до 2 · 10⁸ см⁻² для разных дней и в несколько меньших пределах для одного и того же дня. Не отмечено каких-либо закономерностей в ходе величины  $N_6$  по отнощению к местному полдню.

В результате расчетов, основанных на данных регулярных наблюдений, были получены средние значения количества больших аэрозольных частиц  $N_6$  по станциям СССР. Из рассмотрения этих значений следует, в частности, что в Карадаге среднее значение  $N_6$  за 1968 г. было равно 2,0.10⁸ см⁻², за 1969 г. — 2,1.10⁸ см⁻², за 1970 г. — 2,4.10⁸ см⁻², за 1971 г. — 2,2.10⁸ см⁻² и за 1972 г. — 2,1.10⁸ см⁻². В Воейково среднее значение величины  $N_6$  в 1969 г. было равно 1,8.10⁸ см⁻², в 1970 г. — 1,8.10⁸ см⁻², в 1971 г. — 1,7 × ×10⁸ см⁻², в 1972 г. — 1,9.10⁸ см⁻².





а) Карадаг, 18 мая 1972 г.; б) Воейково, 18 мая 1972 г.; в) Воейково, 30 июля 1971 г.; г) Воейково, 21 июня 1971 г.

Количество гигантских аэрозольных частиц (1,0 мкм < r < < 10,0 мкм) в вертикальном столбе атмосферы сечением 1 см² ( $N_{\rm P}$ ) рассчитывается по методике, изложенной в [1, 2, 3]. Поскольку среднее значение показателя Юнге *n* блиэко к 4, количество гигантских частиц в атмосфере примерно в 1000 раз меньше количества больших аэрозольных частиц. Так, в Воейково в среднем в 1969 г.  $N_{\rm F} = -N_6: 10^{n-1} = 1,8 \cdot 10^8: 10^{2,7} = 4 \cdot 10^5$  см⁻²; в 1970 г.  $N_{\rm F} = 1,8 \cdot 10^8: 10^{2,7} = 4 \cdot 10^5$  см⁻²; в 1970 г.  $N_{\rm F} = 1,8 \cdot 10^8: 10^{3,3} = -0.9 \cdot 10^5$  см⁻²; в 1971 г.  $N_{\rm F} = 1,7 \cdot 10^8: 10^{3,1} = 1,3 \cdot 10^5$  см⁻²; в 1972 г.  $N_{\rm F} = 1,9 \cdot 10^8: 10^3 = 1,9 \cdot 10^5$  см⁻².

### СПИСОК ЛИТЕРАТУРЫ

- Гущин Г. П. Спектрофотометрические исследования характеристик атмосферного аэрозоля в различных географических районах СССР. — «Тр. ГГО», 1968, вып. 223, с. 65—80.
- Гущин Г. П. Некоторые результаты систематических измерений спектральной прозрачности атмосферы и аэрозоля на территории СССР. — «Тр. ГГО», 1974, вып. 344, с. 83—101.
- 3. Гущин Г. П. Методика и прибор для измерения спектральной прозрачности атмосферы и характеристик атмосферных аэрозолей. См. наст. сб.
- 4. Сивков С. И. Методы расчета характеристик солнечной радиации. Л. Гидрометеоиздат, 1968. 232 с.

# Е. Н. ДОВГЯЛЛО

(1)

# О ПОГРЕШНОСТЯХ ОСРЕДНЕНИЯ ДАННЫХ ПО ВИДИМОСТИ И О ВРЕМЕННОЙ ДИСКРЕТНОСТИ НАБЛЮДЕНИЙ

Получение сведений о величине дальности видимости существенно для различных отраслей народного хозяйства. Изучение этой величины важно и в климатологическом плане, и в плане оперативного обслуживания всех видов транспорта, и для решения некоторых прикладных задач.

Однако не менее важно знать, насколько полученные данные являются достоверными, как часто следует производить определение видимости, чтобы получить с заданной степенью точности представление о порядке этой величины за определенный промежуток времени или в определенном явлении и т. д. Если значение дальности видимости может быть непосредственно измерено одним из многочисленных приборов, то для суждения об экстраполяционных возможностях, о репрезентативности полученной величины необходимо знание закономерностей ее изменения во времени и пространстве.

Временная изменчивость прозрачности атмосферы при различных метеорологических явлениях изучалась в 1962—1964 гг. на фотометрическом полигоне в Воейково. Для получения величины прозрачности использовались ленты регистратора прозрачности М-37 за период с 1954 по 1962 г. Значения прозрачности снимались с лент самописца с интервалом 6 мин отдельно для каждого метеорологической дальности видимость не превышала 10 км, а скорость ветра в метелях была менее 12 м/с. Ограничение исследования диапазонов дальности видимости до 10 км объясняется тем, что прибор М-37, предназначенный для оперативного обслуживания авиации, выдает значения дальности видимости за пределами 10 км с большой погрешностью.

База измерения составляла 240 м. На основании этого материала были получены экспериментальные структурные функции для различных метеорологических явлений [1]. Следует заметить, что явления, продолжительность которых была менее 3 ч, в обработку не включены, кроме того, пульсации прозрачности изучались с того момента, когда процесс можно было считать стационарным. Оказалось, что все изученные явления погоды имеют однотипные структурные функции, которые хорошо аппроксимируются аналитическим выражением вида

$$p_{S}(\tau) = 2\sigma^{2} \left(1 - ae^{-\alpha\tau - \beta\tau^{2}}\right).$$

	Туман	Морось	Метель	Снегопад	Дождь	Дымка	Мгла
<i>Т</i> _{со} мин	271	169	466	754	336	. 780	750
т _о мин	13	17	20	34	27	77	483
a	1	1	0,79	0,93	0,98	1	1
σКМ	0,24	1,08	1,13	1,56	1,94	1,22	1,78
$\overline{S}$ км	0,71	2,55	2,27	3,26	6,19	3,03	3,18
						1	

Характеристики временной структуры видимости при различных метеорологических явлениях

В табл. 1 приведены некоторые характеристики временной структуры видимости при различных метеорологических явлениях:  $T_{\rm op}$  средняя продолжительность тех реализаций метеорологического явления, которые были взяты в обработку; то — интервал корреляции, т. е. время, в течение которого корреляционная функция прозрачности уменьшается в *е* раз (для тумана он составляет лишь несколько минут, тогда как для дымки и особенно мглы связь между значениями видимости, полученными через значительный промежуток времени, еще сохраняется); *а* — коэффициент, характеризующий влияние на корреляцию особенностей производства наблюдений за видимостью, т. е. методическую погрещность (как видно, лишь в условиях осадков, особенно при метели, наблюдения за видимостью с помощью прибора M-37 содержат большие методические ошибки,

обусловленные типом выбранного самописца);  $\sigma$  — дисперсия,  $\overline{S}$  — среднее значение метеорологической дальности видимости для изученных явлений погоды. Оказывается, прозрачность нижнего слоя атмосферы меняется настолько быстро, что экстраполяция полученных значений видимости даже на короткие промежутки времени для явлений, сильно ухудшающих видимость, приводит к большим ошибкам.

В табл. 2 приведены средние квадратические ошибки экстраполяции метеорологической дальности видимости через 6 и 12 мин. Как следует из этой таблицы, использование данных, полученных 6 мин тому назад, приводит к ошибкам порядка 20% и более для всех явлений, сильно снижающих видимость. Следовательно, в сложных метеорологических условиях при оперативном обслуживании авиации, например, необходимо выдавать значения дальности видимости непосредственно в тот момент, когда они требуются.

В табл. З подсчитаны по формуле Дроздова—Шепелевского [2] погрешности интерполяции данных по видимости, полученные через разные промежутки времени. Погрешность интерполяции подсчитана для середины интервала. Как видно из таблицы, если наблюдения проводятся через 30 мин, то наибольшая ошибка получается при интерполяции данных по видимости во время метели (42%),

Таблица 2

Погрешность осреднения	Туман	Морось	Метель	Снегопад	Дождь	Дымка	Мгла		
$\Delta \tau = 6$ мин									
ΔS км	0,16	0,60	0,95	0,98	1,08	0,44	0,34		
$\frac{\Delta S}{S} 0/0$	22	24	42 .	30	17	14	10		
Δτ == 12 мин									
ΔS км	0,25	1,0	1,06	1,31	1,58	0,75	0,5		
$\frac{\Delta S}{S} 0/0$	36	39	47	40	26	25	16		
		·	e.			1			

Ошибки экстраполяции

Таблица З

Погрешности интерполяции данных наблюдений по видимости, полученных между сроками, на середину интервала

Погрешность осреднения	Туман	Морось	Метель	Снегопад	Дождь	Дымка	Мгла		
$\Delta  au = 12$ мин									
<b>Δ</b> <i>S</i> км	0,1	0,34	0,74	0,77	0,8	0,32	0,24		
$\frac{\Delta S}{S}$ %	14	13	32	23	13	10	8		
$\Delta  au = 30$ мин									
<b>Δ</b> <i>S</i> км	0,23	0,83	0,96	0,84	1,3	0,52	0,36		
$\frac{\Delta S}{S} % $	32	32	42	26	21	17	11		
$\Delta  au = 60$ мин									
<b>Д</b> S км	. (		1,13	1,08	1,8	0,73	0,56		
$\frac{\Delta S}{S}$ %			49	33	30	24	17		

при тумане и мороси она составляет 32%, а при других изученных метеорологических явлениях ошибка значительно меньше.

В связи с автоматизацией наблюдений по видимости большой интерес представляет вопрос о частоте наблюдений, которая необходима при различных метеорологических явлениях, чтобы дать среднюю климатологическую характеристику видимости с определенной погрешностью.
Действительно, в настоящее время приборы, работающие на сети АМСГ, согласно инструкции выключаются, если дальность видимости более 3 км, и этот параметр не является препятствием для работы аэродрома.

Однако, помимо оперативного обслуживания транспорта, большой интерес представляет изучение прозрачности нижнего слоя атмосферы в климатологическом плане. Если бы прибор не выключался при хорошей прозрачности, а работал бы в другом режиме, выдавая те же значения видимости, мы имели бы ценный климатологический материал и не нарушалась бы непрерывность рядов наблюдений. Наличие структурных характеристик поля горизонтальной прозрачности позволяет определить необходимую частоту наблюдений при различных метеорологических условиях.

Погрешности получения среднего значения видимости в различных метеорологических условиях определялись по следующей формуле:

$$(\Delta S)^2 = \frac{\sigma^2}{n} \left[ \frac{1}{6} \frac{T}{\tau_0 n} + (1-a) \right], \qquad (2)$$

где σ — дисперсия, n — число наблюдений, T — продолжительность наблюдений, τ₀ — интервал корреляции, a — коэффициент, дающий методическую погрешность наблюдений.

Расчеты произведены для двух случаев: для средней продолжительности изученного явления и для наблюдений, которые производились в течение часа. Интервалы времени между наблюдениями взяты одинаковыми для обоих случаев, а именно, 6, 10, 20 и 30 мин. Результаты расчетов сведены в табл. 4. Анализ данных этой таблицы показывает, что даже для явлений, отличающихся очень большой изменчивостью (например, для тумана и метели), снятие значений видимости с лент регистраторов через 6 мин вряд ли целесообразно, так как отклонение полученной таким образом средней от истинной составляет единицы процентов. Для дождя, дымки и мглы эта величина составляет сотые доли процента. Для дымки подсчитаны погрешности осреднения видимости при разных интервалах времени между наблюдениями. Расчеты сделаны для средней продолжительности явления (табл. 5). Как следует из табл. 5, даже в том случае, когда наблюдения проводятся с интервалом времени 2 ч, полученная средняя дальность видимости в дымке отличается от истинной не более чем на 10%.

Проведенная работа показывает, что в зависимости от поставленной задачи и от желаемой точности следует выбирать различную дискретность наблюдений по видимости. При работе автоматических станций нужно предусмотреть возможность переключения датчика видимости на различные режимы работы.

Настоящая работа основывается на экспериментальных структурных функциях, полученных на фотометрическом полигоне в Воейково. Интересно было бы получить аналогичный материал в других климатических зонах.

# Таблица 4

	сыпости осре	дисния в	пдимости	в различ	INDIA MCL	coposoi n.	асских яв	аспияд	
Т мин	Погрешность осреднения	Туман	Морось	Метель	Снегопад	Дождь	Дымка	Мгла	(
	<u> </u>	·			<u></u>		<u>.</u>	<u></u>	
			Δ	с=6 мин					
T _{cp}	$\Delta S$ KM	0,01	0,03	0,06	0,04	0,02	0,01	0,002	
	$\frac{\Delta S}{S} \frac{0}{0}$	1 .	1,2	3	1	0,3	0,3	0,06	
60	ΔS км	0,02	0,08	0,18	0,15	0,15	0,04	0,02	
	$\frac{\Delta S}{S} 0/0$	3	3	8	5	2	1	0,8	
	ĺ			1	1	Ι.	1	• .	
			Δτ	=10 мин					
T _{cp}	ΔS км	0,02	0,08	0,09	0,06	0,03	0,02	0,01	
	$\frac{\Delta S}{S} 0/0$	2	3	4	2	0,4	0,7	0,03	
60	ΔS км	0,04	0,14	0,24	0,22	0,22	0,07	0,04	
	$\frac{\Delta S}{S} 0/0$	5	5	10	7	3	2	1	
			. ·				1	1	
	an a		Δτ	=20 мин		· · ·			¢
T _{cp}	ΔS км	0,03	0,15	0,14	0,1	0,18	0,04	0,02	
	$\frac{\Delta S}{S} 0/0$	4	6	6	3	3	1	0,6	
60	<b>Д</b> <i>Я</i> км	0,07	0,28	0,40	0,37	0,42	0,14	0,09	
	$\frac{\Delta S}{S} 0/0$	10	10	17	11	7	5	3	
		1				1 17 - 1	l ,		
			· .	$\Delta \tau = 30$ m	ин			i pri	
T _{cp}	<b>Δ</b> S км	0,05	0,23	0,19	0,15	0,27	0,06	0,03	
	$\frac{\Delta S}{S} \frac{0}{0}$	7	9	8	4	4	2	1	
60	ΔS км	0,1	0,41	0,54	0,5	0,6	0,20	0,13	
	$\frac{\Delta S}{S} 0/0$	14	16	24	15	10	7	4	

Погрешности осреднения видимости в различных метеорологических явления

110

#### Таблица 5

Погрешность осреднения видимости в дымке средней продолжительности (T = 780 мин) при разных интервалах времени между наблюдениями

			•		Δτ	мин				
· .	1	5	10	20	30	60	90	120	180	240
n As	780	156	78	39 0.04	26 0.6	13	8	6 0.26	4	3 0.53
$\frac{\Delta s}{s} 0/0$	0,002	0,3	0,02	1,3	2	4	7	9	1,3	17

### СПИСОК ЛИТЕРАТУРЫ

- 1. Бартенева О. Д., Довгялло Е. Н., Полякова Е. А. Экспериментальные исследования оптических свойств приземного слоя атмосферы. — «Тр. ГГО», 1966, вып. 220. 244 с.
- 2. Дроздов О. А., Шепелевский А. А. Теория интерполяции в стохастическом поле метеорологических элементов и ее применение к вопросам метеорологических карт и рационализации сети. — «Тр. НИУ ГУГМС». Сер. 1, вып. 13, 1946, с. 65—115.
- 3. Каган Р. Л. О точности определения средней по площади по данным точечных измерений. «Тр. ГГО», 1965, вып. 175, с. 117—131.

# Е. Н. ДОВГЯЛЛО, В. А. КОВАЛЕВ, И. Н. НЕЧАЕВ

# ВИЗУАЛЬНО-ИНСТРУМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕТЕОРОЛОГИЧЕСКОЙ ДАЛЬНОСТИ ВИДИМОСТИ В УСЛОВИЯХ ЗАКРЫТОГО ГОРИЗОНТА

Как известно [1], визуально-инструментальная методика определения видимости с помощью оптических приборов (ИДВ-ГГО, М-53 и др.) основана на измерении видимого контраста между темными объектами, покрытыми атмосферной дымкой, и фоном неба у горизонта. Метеорологическая дальность видимости S_м находится из соотнощения

$$S_{\rm M} = \frac{L \ln \frac{1}{\varepsilon}}{\ln K_0 - \ln K} \,,$$

где є — порог контрастной чувствительности глаза; L — расстояние от наблюдателя до объекта;  $K_0$  — истинный контраст объекта с фоном при отсутствии дымки; K — измеряемый контраст между объектом, покрытым дымкой, и фоном неба.

Количественная оценка контраста возможна разными методами. На сети ГМС большое распространение получил метод относительной яркости. При наблюдении по этому методу контраст черной марки, спроектированной на черный щит под дымкой, наложением вуалирующей яркости неба доводится до порогового значения ε,

$$K_{\mathrm{M. III}} = \frac{1}{1 + \frac{B_{\mathrm{III}}}{B_{\mathrm{III}}} \frac{\Sigma}{\sigma T}} = \varepsilon, \qquad (1)$$

где  $B_{\rm H}$  — яркость неба у горизонта,  $B_{\rm III}$  — яркость черного щита под дымкой,  $\Sigma/\sigma T$  — приборный параметр (см. [1]), который в дальнейшем для простоты будем обозначать через p.

Интересующим нас параметром является контраст щита на фоне неба

$$K_{\mathbf{u},\mathbf{h}} = 1 - \frac{B_{\mathbf{u}}}{B_{\mathbf{h}}}.$$
 (2)

Эта величина может быть найдена из (1) в виде

$$K_{\underline{\mathbf{u}},\mathbf{n}} = 1 - \frac{p}{\frac{1}{\varepsilon} - 1} \approx 1 - \varepsilon p.$$
(3)

Таким образом, при измерении методом относительной яркости определяется контраст между щитом, на котором мы гасим марку,

и фоном, который используется в качестве вуалирующей яркости. В обычных условиях наблюдения этой вуалирующей яркостью является фон неба у горизонта.

Ошибка определения контраста по методу относительной яркости зависит от величины измеряемого контраста и выражается формулой

$$\delta K_{\mathrm{m, H}} = \frac{1 - K_{\mathrm{m, H}}}{K_{\mathrm{m, H}}} \sqrt{\delta p_{\mathrm{M}}^2 + \delta p^2}, \qquad (4)$$

где δ*p*_м — погрешность гашения марки на фоне неба, δ*p* — погрешность гашения марки на фоне щита.

Согласно исследованиям В. А. Гаврилова [1], погрешность гашения марки на фоне неба, определяющаяся разбросом величины є, лежит примерно в пределах 10—15%. Погрешность гашения марки на фоне черного щита есть величина переменная, зависящая от величины измеряемого контраста. Для узкого диапазона контрастов, используемых в методе относительной яркости, можно принять эту погрешность постоянной и равной примерно 10—15%. Подставляя эти значения в формулу (4), получим выражение для ошибки определения контраста по методу относительной яркости:

$$\delta K_{\mathbf{u},\mathbf{H}} \approx \frac{1 - K_{\mathbf{u},\mathbf{H}}}{K_{\mathbf{u},\mathbf{H}}} \cdot 17^0 /_0.$$
⁽⁵⁾

Для определения контраста методом относительной яркости необходимо, чтобы объекты проектировались на фоне неба у горизонта. Если это условие не выполняется и пункт измерения видимости находится в условиях закрытого горизонта, а углового смещения изображения в поле зрения прибора недостаточно, для того чтобы гасить марку наложенной яркостью неба, то использование обычного метода относительной яркости невозможно. Многолетний опыт эксплуатации визуально-инструментальной методики показал, что эта особенность — закрытость горизонта в пункте наблюдения на значительной части сети ГУГМС — и является одним из главных ограничений распространения этого и других визуальных методов на сети станций. В этих условиях объекты на нужных расстояниях оказываются проектирующимися не на фон неба, а на более удаленный земной фон (например, на леса, склоны гор и холмов, а в последнее время все чаще на фон зданий окружающей застройки). Кроме того, выясняются и новые потребности измерения видимости, например, в глубоких карьерах, где мобильные, не требующие тяжелого оборудования визуально-инструментальные методы являются наиболее удобными, но не могут быть использованы из-за невозможности спроектировать наблюдаемые объекты на фоне неба.

Как показали проведенные нами исследования, измерение видимости по объектам, не проектирующимся на фоне неба, может быть выполнено, если, используя метод относительной яркости, дополнить его наблюдениями по промежуточному экрану, помещенному вблизи линии визирования, недалеко от наблюдателя. Процесс измерения в этом случае может быть сведен к следующим операциям.

8 Зак. № 262

Наложением вуалирующей яркости экрана контраст между маркой и щитом доводится до порогового значения. Аналогично (1) имеем

$$K_{\mathrm{M. III}} = \frac{1}{1 + \frac{B_{\mathfrak{I}}}{B_{\mathrm{III}}} p_{1}} = \varepsilon, \qquad (6)$$

где *В*_э — яркость экрана.

Вторая операция заключается в наложении вуалирующей яркости неба на марку, спроектированную на промежуточный экран. Тогда

$$K_{\mathrm{M,9}} = \frac{1}{1 + \frac{B_{\mathrm{H}}}{B_{\mathrm{P}}} p_2} = \varepsilon.$$

$$\tag{7}$$

Совместное решение (6) и (7) позволяет вычислить контраст щита под дымкой на фоне неба

$$\frac{B_{\mathrm{III}}}{B_{\mathrm{H}}} = \frac{p_1 p_2}{\left(\frac{1}{\varepsilon} - 1\right)^2} \approx \varepsilon^2 p_1 p_2.$$

Следовательно, при использовании экрана в качестве «искусственного неба» и при введении последующей поправки на яркость экрана по отношению к яркости неба мы получим для искомого контраста следующее выражение:

$$K_{\mathrm{III. H}} = 1 - \varepsilon^2 p_1 p_2. \tag{8}$$

В этом случае ошибка измерения контраста щита с фоном неба выражается формулой

$$\delta K_{\text{m. H}} = \frac{1 - K_{\text{m. H}}}{K_{\text{m. H}}} \sqrt{2 \cos^2 + (\delta p_1)^2 + (\delta p_2)^2}.$$
(9)

Можно показать, что инструментальная погрешность  $\delta p$  имеет симметричный ход относительно среднего значения, поэтому в первом приближении можно считать  $\delta p_1 \approx \delta p_2$ . Таким образом, формула (9) может быть записана в виде

$$\delta K_{\mathrm{III. H}} \approx \frac{1 - K_{\mathrm{III. H}}}{K_{\mathrm{III. H}}} \cdot 24^0 /_0. \tag{10}$$

Сравним ошибки определения контраста по методу относительной яркости с промежуточным экраном и без него (формулы (5) и (10)). Как и следовало ожидать, введение в процедуру измерения дополнительной операции несколько увеличило погрешность измерения. Наличие в формулах (5) и (10) множителя  $\frac{1-K_{\text{ш. н}}}{K_{\text{п. н}}}$  позво-

ляет выбрать диапазон, в котором ошибка измерения контрастов будет мала. Как видно из табл. 1, наиболее благоприятной для измерения будет область достаточно больших контрастов.

114

Таблица 1

Величина ошибки  $\delta K$  при различных К

· · · · · · · · · · · · · · · · · · ·	
0,90	
$0,11 \\ 1,9 \\ 2,6$	•
	0.11 1.9 2,6

Предварительные испытания разработанного способа определения контраста методом относительной яркости с промежуточным экраном («искусственным небом») были произведены на фотометрическом полигоне в Воейково. Испытания проводились не регулярно, но в течение длительного времени, чтобы охватить различные сезоны года и различные условия наблюдения. Объем полученного материала представлен в табл. 2.

Таблица 2

Количество сер	ий наб	люден	ий и	распреде	ление	их во	времени	
Месяц	IV	v	VI	VII	VIII	IX	х	ХI
Количество серий	13	10	7	8	14	1	4	5
Bcero	62							

Наблюдения проводились одновременно двумя наблюдателями. В процессе измерения определялся контраст объекта по обычному методу относительной яркости и по методу относительной яркости с промежуточным экраном, играющим роль «искусственного неба». При наблюдении использовались экраны двух видов — гладкий белый экран и серый экран с шероховатой неоднородной поверхностью. Для исключения систематических субъективных ошибок определение контрастов производилось наблюдателями в меняющейся последовательности с контролем отсчета вторым наблюдателем.

Обработка полученного материала позволила оценить погрешности испытываемого метода в сравнении с обычным методом относительной яркости. Результаты такого сравнения приведены в табл. 3. Как видно из таблицы, применение гладкого белого экрана дает возможность определять величины контрастов объектов с фоном неба; результаты этого измерения отличаются от результатов, полученных обычным методом относительной яркости, на величину около 2%. Эта величина такого же порядка, как и разброс отсчетов разных наблюдателей при измерении по основному методу относительной яркости.

### Таблица З

# Погрешности измерения контрастов по методу относительной яркости с промежуточным экраном и без него

		Наблю	Разброс значений К			
При гашении марки	пе	рвый	вт	орой	при определении раз- ными наблюдателями	
	δ%	δ _{max} 0/0	δ%	δ _{max} %	8%	δ _{max} %
Яркостью неба Белым экраном Серым экраном	1,8 3,5	+5 -5 +4 -7	2,1 3,3	+4 -5 +10 -5	1,6 2,4 4	4 5 7

Второй испытываемый экран (серый) дал несколько худшие результаты. Ошибка определения контраста марки на щите составляет величину около 3,5%, однако это, по-видимому, в какой-то степени определяется индивидуальными качествами использованного щита, весьма неоднородного по структуре и окраске.

Результаты испытания дают основание считать, что рассмотренный метод пригоден для определения дальности видимости по контрастам темных объектов с фоном неба в тех случаях, когда использование обычного метода относительной яркости невозможно вследствие закрытости горизонта.

## СПИСОК ЛИТЕРАТУРЫ

1. Гаврилов В. А. Видимость в атмосфере. Л., Гидрометеоиздат, 1966. 323 с.

### В. А. КОВАЛЕВ

# НЕКОТОРЫЕ ВОПРОСЫ ПЕРЕХОДА ОТ ПРОЗРАЧНОСТИ К НАКЛОННОЙ ДАЛЬНОСТИ ВИДИМОСТИ

Современный уровень аэронавигационных средств не обеспечивает возможности сколько-нибудь надежной на практике «слепой» посадки самолетов, в силу чего их приземление на взлетно-посадочную полосу (ВПП) осуществляется на основе визуального наблюдения соответствующих объектов и огней ВПП. В этих условиях необходимо. чтобы наклонная дальность видимости (НДВ), определяемая как расстояние по наклону, на котором пилот снижающегося самолета сможет обнаружить объекты ВПП [1], была бы не ниже некоторых предельных значений, при которых посадка может быть совершена без риска аварии. Однако до настоящего времени никаких сколько-нибудь пригодных для оперативной практики методов определения НДВ не существует. Главная трудность, возникающая при определении наклонной дальности видимости, заключается в отсутствии достаточно отработанных методов определения одной из важнейших характеристик, определяющей НДВ, -- прозрачности атмосферы в наклонных направлениях.

В последние годы, однако, наблюдается определенный прогресс в этом направлении, и в связи с этим на повестку дня ставится задача разработки методов перехода от измеряемой приборами величины наклонной прозрачности к наклонной дальности видимости. При определении НДВ обычные экстраполяционные методы обработки заведомо неприемлемы вследствие непрерывного изменения характера атмосферной мутности с высотой. В наклонных направлениях непосредственно может быть измерена только прозрачность ограниченного зондируемого слоя. Измерение же НДВ теоретически требует обеспечения равенства базы измерения прибора и дальности видимости, что для объективных методов измерения пока что недостижимо; такое условие сейчас практически может быть выполнено лишь при использовании визуальной методики измерения [2, 11].

Следует отметить, что само понятие наклонной дальности видимости и в отечественной, и в зарубежной литературе трактуется различным образом. Ее трактуют, например, как расстояние обнаружения огней приближения при снижении самолета по глиссаде снижения [12]; чаще как расстояние обнаружения ВПП [3] или ВПП вместе с системой сигнальных огней [1]. С другой стороны, высказывается мнение, что пилоту снижающегося самолета необходимо знать наклонную видимость не только под углом глиссады снижения, но и под другими углами визирования, вплоть до максимально

возможного угла визирования в направлении полета, определяемого конструкцией самолета [4]. Во всех этих случаях речь идет о реальной дальности видимости различных объектов, и величина этой дальности видимости будет различной в зависимости от целого ряда факторов, определяемых конкретными условиями наблюдения.

При измерении горизонтальной дальности видимости определяют, как правило, не реальную, а метеорологическую дальность видимости. Такой подход обусловлен тем, что, во-первых, эта величина зависит только от прозрачности атмосферы, которая может быть определена обычными фотоэлектрическими приборами. Вовторых, на основе этой величины может быть рассчитана дальность видимости любых реальных объектов. И, наконец, в-третьих, дальность видимости большинства реальных объектов на фоне неба у горизонта от величины метеорологической дальности видимости отличается не очень сильно, и следовательно, градуировка приборов в единицах метеорологической дальности видимости дает возможность достаточно простого визуального контроля их работы в процессе эксплуатации.

Исходя из удобства такой трактовки известную формулу для горизонтальной метеорологической дальности видимости

$$S_{\rm M} = \frac{\ln \frac{1}{\varepsilon}}{\alpha}$$

иногда используют и при расчете наклонной дальности видимости [1, 5, 6]. Однако вопрос о применимости этой формулы к неоднородной среде, как правило, не рассматривают, что и вынуждает нас несколько подробнее на нем остановиться.

Величина дальности видимости, рассчитанная по формуле (1), в общем случае неоднородной атмосферы будет соответствовать истинной лишь в том случае, когда величина коэффициента ослабления  $\alpha$  определена на базе измерения, равной величине дальности видимости, т. е.

$$\alpha = \frac{1}{S_{\rm M}} \int_{0}^{S_{\rm M}} \alpha \, dl = \bar{\alpha} \, (S). \tag{2}$$

(1)

При использовании объективных методов измерения база установки L всегда меньше величины  $S_{\rm M}$ , и установка измеряет среднее значение показателя ослабления  $\overline{\alpha}(L)$ , которое в общем случае неоднородной атмосферы отличается от искомого  $\alpha(S)$ :

$$\tilde{\alpha}(L) = \frac{1}{L} \int_{0}^{L} \alpha \, dl. \tag{3}$$

Существует частный случай, когда условие  $\alpha(L) = \alpha(S)$  выполняется и в неоднородной атмосфере, а установка на ограниченной

и постоянной базе измерения  $L < S_{\rm M}$  измеряет истинное значение  $S_{\rm M}$ . Это случай атмосферы, однородной в горизонтальных направлениях.

Обратимся к рис. 1. Пусть установка, расположенная в точке A, измеряет прозрачность атмосферы на зондируемом участке L под углом  $\varphi$  к горизонту, зондируя таким образом некоторый слой атмосферы толщиной  $H = L \sin \varphi$ . Если представить атмосферу состоя-



Рис. 1. К определению наклонной дальности видимости.

щей из n слоев толщиной  $\Delta h_i$ , однородных в горизонтальных направлениях, то измеренное установкой среднее значение показателя ослабления в слое L равно

$$\overline{\alpha}(L) = \frac{1}{L} \sum_{i=1}^{n} \alpha_{i} \frac{\Delta h_{i}}{\sin \varphi} = \frac{\xi(H)}{H}, \qquad (4)$$

где  $\xi(H)$  — оптическая толщина вертикального столба атмосферы высотой *H*. Из (4) следует, что величина  $\alpha(L)$  зависит лишь от геометрической и оптической толщины зондируемого столба атмосферы *H* и не зависит от угла, под которым производится измерение.

Определим теперь, какова будет наклонная дальность видимости некоторого черного объекта, расположенного на высоте H и наблюдаемого с поверхности земли, при условии выполнения в наклонных направлениях световоздушного уравнения. Согласно определению метеорологической дальности видимости как расстояния, на котором видимый контраст черного тела на фоне насыщенной дымки (K) становится равен пороговому, величина НДВ будет соответствовать некоторому отрезку  $BC = S_{\rm H}$  под углом v к горизонту соответственно условию,

$$K = e^{-\overline{a} (BC) BC} = \varepsilon, \tag{5}$$

где є — порог контрастной чувствительности глаза.

Среднее значение показателя ослабления  $\alpha(BC)$  на участке BC равно n

$$\bar{\alpha}(BC) = \bar{\alpha}(S) = \frac{1}{BC} \sum_{i=1}^{n} \frac{a_i \Delta h_i}{\sin \gamma} = \frac{\xi(H)}{H}, \qquad (6)$$

и следовательно,  $\overline{\alpha}(S) = \overline{\alpha}(L)$ .

119

Таким образом, если установка для измерения НДВ проградуирована непосредственно в единицах дальности видимости по формуле (1), то измеренное ею значение  $S_n$  в атмосфере, однородной в горизонтальных направлениях, будет соответствовать величине НДВ черного объекта, находящегося на высоте  $H = L \sin \varphi$ , где L глубина зондирования установки,  $\varphi$  — угол наклона к горизонту. Очевидно, при изменении L или  $\varphi$  будет меняться и высота зондируемого слоя атмосферы H, и это принципиально позволяет измерять НДВ в слоях различной толщины, а также производить послойное зондирование атмосферы на разных высотах. Такая методика позволяет принципиально определять и реальную дальность видимости различных объектов при наблюдении сверху вниз, однако в этом случае, как будет показано далее, необходимо учитывать еще и ряд других параметров.

Главным ограничением рассмотренного выше перехода от прозрачности атмосферы к НДВ является условие однородности атмосферы в горизонтальных направлениях, которое должно выполняться по меньщей мере в пределах слоев атмосферы, ограниченных линиями AB и BC. В условиях плохой видимости и низкой облачности при малых глубинах зондирования L такая методика перехода от прозрачности к НДВ может приводить к значительным погрешностям. Поэтому при анализе этого вопроса следует рассматривать более общий случай, когда атмосфера неоднородна и в наклонных и в горизонтальных направлениях. Общее выражение для реальной дальности видимости  $S_p$  при наблюдении сверху вниз в этом случае может быть выведено из условия [1, 7]

$$K = \frac{K_0}{1 + E/B_{\Phi}\left(e^{\overline{a}, (S_p) S_p} - 1\right)} = \varepsilon, \qquad (7)$$

где  $K_0$  — истинный контраст объекта и фона; K — контраст объекта и фона, искаженный дымкой; B — яркость насыщенной дымки в направлении линии визирования;  $B_{\phi}$  — яркость фона ( $B_{\phi} > B_{o}$ );

 $\alpha(S_p)$  — среднее значение показателя ослабления на участке  $S_p$ , определяемое по формуле

$$\bar{\alpha}(S_{\rm p}) = \frac{1}{S_{\rm p}} \int_{0}^{S_{\rm p}} \alpha \, dl. \tag{8}$$

Заметим, что выражение (7) предполагает наличие в визируемом наклонном направлении насыщенной дымки и выполнения световоздушного уравнения. Можно считать, что для интересующих нас условий значительных помутнений это требование выполняется. Как показано в работе И. А. Савиковского [9], применение световоздушного уравнения для неоднородной атмосферы в принципе допустимо, хотя в некоторых экстремальных случаях его использование может приводить к значительным погрешностям. В некоторых работах (например, [10]) при рассмотрении вопроса определения НДВ используется более строгое выражение для контрастов объектов в неоднородной среде, учитывающее фактическое значение яркобти дымки в слое атмосферы переменной толщины, равной S_p. К сожалению, непосредственное экспериментальное определение этой величины в наклонных направлениях практически не представляется возможным, а введение всякого рода эмпирических зависимостей или каких-либо средних величин, как это предлагается, по существу сводит на нет всю строгость приведенных выражений. Нам представляется поэтому более целесообразным основываться на выполнимости световоздушного уравнения, поскольку в этом случае в выражение для контраста входит величина яркости насыщенной дымки Б в направлении визирования, измерение которой принципиальных трудностей не представляет.

При расчетах реальной дальности видимости выражение (7) обычно решают относительно величины S_p в виде [1, 4]

$$S_{p} = \frac{1}{\bar{\alpha}(S_{p})} \ln \left[ 1 + \left( \frac{K_{0}}{\varepsilon} - 1 \right) \frac{B_{\Phi}}{B} \right], \qquad (9)$$

достаточно неудобном для решения практических задач. Действительно, для определения величины  $S_p$  по формуле (9) необходимо знать величину показателя ослабления  $\overline{\alpha}(S_p)$  в правой части формулы, которая, однако, не может быть определена, если неизвестна величина  $S_p$ .

Более целесообразным нам представляется подход к решению вопроса, изложенный в работе Б. Н. Новикова [8], где за основной параметр принимается оптическая толщина зондируемого слоя атмосферы от точки, в которой находится самолет, до ВПП. Однако рассмотрение этого вопроса в [8] ограничено условием атмосферы, однородной в горизонтальных направлениях.

Рассмотрим этот вопрос в общем случае неоднородной атмосферы. Обозначив оптическую толщину  $\overline{\alpha}(S_p)S_p = \xi(S_p)$ , можно залисать выражение (7) в виде

$$\varepsilon(S_{p}) = \ln\left[1 + \left(\frac{K_{0}}{\varepsilon} - 1\right) - \frac{B_{\phi}}{\delta}\right], \qquad (10)$$

согласно которому понятие дальности видимости  $S_p$  любого объекта в неоднородной атмосфере может трактоваться следующим образом: реальная дальность видимости объекта на данном фоне есть протяженность слоя атмосферы, оптическая толщина которого  $\xi(S_p)$  есть некоторая постоянная при данных условиях наблюдения величина. Характерной особенностью здесь является то обстоятельство, что эта величина  $\xi(S_p)$  не зависит от прозрачности атмосферы и, следовательно, может быть рассчитана заранее. (Заметим, что аналогично вышесказанному понятие метеорологической дальности видимости может трактоваться каж протяженность горизонтального слоя атмосферы, оптическая толщина которого равна  $\ln \frac{1}{\epsilon}$ . Действительно, из (9) следует, что при  $B_{\Phi} = E$  и  $K_0 = 1$   $\alpha S = \ln \frac{1}{\epsilon}$ .)

Таким образом, измерение реальной дальности видимости, на пример, видимости ВПП в наклонном направлении, принципиально может быть сведено к определению геометрической протяженности слоя атмосферы, оптическая толщина которого равна некоторой рассчитанной по заданным исходным условиям величине. Однако такое измерение, очевидно, требует наличия измерительной схемы с переменной измерительной базой, равной S_p.

В настоящее время в оперативной практике обслуживания авиачии используют критерий так называемого минимума погоды, определяемого предельно низким сочетанием высоты облаков и видимости, при которых допускается посадка самолетов [13]. Такой подход дает возможность упростить задачу обеспечения визуальной посадки самолетов на конечном этапе посадки и решить ее с помощью приборов с постоянной базой измерения. Задача в этом случае сводится к тому, чтобы с помощью объективных приборов измерить оптическую толщину нижнего участка глиссады снижения, где пилот переходит на визуальное пилотирование, и определить, ниже или выше она критического значения, т. е. может быть разрешена посадка самолета или нет.

Рассмотрим общие вопросы методики перехода от прозрачности к НДВ в условиях аэродромов. Пусть DC — глиссада снижения, C — начало ВПП, а точка B соответствует положению самолета, при котором пилот непосредственно приступает к посадке (рис. 1). Для благополучного приземления необходимо, чтобы пилот снижающегося самолета обнаружил бы начало ВПП заблаговременно до подхода к точке B или, в крайнем случае, в точке B. Это условие будет выполнено в том случае, если оптическая толщина участка BC не превышает «критического» значения  $\xi(S_p)$ , определяемого условием (10)

$$\xi(BC) \leqslant m\xi(S_{\rm p}),\tag{11}$$

где m— коэффициент запаса ( $m \leq 1$ ), выбираемый в зависимости от величины инструментальной и методической погрешности определения оптической толщины  $\xi(BC)$  и от точности параметров, определяющих величину  $\xi(S_p)$ . Введение в том или ином виде коэффициента запаса в исходные формулы, по нашему мнению, неизбежно, поскольку выдаваемые авиации данные о наклонной дальности видимости должны иметь достаточно высокую обеспеченность. В то же время все входящие в формулу (10) параметры могут быть определены лишь с некоторой конечной точностью, недостаточной, по крайней мере на данном этапе, для нужд авиации. Величина этого коэффициента запаса должна быть установлена опытным путем, и по мере отработки методики измерения НДВ она будет меняться, все более и более приближаясь к единице.

Из вышеизложенного следует, что процесс определения возможности посадки самолетов при существующих условиях должен включать две операции: 1) определение оптической толщины  $\xi(BC)$  нижнего участка глиссады снижения, 2) сопоставление полученной величины  $\xi(BC)$  с критическим значением оптической толщины

 $\xi(S_p)$  при данных метеорологических условиях, времени года, состоянии ВПП (влажная, сухая) и освещенности. Поскольку, однако, понятие дальности видимости является более наглядным и более принятым в практике, чем понятие оптической толщины, вряд ли следует рекомендовать в дальнейшем отказываться от понятия дальности видимости. Так как точный расчет этой величины по формуле (9) по указанным выше соображениям невозможен, то на данном этапе для определения НДВ можно пользоваться приближенным соотношением

 $S'_{p} \approx \frac{1}{\overline{a}(BC)} \ln \left[ 1 + \left( \frac{K_{0}}{\varepsilon} - 1 \right) \frac{B_{\Phi}}{B} \right].$  (12)

В этом случае при расчете дальности видимости вместо значения  $\overline{\alpha}(S_p)$  мы используем значение  $\overline{\alpha}(BC) = \frac{1}{BC} \xi(BC)$ , найденное по результатам измерения прозрачности на участке *BC*. Поэтому в общем случае величина  $S'_p$ , найденная по формуле (12), отличается от истинной величины  $S_p$ , определяемой по формуле (9). Однако чем ближе истинное значение  $S_p$  к нижнему допустимому пределу видимости, тем, очевидно,  $S'_p$  ближе к истинной величине дальности видимости. В наиболее важный для оперативной практики момент, когда величина дальности видимости приближается к критическому значению ( $S_p \rightarrow BC$ ), формулы (12) и (9) совпадают и соответственно  $S'_p = S_p$ .

Из рассмотрения формул (9) и (12) следует, что обеспечение высокой точности определения наклонной прозрачности еще не обеспечивает высокой точности определения НДВ, поскольку последнее зависит еще от целого ряда параметров ( $K_0$ ,  $\varepsilon$ ,  $B_{\phi}$ ,  $\mathcal{B}$ ), точность фпределения которых достаточно ограничена.

Поскольку дальность действия существующих методов и приборов для измерения прозрачности в условиях плохой видимости достаточно ограничена, система для определения НДВ должна включать в себя несколько установок для измерения прозрачности атмосферы на разных участках глиссады снижения. Так, например, для того чтобы на базе существующих методов измерения прозрачности определить без применения экстраполяции величину оптической толщины слоя *BC* протяженностью порядка 800 м — 1 км в нижнем слое атмосферы при толщине слоя 60 м, достаточно установить в районе приземления две-три установки для измерения прозрачности так, чтобы каждая из них измеряла среднее значение прозрачности на разных участках глиссады снижения. Естественно, использование такой сложной измерительной системы целесообразно лишь в наиболее ответственных случаях, при погодных условиях, близких к минимуму погоды. В остальных случаях, например, для дежурных наблюдений, вероятно, достаточно ограничиться измерением наклонной прозрачности атмосферы в районе перехода пилота на визуальное пилотирование, а расчет оптической толщины нижнего

#### 123:

участка глиссады снижения или величины НДВ проводить исходя из допущения однородности атмосферы в горизонтальных направлениях, как это было рассмотрено выше.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Гаврилов В. А. Видимость в атмосфере. Л., Гидрометеоиздат, 1966. 324 с.
- 2. Гоголева Е. И. Статистическое исследование наклонной видимости при низких облаках. — «Тр. ГГО», 1964, вып. 153, 56—75 с.
- 3. Баранов А. М. и др. Авиационная метеорология. Л., Гидрометеоиздат, 1966. 286 c.
- 4. Коновалов Ю. Г., Рацимор М. Я Анализ условий видимости при посадке самолетов в радиационном тумане. — «Тр. Гидрометцентра», 1972, вып. 95, с. 3-8.
- 5. Маркелов В. А. Измерение наклонной дальности видимости методом равных углов. — «Метеорология и гидрология», 1967, № 4, с. 63—67.
- 6. Рацимор М. Я. Методика расчета прозрачности и дальности видимости огней в наклонном направлении. — «Метеорология и гидрология», 1967, № 1, c. 28-33.
- 7. Шаронов В. В. Видимость далеких предметов и огней. М., Военмориздат, 1944. 456 c.
- 8. Новиков Б. Н. Метод расчета наклонной видимости взлетно-посадочной полосы с различных высот полета. — «Тр. Всесоюз. конф. по вопросам метеорол. обеспечения сверхзвуковой авиации». Л., Изд. ЛГМИ, 1971, с. 280-283.
- 9. Савиковский И.А. Отклонения от световоздушного уравнения и их влияние на измерение горизонтальной прозрачности. — «Тр. ГГО», 1969, вып. 240, c. 168-181.
- 10. Бурлов Г. М. Уравнения дальности видимости для оптически неоднородной атмосферы. — «Тр. НИИ ГМП», 1973, вып. 28, с. 83—92.
- 11. Hodkinson I. Some observations of slant visibility in fog. "Met. Mag.", 1963, 92, No. 1086, p. 15-26.
- Harrower M. A. Runway visual range, slant visual range and meteorological visibility. "Met. Mag.", 1963, 92, No. 1086, p. 26—34.
   Serra G. Les minima d'atterisage. "France aviat.", 1966, 13, n° 143, p. 2-3.

### В. И. КОРНИЕНКО

(1)

(2)

# О ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ПРИБОРОВ РДВ НА АЭРОДРОМАХ

В настоящее время для измерения дальности видимости на аэродромах применяются компенсационные фотометры типа РДВ [1]. Прибором измеряется непосредственно прозрачность горизонтального слоя атмосферы протяженностью *l*:

$$\frac{\Phi}{\Phi_0} = e^{-\int_0^t \alpha \ dx},$$

где  $\Phi_0$  и  $\Phi$  — световой поток соответственно до и после прохождения через ослабляющий слой,  $\alpha$  — показатель ослабления в слое dx. Переход к метеорологической дальности видимости МДВ осу-

ществляется расчетным путем по формуле Кошмидера

$$S_{\rm M} = \frac{\ln \frac{1}{\varepsilon}}{\alpha},$$

где є — порог контрастной чувствительности глаза.

Приборы устанавливаются на постоянной базе  $l = 0, 1 \times 2$  км.

Практика показала, что видимость в пространстве обладает большой изменчивостью. Поэтому один прибор РДВ, установленный у взлетно-посадочной полосы (ВПП), не отражает правильно состояние видимости на ней.

В свете выщесказанного для уменьщения ошибки за счет пространственной изменчивости видимости на ВПП аэродрома необходимо устанавливать несколько приборов РДВ.

В настоящее время в большинстве аэропортов страны вдоль ВПП установлено три прибора РДВ: два у концов и один у середины ВПП. При таком расположении приборов будет реально освещено состояние видимости на полосе.

Сотрудниками отдела актинометрии и атмосферной оптики ГГО проводятся плановые инспекции сети АМСГ с целью оказания помощи в эксплуатации регистраторов видимости РДВ на аэродромах. В связи с этим отмечаем ряд факторов, которые препятствуют нормальной эксплуатации приборов РДВ в аэропортах.

Необходимо обратить внимание на недостаток на сети квалифицированных кадров прибористов. Установка приборов не везде произведена в соответствии с техническим описанием. Призменный отражатель фотометра рекомендуется устанавливать на пятиметровой металлической вышке в защитном ящике, предохраняющем призмы от снега и дождя. Практика показала, что если отражатель установлен не на вышке, а в будке, то показания фотометра занижаются. Это связано с влиянием подстилающей поверхности, которая вносит дополнительное замутнение воздуха за счет пыли и поземки.

Фотометр рекомендуется устанавливать на бетонной площадке в будке с защитным козырьком. Бетонкая площадка необходима для уменьшения запыления оптики фотометра.

Рекомендуется линии связи от всех трех фотометров выводить в один пункт. Это позволит синоптику и диспетчеру службы полетов иметь наглядное представление о состоянии видимости на ВПП.

С целью повышения качества работы приборов рекомендуется непрерывная работа фотометра. Это повышает надежность и устойчивость показаний РДВ. Прибор следует выключать раз в квартал для набивки маслом подшипников двигателя-генератора.

Регистрацию видимости рекомендуется производить при дальности видимости 10 км и менее. Запись при относительно высоком значении видимости необходима для контроля правильности показаний прибора.

Значительное число действующих регистраторов видимости составляют приборы устаревших выпусков РДВ-1. Эти приборы первых выпусков имеют в основном два существенных недостатка:

1) по вине завода-изготовителя у РДВ-1, как правило, занижена чувствительность. Это связано с тем, что напряжение несущей частоты на выходе усилителя значительно ниже нормы;

2) в качестве регистратора используется ненадежный самописец МСШ-Пр-01-18.

У самописца МСЩ-Пр-01-18 часто выходит из строя лентопротяжный механизм, высыхает красящая лента, плохо согласуются показания самописца и фотометра.

В последнее время на сеть АМСГ поступают приборы РДВ-2 в более качественном исполнении. В этих приборах для регистрации видимости используются автоматические потенциометры ПС1-13 чувствительностью 10 мВ.

У действующих приборов РДВ-1 рекомендуется заменить старые самописцы МСЩ-Пр-01-18 на более совершенные автоматические потенциометры марки ПС1-06, ПС1-10, ПС1-14 с печатающей кареткой, со временем пробега кареткой всей шкалы 8 с, чувствительностью 50 мВ.

Для подключения потенциометра в измерительную линию необходимо изготовить шунтирующее сопротивление из манганиновой проволоки номиналом 168 Ом. Схема подключения шунта к самописцу приведена на рис. 1.

Величина сопротивления здесь приводится с некоторым запасом, так что в каждом конкретном случае, укорачивая манганиновую проволоку, необходимо добиться полного согласования показаний фотометра и самописца. К верхней части шкалы самописца рекомендуется прикрепить изготовленную на ватмане шкалу видимости.

Следует отметить, что бюро поверки УГМС не проводит поверки РДВ на местах. Полезно было бы проводить хотя бы частичную поверку этих приборов. Приборы РДВ при эксплуатации нуждаются в постоянном уходе. Чистота оптической схемы определяет качество показаний прибора.



Рис. 1. Схема подключения шунта к самописцу в приборе РДВ.

Принимая во внимание вышесказанное, отмечаем, что для улучшения качества работы приборов РДВ на АМСГ необходимо устранить имеюшиеся недостатки. При надлежащей профилактике по уходу за приборами РДВ и грамотном их обслуживании можно получать надежные данные видимости на ВПП.

Хорошая работа приборов РДВ — большая помощь синоптикам в оперативной работе при сложных метеорологических условиях.

### СПИСОК ЛИТЕРАТУРЫ

1. Горышин В. И. Серийный образец автоматического фотометра для измерения и регистрации прозрачности атмосферы (РДВ). — «Тр. ГГО», 1968, вып. 213, с. 48—58.

К. Д. ЛЕБЕДЕВА

# ВОПРОСЫ ТОЧНОСТИ АКТИНОМЕТРИЧЕСКИХ НАБЛЮДЕНИЙ

В последние годы данные актинометрических наблюдений находят довольно широкое применение как в различных отраслях науки, так и в практической деятельности человека. Оценка точности используемых материалов становится при этом все более и более необходимой. Во многих случаях оказывается желательным повышение точности измерений. Для правильного решения этих вопросов необходимо исследование основных источников ошибок, возникающих при измерениях радиационных потоков современными актинометрическими приборами.

Нам представляется целесообразным сделать краткий обзор постановки общих вопросов по точности актинометрических наблюдений.

Известно, что при любом физическом измерении нельзя получить совершенно точного значения измеряемой величины A, так как оно всегда сопровождается некоторой ошибкой. В общем случае можно считать, что эта ошибка складывается из ошибки систематической (a) и случайной  $(\alpha)$ . Следовательно,

 $A_{\text{измер}} = A_{\text{действ}} + a + a + \ldots,$ 

причем величины *а* и а могут быть как положительными, так и отрицательными.

У наиболее точных физических приборов систематическая ошибка *а* мала по сравнению с величиной случайной ошибки *а* (вызванной несовершенством измерительных приборов, изменчивостью условий, в которых выполняются измерения, и погрешностями самого наблюдателя) и точность измерения определяется только величиной *а*. Однако у большинства приборов, особенно у приборов сложной конструкции, систематические ощибки могут быть различного происхождения, различными по величине и знаку, поэтому далеко не всегда их алгебраическую сумму можно считать пренебрежимо малой.

Величину систематической ошибки можно определить либо теоретически (путем создания точной теории прибора), либо экспериментально (путем одновременных сравнений исследуемого прибора с эталоном, систематические ошибки которого пренебрежимо малы). Установление действительной величины систематической ошибки *а* позволяет существенно повысить точность измерения, так как в этом случае величина а исключается из правой части уравнения (1) путем введения поправки в результаты измерения:

$$A_{\text{измер}} - a = A_{\text{действ}} + \alpha.$$

Актинометрические датчики являются приборами довольно сложной конструкции и в них сумма систематических ошибок в большинстве случаев оказывается значительно больше величины случайной ошибки. Поэтому установление систематических ошибок актинометрических приборов и их исключения из результатов измерений имеет первостепенное значение.

Случайная ошибка возникает под действием факторов, не поддающихся учету и действующих различно при каждом отдельном измерении, в результате чего при многократном измерении одной и той же величины результаты измерений получаются неодинаковыми. Оценить величину случайной ошибки ряда измерений можно только статистически на основе законов теории вероятностей в предположении, что ошибки разных знаков равновероятны и что вероятность ошибки определенной величины тем меньше, чем больше эта величина.

Если все измерения одинаково точны и независимы друг от "друга, то наиболее вероятным значением измеряемой величины бу-

дет среднее арифметическое измеренных значений A_{измер}. Мерой точности измерения может служить средняя ошибка ε_{ср}, вычисляемая по отклонениям каждого отдельного измерения (Δ*i*) от среднего арифметического из *n* измерений:

$$\varepsilon_{\rm cp} = \frac{\sum_{i=1}^{n} |\Delta i|}{n}$$
(3)

или средняя квадратическая ошибка

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} \Delta i^2}{n \left(n-1\right)}}.$$
(4)

Полученное из *n* измерений среднее значение измеренной величины само включает некоторую ошибку, величина которой характеризуется средней ошибкой

$$r = \frac{\sigma}{\sqrt{n}} \tag{5}$$

или вероятной ошибкой

$$E = 0,6745r = 0,6745 \frac{\sigma}{\sqrt{n}}.$$
 (6)

Повышение точности измерений за счет уменьшения случайных ощибок может быть достигнуто двумя путями. Одним из них является уменьшение величины отклонений  $\Delta i$  от среднего значения в результате повышения чувствительности прибора. Другой путь состоит в увеличении числа измерений *n*, используемых для вычисления  $\overline{A}_{измер}$ . Однако следует иметь в виду, что для сколько-нибудь

9 Зак. № 262

129

(2)

значительного повышения точности в этом случае необходимо очень большое число измерений, что лишь в редких случаях может быть осуществлено на практике.

Все сказанное относится к точности измерений, производимых при условии постоянства измеряемой величины в течение всего времени, необходимого для проведения измерений. Это условие выпол няется для большинства физических измерений, производимых в лабораторной обстановке. Достигаемая при этом точность измерений может быть названа физической или инструментальной точностью измерений.

Вопрос о точности значительно осложняется, когда речь идет об измерениях, производимых в естественных условиях, т. е. в движущейся неоднородной атмосфере. Таковыми, например, являются метеорологические и, в частности, актинометрические наблюдения. Поля метеорологических элементов, особенно в нижнем слое атмосферы, сказываются очень неоднородными. Особенно значительное влияние на точность измерений оказывает неоднородность термического и ветрового поля атмосферы. Возникающие при этом трудности особенно наглядно проявляются при исследовании скалярного температурного поля. При измерении температуры воздуха в различных точках поля безынерционными приборами, мгновенно отмечающими точные значения температуры, результаты измерений получаются различными даже в близких точках поля. В одной и 🚛 той же точке измеренные величины испытывают квазипериодические колебания малого периода, но довольно значительной амплитуды. В этом случае необходимо установить, что следует понимать под «истинным» значением измеряемой величины в одной точке и в данный момент. Иначе говоря, какое из множества истинных значений температуры воздуха, заключенных в некотором интервале, может быть выбрано в качестве однозначной характеристики 🤅 всего этого множества.

Если допустить, что различие мгновенных значений измеряемых величин в отдельных точках поля в определенный момент вызыва- 🤅 ется случайными причинами, то за истинное значение этой величины естественно принять ее наивероятнейшее значение, т. е. среднее из всех значений, полученных в некоторой области вокруг дан- 🤅 ной точки. Тогда отклонения от этой средней величины в отдельных точках можно рассматривать как случайные ошибки измерения. а точность измерения будет определяться теми же формулами математической статистики, как и в случае неизменной величины. Но эта точность будет уже иной и более низкой, чем инструментальная точность измерения. Эту пониженную вследствие неоднородности метеорологических полей точность можно назвать геофизической точностью измерения. Так, например, температура воздуха измеряется с инструментальной точностью 0,1°. С применением современных методов измерения температуры эта точность могла быть повышена во много раз. Но такое повышение инструментальной точности измерений не имело бы смысла, так как температура воздуха в нижнем слое испытывает непрерывные и быстрые

колебания с амплитудами, могущими превышать 1°, и с периодами различных порядков — от десятых долей секунд до секунд, десятков секунд и минут. В результате геофизическая точность отдельных измерений температуры воздуха составляет не более 0,5°. Аналогичная картина наблюдается при измерении других физических характеристик атмосферного воздуха.

В отличие от инструментальной точности, геофизическая точность измерений одним и тем же прибором не будет постоянной, а будет зависеть от степени неоднородности атмосферы. Чем более однородна атмосфера, тем ближе друг к другу будут «мгновенные» значения ее физических характеристик в отдельных точках и, следовательно, тем больше геофизическая точность измерения будет приближаться к инструментальной. Однако геофизическая точность определяется не только микроструктурой атмосферы, но также инерцией прибора и методикой производства отсчетов.

Если измерения производятся приборами, обладающими инерцией, то отсчет по прибору при монотонном измерении величины отстает от отсчета, который был бы получен при измерении безынери цонным прибором. Если же измеряемая величина испытывает колебания малого периода, то вследствие инерции прибор сглаживает амплитуды пульсаций, а пульсации с очень малым периодом вовсе не отмечаются прибором.

Инерция прибора характеризуется его «постоянной времени», т. е. временем, которое необходимо, чтобы при внезапном изменении измеряемой величины от значения  $A_1$  до значения  $A_2$  показания прибора изменились на 95, 99 или 99,5% абсолютной величины разности ( $A_1 - A_2$ ).

Инерция измеряющего прибора вносит очень существенные ошибки в результаты измерения и понижает точность измерения отдельных «мгновенных» значений. В случае быстрого изменения измеряемой величины ее точное мгновенное значение может быть получено только безынерционным прибором. Применение же приборов инерционных в этом случае дает ошибку, значительно большую инструментальной. Величина ошибки при этом может получаться различной в зависимости от того, в каком соотношении будут находиться друг к другу инерция прибора, период и фаза колебания измеряемой величины. Наоборот, инерция измеряющего прибора повышает геофизическую точность измерения, так как благодаря ее влиянию сглаживаются амплитуды колебания отдельных отсчетов и результаты приближаются к среднему значению для некоторого значительного объема и некоторого отрезка времени, т. е. к значению, принимаемому нами за «истинное» значение при геофизических измерениях. Очень значительное увеличение инерций приборов все же нежелательно, так как прибор с большой инерцией «осредняет» результаты за столь значительный промежуток времени, что за подобными сглаженными данными теряются или искажаются изменения, характерные для значительной массы воздуха.

Таким образом, для каждого рода измерений оптимальной будет некоторая не очень малая и не слишком большая инерция прибора. Установление такой оптимальной величины представляет особую задачу в исследовании актинометрических приборов. В последние годы вопросу учета инерции при наблюдениях посвящен ряд работ [4, 6—8, 11 и др.].

Методика измерения может также оказывать существенное влияние на точность получаемых результатов [4, 8—10]. Наименьшая точность будет получаться, если при измерении производится только один отсчет по прибору. В этом случае точность измерения будет определяться только микроструктурой среды и инерцией прибора. Если же при измерении производится несколько отсчетов с небольшими промежутками между ними, то средняя из этих отсчетов будет уже значительно ближе подходить к «истинному» значению измеряемой величины.

Повышение точности зависит от числа осредненных отсчетов и от величины промежутков между отдельными отсчетами. Если производимая серия отсчетов охватывает один или несколько периодов колебания измеряемой величины, а отсчеты приходятся на отдельные фазы колебаний, то геофизическая точность измерений повышается весьма значительно и приближается к инструментальной точности применяемого прибора.

Для всесторонней количественной оценки геофизической точности определенного метода наблюдений необходимо исследование короткопериодических колебаний измеряемого элемента в различных климатических и погодных условиях. Имеется ряд работ [4, 5, 10, 11], которые посвящены исследованию геофизической точности измерения элементов радиационного режима.

Для исследованных метеорологических элементов [1—3] геофизическая точность измерений в случаях значительной неоднородности атмосферы оказывается в 5—10 раз ниже инструментальной. Таким образом, точность метеорологических наблюдений ограничивается геофизическими факторами.

В этом плане актинометрические наблюдения существенно отличаются от метеорологических и очень часто преобладающее значение в них имеют ошибки инструментального происхождения, которые могут вносить существенные искажения в результаты измерений.

Разница между метеорологическими и актинометрическими измерениями заключается в том, что метеорологические приборы большей частью являются приборами абсолютными и дают непосредственные значения измеряемых величин. Инструментальные поправки, которые должны вводится в отсчеты по этим приборам, как правило, невелики, с течением времени изменяются незначительно и в большинстве случаев не выходят за пределы действительной (геофизической) точности измерений. Влагодаря этому все наблюдения с приборами одного и того же типа можно считать одинаково точными. Правильный отсчет по исправному прибору не может дать грубо ошибочной величины.

Иначе обстоит дело при актинометрических измерениях. Здесь все применяемые приборы (даже так называемые абсолютные)

фактически являются приборами относительными и нуждаются в регулярной поверке и контроле. Чувствительность их может изменяться в очень широких пределах, причем эти изменения могут происходить как медленно и постепенно, так и внезапно скачкообразно. Без учета такого рода изменений результаты измерений могут оказаться грубо ошибочными.

Разграничение понятий инструментальной и геофизической точности измерений соверщенно необходимо для того, чтобы разобраться в вопросе точности актинометрических наблюдений и установить возможности и пути повышения этой точности. Геофизическую точность измерений также всегда следует учитывать при оценке отдельных измерений, например предельных величин, рассматриваемых как климатические характеристики. Наоборот, при рассмотрении средних величин из большого числа наблюдений вопрос о геофизической точности существенного значения не имеет.

Точность измерений (как инструментальная, так и геофизическая) оказывается неодинаковой для различных элементов радиационного режима. Поэтому нельзя составить достаточно полного представления о современном состоянии дел о точности актинометрических измерений без рассмотрения инструментальной и геофивической точности измерений в отдельности для каждого из основных элементов радиационного режима.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Беспалов Д. П. Точность измерений температуры и влажности воздуха и перспективы ее повышения. — «Тр. ГГО», 1956, вып. 61 (123), с. 3-21.
- 2. Гольцман М. И. Структура среды и точность метеорологических наблюдений. — «Климат и погода», 1935, № 1, с. 5—10.
- 3. Гольцман М. И. Основы методики аэрофизических измерений. Л., Гостехиздат, 1956. 360 с.
- 4. Гойса Н. И., Железнякова Т. В., Перелет Н. А. О некоторых источниках погрешностей измерений радиационного баланса балансомерами Янишевского. — В кн.: Метеорологические исследования М., «Наука», 1966, № 15, c. 31-43.
- 5. Дмитриев А. А. О колебаниях малого периода показаний пиргеометра
- Савинова. «Метеорология и гидрология», 1940, № 3, с. 113—120. 6. Каган Р. Л. Кучету инерции прибора при метеорологических измерениях.— «Изв. АН СССР. Сер. геофиз.», 1964, № 2, с. 302—308. 7. Клеванцова В. А., Елисеев А. А. Исследование инерции пиргелиомет-
- ров и актинометров разных конструкций. «Тр. ГГО», 1970, вып. 255, c. 120—124.
- 8. Лебедева К. Д., Сивков С. И. О точности измерения радиационного баланса термоэлектрическими балансомерами. — «Тр. ГГО», 1962, вып. 129, c. 3-30.
- 9. Лебедева К. Д., Сивков С. И., Ястребова Т. К. О повышении точности радиационного баланса на сети станций. — «Тр. ГГО», 1964, вып. 160, c. 20—30.
- 10. Лебедева К. Д., Сивков С. И., Ястребова Т. К. Результаты исследования термоэлектрических балансомеров Ю. Д. Янишевского. — «Тр. ГГО», 1965, вып. 174, с. 62-80.
- 11. Лебедева К. Д., Сивков С. И., Ястребова Т. К. О короткопериодических пульсациях в показаниях незащищенных балансомеров и пиргеометров. — В кн.: Метеорологические исследования. М., «Наука», 1966, № 15, c. 83—92.

Е. Л. МАХОТКИНА

# К ВОПРОСУ ОБ ОПРЕДЕЛЕНИИ СПЕКТРАЛЬНЫХ ПОПРАВОК ПИРАНОМЕТРА ЯНИШЕВСКОГО

Пиранометры являются относительными приборами, которые не сравниваются непосредственно между собой, а гралуируются по другим контрольным приборам (актинометрам). Переволные тень» [1, 2]. При использовании такого метода, как было замечено в статье [3], найденные значения переводного множителя могут несколько отличаться от истинных. Однако в практике обработки результатов сетевых наблюдений не принято вводить спектральные поправки [1]. Это в известной степени оправдывается тем, что расхождения между поправками, подсчитанными различными авторами [3-6], сравнимы по величине с самими поправками. Следо вательно, оценка спектральных поправок пиранометров в настоящее время связана прежде всего с оценкой точности наблюдений по пиранометрам. В настоящей работе выясняется, в каких пределах могут колебаться спектральные поправки при использовании различных исходных данных. Так как после появления статей [3-5] было опубликовано несколько новых работ по спектру рассеянной радиации, целесообразно провести дополнительные расчеты спект ральных поправок.

В первую очередь интересно оценить некоторые экстремальные значения спектральных поправок, т. е. вычислить эти поправки, допуская, что в определенных интервалах длин волн спектральная чувствительность пиранометра  $E_{\lambda}$  принимает крайние значения, 0 или 1. В настоящей работе такие вычисления проведены при выделении области 0,28-0,40 мкм, спектральная чувствительность пиранометров вне этого диапазона и спектральные распределения прямой  $(S_{\lambda})$  и рассеянной  $(D_{\lambda})$  радиации брались по данным, приведенным соответственно в статьях Ю. Д. Янишевского [3], Ю. К. Росса [4], Х. Молдау [5] и В. Росса [6]. В интервале 0,28--0,40 мкм расчетная кривая спектральной чувствительности пиранометров имеет крутой ход, следовательно, значения Е_л определяются менее точно, кроме того, непосредственно измеренные величины  $E_{\lambda}$  указаны только для длин волн  $\lambda \ge 0,4$  мкм. Заметим, что даже последние данные о распределении энергии в спектре Солнца при  $\lambda < 0,4$  мкм систематически отличаются друг от друга в пределах до 15% [8].

134

⁶⁵Методика расчета спектральных поправочных множителей пиранометров  $k_0$  и  $k_{10}$  (соответственно для ясного и пасмурного неба при количестве облаков n = 0 и n = 10), предложенная Ю. Д. Яниперским, была подробно описана в статье [3] и с тех пор применялась во всех следующих работах с некоторыми вариациями, зависящими от типа исходных данных. Результаты расчета по срезанным спектрам приведены в табл. 1.

Таблица 1

$E_{\lambda}$ (0,28 <	(λ<0,40)	$E_{\lambda}$ (0,28 $< \lambda < 0,40$ )						
0	1	0	1					
n =	=0	n ==	= 10					
1,12	0,96	0,96	0,97					
1,17 1,17 1,11	0,98 1,01 0,98	0,93 0,98 0,96	0,94 0,98 0,96					
	$E_{\lambda} (0,28 < 0)$ $n = 1,12$ $1,17$ $1,17$ $1,11$	$E_{\lambda} (0,28 < \lambda < 0,40)$ $0 \qquad 1$ $n = 0$ $1,12 \qquad 0.96$ $1,17 \qquad 0.98$ $1,17 \qquad 1.01$ $1,11 \qquad 0.98$	$E_{\lambda}$ (0,28 < $\lambda$ < 0,40) $E_{\lambda}$ (0,28 <           0         1         0           n = 0         n =           1,12         0,96         0,96           1,17         0,98         0,93           1,17         0,98         0,98           1,11         0,98         0,96					

Интересно отметить, что изменения спектральной чувствительности пиранометра в интервале 0,28—0,40 мкм вносят существенные изменения в спектральные коэффициенты для ясного неба (n=0)и почти не сказываются на коэффициентах для пасмурного неба (n=10). Особенности данных, относящихся к последнему случаю, рассмотрены более подробно ниже.

Величины спектральных поправок первоначально были получены Ю. Д. Янишевским на основании имевшихся тогда литературтых данных о величинах  $S_{\lambda}$ ,  $D_{\lambda}$  и  $E_{\lambda}$ . Он использовал кривую спектральной интенсивности прямой солнечной радиации по Кёлеру для массы m = 1,4, осредненные данные Гесса (исправленные для коротких волн по Онгстрему) в качестве спектра рассеянной радиации пасмурного неба, а в качестве спектра рассеянной радиации пасмурного неба кривую по Калитину и Онгстрему. Спектральная чувствительность пиранометра  $E_{\lambda}$  бралась им по измерениям Гаше, относящимся к пиранометру Онгстрема (предполагая, что соответствующие характеристики пиранометров Онгстрема и Янишевского достаточно близки).

В работе Ю. К. Росса [4] спектральная чувствительность пиранометра определялась с помощью комбинации различных данных и оценивалась величиной произведения непосредственно измеренного коэффициента пропускания колпака на разность коэффициентов отражения черного и белого покрытий. Полученная в результате этого кривая отличалась от кривой Янишевского. Спектральные поправки вычислялись на основании спектральных распределений прямой и рассеянной радиации, приведенных Янишевским, хотя и указывалось на расхождение их с более поздними данными.

Кривая спектральной чувствительности пиранометра, используемая Х. Молдау [5], удовлетворительно согласуется с кривой Ю. К. Росса и получена тем же путем. В качестве спектральных распределений прямой и рассеянной радиации ясного неба Молдау использовал результаты вычислений по теоретической схеме К. С. Шифрина и О. А. Авасте, а для рассеянной радиации пасмурн ного неба брал распределение, предложенное Ю. Д. Янишев, ским [3]

Метод, с помощью которого определялась спектральная чувствительность пиранометров в работах [4, 5], не является вполне строгим. Зависимость чувствительности пиранометра от длины волны определяется более точно из непосредственных экспериментов с ресс альным экземпляром прибора. Результаты прямого определения спектральной чувствительности пиранометров, проведенных в ЛЭТИ, представлены в статье [7]. Между измеренной кривой спектральной чувствительности и полуэмпирическими кривыми. используемыми в работах [4, 5], имеется довольно заметная разница. Кривая спектральной чувствительности пиранометра, определенная непосредственно из опыта, использовалась в работе В. Росса, который определял спектральные поправки на основании спектральных распределений  $S_{\lambda}$  и  $D_{\lambda}$ , полученных ПO схеме К. С. Шифрина и О. А. Авасте для прямой и рассеянной радиации ясного неба, а в качестве спектра рассеянной радиации пасмурного неба, так же как и все остальные авторы, брал данные из статьи [3] 🧔 В работах [3-6] на основании расчетов получены следующие ве личины спектральных поправок, которые приведены в табл. 2.

Таблица 2

	n				
Автор	0	10			
Ю. Д. Янишевский [3] Ю. К. Росс [4] Х. Молдау [5] В. Росс [6]	1,013 1,047 1,057 0,984	1,025 0,941 0,975 0,951			

Следует отметить, что проверка расчетов по данным, приведенным в статье [3], дает значения спектральных поправок, которые отличаются от результатов, опубликованных Ю. Д. Янишевским. Это было обнаружено Ю. К. Россом, который подсчитал, что по данным Ю. Д. Янишевского спектральная поправка для рассеянной радиации ясного неба равна 0,988, для пасмурного неба 0,972.

Авторы всех рассмотренных работ указывают, что селективность пиранометров может вызывать значительные ошибки, которые желательно устранять введением соответствующих поправок. Однако величина этих поправок окончательно еще не выяснена, а использование авторами различных спектральных распределений радиации и различных кривых спектральных чувствительностей пиранометров предопределяло значительные расхождения в величинах поправок. Для постепенного устранения расхождения различных оценок спектральных коэффициентов целесообразно сначала собрать, обобщить и представить в легко воспроизводимой форме имеющиеся сейчас данные экспериментальных исследований спектра рассеяннор радиации при ясном и пасмурном небе. Эти характеристики входят в группу наиболее общих исходных данных, так как могут использоваться при оценке спектральных коэффициентов любых пиранометров, независимо от их конструктивных особенностей. Результаты работы по обобщению разрозненных литературных данных и рыводу простейших осредненных закономерностей, отображающих наиболее характерные черты спектра рассеянной радиаций, вероятно, будут представлять интерес и для других практических приложений.

На вес. 1 сопоставлены различные экспериментальные данные о спектре рассеянной радиации при безоблачном небе, опубликованные в течение периода с 1936 по 1971 г. При составлении этого уграфика все спектры нормировались в соответствии с принятым значением  $D_{\lambda} = 1$  при  $\lambda = 0.5$  мкм. Спектральные измерения проводились с помощью различной аппаратуры в разных местах, расположенных как на территории СССР [10—13], так и за рубежом [14— 16]. Некоторые из этих данных (в частности, результаты измерений Е. Л. Кринова и В. В. Шаронова [10]) неоднократно приводились в книгах в качестве примера [17, 18]. В противоположность этому вредка приводятся кривые, источник которых трудно определить 13, 19]. Из работы [19] для рис. 1 взята только одна кривая (для высоты Солнца 15°), так как две другие кривые (для 20 и 35°) резко расходятся со всей совокупностью имеющихся данных. По этой же причине не взята одна из кривых, приведенных в [13] с неточной ссылкой на источник.

Следует отметить, что кривые спектрального распределения расоканной радиации, полученные путем непосредственных измерений, охватывают в большинстве случаев очень ограниченную часть спектра (чаще всего видимую область). Была найдена только одна серия кривых, характеризующих спектральную яркость неба в интервале от 0,4 до 2 мкм [12]. Хорошая согласованность относительного хода всех приведенных в атласе [12] яркостных кривых позволяет считать, что они могут служить также вполне удовлетворительной характеристикой спектра рассеянной радиации.

При наличии сходных, но не вполне совпадающих результатов различных измерений за норму принимаются обычно осредненные данные. Эти данные практически значительно удобнее использовать в том случае, когда вместо чисто внешнего объединения их некоторой непрерывной кривой указывается достаточно простая приближенная формула, в наиболее благоприятном варианте допускающая естественную интерпретацию наблюдаемой закономерности. В качестве исходной модели для построения приближенной формулы, описывающей нормальный сглаженный спектр рассеянной радиации, было выбрано выражение для спектра прямой радиации ( $S_{0\lambda}$  и  $S_{\lambda}$ ), полученное В. Г. Кастровым в процессе вывода

137



его формулы [20]. Чтобы использовать это выражение, нужно дополнительно ввести достаточно правдоподобное допущение о наличии линейной связи между  $D_{\lambda}$  и  $S_{\lambda}$  типа  $D_{\lambda} \approx a (S_{0\lambda} - S_{\lambda})$ , где a некоторый коэффициент. Тогда

$$D_{\lambda} = a\overline{S}_{0\lambda}e^{r}L^{-r}e^{-rL^{-1}}(1-e^{-smL^{-1}}), \qquad (1)$$

где  $S_{0\lambda}$  — максимальное значение  $S_{0\lambda}$ , получающееся при  $\lambda = \overline{\lambda} = 0,47$  мкм,  $L = \frac{\lambda - \lambda_0}{\overline{\lambda} - \lambda_0}$  ( $\lambda_0 = 0,29$  мкм нижняя граница спектра соллечно, радиации ниже слоя озона). В. Г. Кастров ука-

солнечног, градиации ниже слоя озона). В. 1. Кастров ука зал определенное значение параметра r = 2, при котором вычисленная кривая лучше всего согласуется с реальным спектром солнечной радиации (без учета полос поглощения). Тогда s = 2c, где c коэффициент, характеризующий прозрачность атмосферы.

В результате расчетов, проведенных по формуле (1) при различных значениях *sm*, и сравнения соответствующих нормированных кривых (привязанных к относительному значению  $D_{\lambda} = 1$  при  $\lambda = 0,5$  мкм) с осредненными экспериментальными данными было найдено значение параметра sm = 1, при выборе которого расчетная кривая достаточно близка к осредненному спектру рассеянной радиации при ясном небе (рис. 1). В таком случае формула (1) может быть переписана в более развернутом виде:

$$D_{\lambda}' = \frac{0,425}{(\lambda - 0,29)^2} e^{-\frac{0,36}{\lambda - 0,29}} \left(1 - e^{-\frac{0,18}{\lambda - 0,29}}\right).$$
(2)

Аналогичный способ был применен также для обобщения и аппроксимации по формуле (1) осредненных экспериментальных данных о спектре рассеянной радиации при пасмурном небе (n = 10). При составлении графика, представленного на рис. 2, были использованы экспериментальные данные, приведенные в статьях [10, 15, 16, 21, 22]. Для рассматриваемого теперь случая (n=10) имеющиеся данные носят особенно ограниченный характер и охватывают лишь участок спектра до 0,8 мкм, что затрудняет анализ спектрального распределения рассеянной радиации пасмурного неба. Однако на рис. 2 совершенно очевидно, что ни одно из распределений, приведенных в указанных статьях, не совпадает с данными Н. Н. Калитина [9], которые использовались в работах [3-6] для вычисления спектральных поправок пиранометров. По данным, приведенным Н. Н. Калитиным, спектр рассеянной радиации при пасмурном небе характеризуется максимумом, расположенным около 0,75 мкм, тогда как по результатам всех следующих измерений максимальные значения отмечаются в области около 0,5 мкм. Имеющиеся экспериментальные данные могут быть в среднем аппроксимированы формулой (1) при sm = 10, так что для спектра рассеянной радиации при пасмурном небе D' можно написать следующее



приближенное выражение:

$$D_{\lambda}'' = \frac{0.245}{(\lambda - 0.29)^2} e^{-\frac{0.36}{\lambda - 0.29}} \left(1 - e^{-\frac{1.8}{\lambda - 0.29}}\right).$$
(3)

Формулы (2) и (3) не учитывают полос поглощения, особенно интенсивных в инфракрасной области, и дают завышенные значения в ее дальней части, поэтому при использовании этих формул времета спектральных поправок пиранометров значения  $D_{\lambda}$  вычислялись слектральных поправок требуется использовать также-данные в с спектре прямой солнечной радиации  $S_{\lambda}$ . Расчеты, также-данные в. Г. Кастровым [20], были непосредственно связаны схарайтеристикой спектра прямой радиации, но аппроксимировали его в инфракрасной области слишком грубо. При характеристике спектра рассеянной радиации эти расхождения в значительной степени компенсируются вследствие использования разности двух однотипных величин, а при расчете сглаженного спектра  $S_{\lambda}$  целесообразно ввести некоторый корректирующий множитель, принимая в результате следующее приближенное выражение (относящееся к некоторым средним условиям):

$$S_{\lambda} = \frac{0,250}{(\lambda - 0,29)^2} e^{-\frac{0,1\lambda^3 - 0,029\lambda^2 + 0,36}{\lambda - 0,29}}.$$
 (4)

Таблица

Для вычисления спектральных поправок по полученным спектрам (причем значения  $S_{\lambda}$  по указанным выше причинам вычислялись до  $\lambda = 2,4$  мкм) была подсчитана таблица нормированных значений радиации для интервалов, предложенных Ю. Д. Янишевским [3]. При расчете спектральных поправок использовались различные данные о спектральной чувствительности пиранометров, указанные авторами работ [3—6]. Полученные результаты представпены в табл. 3, где ссылки на авторов относятся только к характеристикам самих пиранометров, тогда как спектральные характеристики радиации взяты одинаковыми для всех четырех вариантов.

		гаоница о
		n
Автор	0	10
Ю. Д. Янишевский [3] Ю. К. Росс [4] Х. Молдау [5] В. Росс [6]	0,98 1,02 1,03 0,99	0,99 0,98 1,00 0,99
Среднее	1,00	0,99

Как видно из табл. 3, спектральные поправочные множители близки в среднем к единице. Это было замечено для случая ясного

141

неба еще В. Россом в работе [6]. Почти точно такие же значения к₀ были получены в работе [23], где расчет был сделан только для ясного неба. Получение заниженных спектральных коэффициентов для пасмурного неба естественно объясняется использованием в статьях [3-6] старых данных о спектре рассеянной радиации-при сплошной облачности, значительно отличающихся от полученных позднее результатов непосредственных измерений Сравнительно ограниченные колебания спектральных коэффициентов, встречаю шиеся в табл. 3, частично могут иметь случайный характер в связи с небольшими различиями спектральных характеристик индивидуальных приборов. Систематические погрешности результатов измерений рассеянной радиации с помощью пиранометров Янишевског связанные с наличием небольших спектральных поправок, по-види мому, лежат в пределах точности контролируемых приборов, ис пользуемых для градуировки пиранометров.

### СПИСОК ЛИТЕРАТУРЫ

- Янишевский Ю. Д. Актинометрические приборы и методы наблюдений. Л., Гидрометеоиздат, 1957. 415 с.
- Руководство по поверке метеорологических приборов. Под ред. И. А. Покров ской. Л., Гидрометеоиздат, 1967. 419 с.
- . Янишевский Ю. Д. Вопросы методики измерений пиранометрами и расп сеянная радиация в Павловске. — «Тр. ГГО», 1951, вып. 26 (88), с. 5—45.
- Росс Ю. К. Об измерении радиации пиранометрами Янишевского. «Изв. АН ЭССР. Сер. техн. и физ.», 1957, т. 1, № 1, с. 3—8.
- 5. Молдау Х. О спектральной чувствительности пиранометра Янишевского и балансомера Шульце. — В кн.: Исследования по физике атмосферы. Тарб, Изд. ИФА АН ЭССР, 1962, вып. 3, с. 136—149.
- Росс В. Некоторые результаты испытаний многоспайных радиационных тер моэлементов.—В кн.: Исследования радиационного режима атмосферы. Тарту Изд. ИФА АН ЭССР, 1967, с. 141—158.
- 7. Козырев Б. П., Бученков В. А. Измерение спектральной чувствительности пиранометров и балансомеров. — «Изв. АН СССР. Физика атмосферы и океана», 1966, т. 2, № 5, с. 540—544.
- 8. Макарова Е. А., Харитонов А. В. Распределение энергии в спектре Солнца и солнечная постоянная. М., «Наука», 1972. 288 с.
- 9. Калитин Н. Н. Актинометрия. Л.-М., Гидрометеоиздат, 1938. 324 с.
- Кринов Е. Л., Шаронов В. В. Спектрофотометрическое исследование суммарной и рассеянной дневной освещенности. — «Журнал геофизики», 1936, т. 6, вып. 2—3, с. 162—180.
- т. 6, вып. 2—3, с. 162—180. 11. Кондратьев К. Я. и др. Исследование спектрального состава коротковолновой солнечной радиации. «Изв. АН СССР. Физика атмосферы и океана», 1965, т. 1, № 9, с. 929—940.
- 12. Яркость дневного безоблачного неба (экспериментальные данные). Под ред. В. И. Кушпиля. Л., Изд. ГОИ, 1971, 164 с.
- Радиационные характеристики атмосферы и земной поверхности. Под ред. К. Я. Кондратьева. Л., Гидрометеоиздат, 1969. 564 с.
- 14. Götz P., Schönmann E. Die spectrale Energieverteilung von Himmels und Sonnenstrahlung. — "Helv. Phys. Acta", 1948, Bd 21, Fasc. 2, S. 151—168.
- 15. Taylor A. H., Kerr G. P. Distribution of energy in the visible spectrum of daylight. JOSA, 1941, vol. 31, No. 1, p. 3—8.

16. Das S. R., Sastry V. D. P. Spectral distribution and color of tropical daylight. — JOSA, 1965, vol. 55, No. 3, p. 319—323.

17. Шаронов В. В. Свет и цвет. М., Физматгиз, 1961. 311 с.

J. W

18. Левитин И. Б. Видимость и маскировка кораблей. М., Воениздат, 1949. 148 c.

19, Перрен де Бришамбо Ш. Солнечное излучение и радиационный обмен в атмосфере. М., «Мир», 1966, 319 с. 20: Кастров В. Г. К вопросу об основной актинометрической формуле. — «Ме-

- теорологический вестник», 1928, т. 38, № 7, с. 173—175.
- 21. Mindter Etcon W. E. K. Color of the overcast sky. --- JOSA, 1954, vol. 44, No. 10, p. 798-798.
- 22. Hisdal B. Relative energy distribution of daylight from overcast sky. "Archiv. Mathi Naturwiss", 1957, vol. 54, p. 35-44.
- 23. Броунштейн А. М., Лебедева К. Д., Сивков С. И. Влияние спектральных характеристик приемных поверхностей приборов на точность изме-Таллин, Bалгус», 1968, с. 218—226.

# ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СОДЕРЖАНИ ОЗОНА В КАБИНАХ РЕАКТИВНЫХ САМОЛЬТОВ ХИМИЧЕСКИМ МЕТОДОМ

B. B. OCE

Атмосферный озон является одной из главных компонент газового состава атмосферы. Несмотря на его малое содержание, озон играет особенно важную роль в радиационном режиме стратосферы. Кроме того, известное свойство консервативности озона позволяет рассматривать его как атмосферный трассер для исследования турбулентного обмена между тропосферой и стратосферой и при изучении общей циркуляции атмосферы.

Для выполнения указанных исследований необходимо иметь данные об абсолютной концентрации озона на различных высотах. С помощью распространенных электрохимического и хемилюминесцентного методов зондирования атмосферного озона можно получить сведения о вертикальном распределении абсолютной концентрации озона над данным пунктом зондирования.

Однако современная мировая сеть озонозондирования краине редка. В связи с успешно развивающейся спутниковой озонометрией значительное расширение сети озонозондировочных станций вряд ли будет оправдано, так как при больших материальных затратах будет получен минимум сведений о локальном распределении озона над отдельными пунктами зондирования, расположенными на боньшом расстоянии друг от друга. Более того, совершенно очевидно, что организация сети озонозондирования над огромными территориями океанов вообще не имеет перспективы.

По упомянутым выше причинам нам представляются важными самолетные исследования атмосферного озона, которые можно успешно использовать при решении конкретных геофизических задач как дополнение к данным сети озонозондировочных станций. Следует отметить, что над неосвещенными в метеорологическом отношении территориями самолетный метод исследования по существу является единственным источником информации как об атмосферном озоне, так других метеорологических эле-И 0 ментах.

Первые самолетные исследования атмосферного озона до высоты 9 км были выполнены в Германии Эмертом [16] еще в 1940– 1942 гг. В послевоенное время самолетные измерения озона осуществляли в Англии Кэй [7] и Мэргетройд [21], в Норвегии Брюер [13] и в США Регенер [22]. В СССР впервые такие исследования были
проведены А. С. Бритаевым [1, 2] во время экспериментальных полетов над ЕТС.

Исследования, проводившиеся названными выше авторами, выпоянялись путем электрохимического анализа воздуха, поступавшего в самолет из атмосферы через специальные устройства. Энектрохимический анализ воздуха на озон осуществлялся по метод строита [17] в его различных модификациях.

Однако лишь в последние годы (1970-1972) благодаря экспериментальным полетам по исследованию вариаций озона в верхней тропосфере и нижней стратосфере, выполнявшимся на реактивных амолетах гражданской авиации в ФРГ Тифенау [24] и Зайлером [23] и независимо в научно-исследовательском институте авиационый метеорологии при Ленинградском гидрометеорологическом иституте (НИИАМ ЛГМИ), было найдено, что для измерения концентрации атмосферного озона нет необходимости в создании специальных устройств для отбора наружного воздуха. Оказалось, что ажиосферный озон в компрессорах двигателей и системах кондиционирования дозвуковых реактивных самолетов термически не разлапанься и практически полностью проникает в герметические кабину ме салоны. Сравнение экспериментальных данных о содержании озона в кабинах самолетов, полученных во время полетов, с резульдатами одновременных озонозондирований, приведенных к нормальным условиям [24], а также с аэроклиматическими данными о концинтрации озона на различных высотах [18] подтвердило обнаруженное Бишофом [11] в 1962 г. на примере атмосферного углекислого газа явление термической стабильности озона в компрессорах двигателей самолетов.

В НИИАМ ЛГМИ на основе применения методов химической кинетики к условиям работы компрессора двигателя реактивного самолета были проведены расчеты зависимости концентрации озона в кабине самолета от содержания озона в атмосфере на высоте полета. Выполненные расчеты также показали, что концентрация озона в кабинах дозвуковых реактивных самолетов численно равна концентрации озона в наружном воздухе на высоте полета. Кроме того, было найдено, что концентрация озона в кабинах дозвуковых самолетов не зависит от технических характеристик двигателей. Это связано с тем, что современные пассажирские реактивные самолеты, выполняющие полеты на высотах 8—12 км, оборудованы двигателями с техническими параметрами, незначительно отличающимися друг от друга. При сверхзвуковом полете термический распад озона в компрессорах двигателей по предварительным расчетам оказался значительным, что определило невысокую концентрацию

10 Зак. № 262

озона внутри самолета. Однако этот вопрос выходит за рамки настоящей работы и по существу является предметом специального исследования.

Таким образом, учитывая изложенное выше, исследование вариаций концентрации озона в кабинах реактивных самолетов мауут успешно производиться одновременно в двух взаимосвязанных направлениях: изучение пространственного распределения armos ного озона над большими географическими площадями на высонах полетов рейсовых самолетов гражданской авиации и авиационномедицинские исследования содержания токсических концентраций озона в кабинах самолетов с целью получения гигиенической оценки воздуха на озон. Последнее направление возникло кабинного в авиационной медицине на стыке с авиационной метеородогией в начале 50-х годов в связи с повышением потолка полетов пасса жирских реактивных самолетов до высот 8—12 км, на которых среднегодовая концентрация озона превышает предельно допустимое значение — 0,1 мг/м³ [8, 18]. Следует указать, что первые иссле дования содержания озона в кабинах пассажирских реактивных самолетов с точки зрения его возможного влияния на жизнедея тельность экипажа и пассажиров были выполнены еще в 1960. в Канаде Янгом [25], в 1961—1962 гг. в Англии Беннетом [10] в США Брэбетсом [12], Кидерой [19] и Комхиром [20].

Янг производил определение озона по методу, основанному на свойстве озонного старения резины. Бенетт, Брэбетс, Кидера и Кенхир производили измерения озона с помощью автоматического сренометра, сконструированного по принципу электрохимического сренозонда Брюера [14].

Не затрагивая токсикологических аспектов проблемы атмосферного озона, мы главное внимание уделим метеорологической стороне этого вопроса. Поэтому не следует забывать, что приводимые ниже экспериментальные данные о содержании озона в кабимах самолетов в равной мере относятся к атмосферному озону на высотах полетов.

В течение 1971—1972 гг. в НИИАМ ЛГМИ производились экспериментальные полеты на рейсовых самолетах гражданской авиации по измерению концентрации атмосферного озона. Было произведено около 30 экспериментальных полетов по определению озона в кабинах самолетов химическим методом на воздушных трассах в полярных, умеренных и южных широтах СССР. Ниже описываются цель экспериментальных полетов, методика определения озона в кабинах самолетов химическим методом и приводятся некоторые результаты исследований.

При проведении экспериментальных полетов предполагалось решение следующих задач.

1. Исследовать возможность определения концентрации озона химическим методом в условиях герметических кабин реактивных, самолетов.

 Произвести предварительную оценку содержания озона в кабинах самолетов на высотах 8—11 км. 3. Исследовать вариации содержания озона внутри самолета в зависимости от высоты полета, времени года и географического района, над которым пролегает воздушная трасса.

Перед проведением экспериментальных полетов в лабораторных условиях мы произвели исследование возможности использования различных химических методов анализа низких концентраций озона: фенолфталинового, трех иодидных методов (кислого, нейтразначето и щелочного) и роданоферратного. Лабораторные эксперименты показали, что для определения озона в условиях полета удобным и найболее воспроизводимым является иодидный нейтральный метол.

Поскольку подидный метод является известным классическим медодом определения озона, по которому калибруют озонаторы и автоматические озонометры, в ряде полетов мы произвели паралленные измерения озона иодидным и роданоферратным методами с тельнованиробации последнего для анализа низких концентраций озона.

Известно, что система контроля и нормирования токсических винесть осушествима лишь при использовании адекватных методов определения вредных веществ. Учитывая это, измерения озона иодинных методом мы производили по единой методике, утвержденной Министерством здравоохранения СССР для использования вканитарно-эпидемиологических учреждениях [3, 6].

Иодидный нейтральный метод основан на химической реакции озона с водным нейтральным раствором иодпстого калия. Метод заключается в определении содержания свободного иода, выделившегося в растворе иодистого калия при пропускании через него воздуха, содержащего озон. Выделение иода происходит в результате следующей реакции:

$$2KI + H_2O + O_3 \rightarrow 2KOH + O_2 + I_2.$$
 (1)

Поскольку концентрация иода пропорциональна содержанию озона, по концентрации иода определяется содержание озона в исследуемой пробе воздуха. Концентрацию иода определяют по степени цветовой окраски поглотительного раствора с отбираемой пробой воздуха путем сравнения ее со стандартной шкалой [3]. Чувствительность метода 0,0001 мг в 2 мл анализируемой пробы.

Отбор проб кабинного воздуха осуществлялся следующим образом. Воздух в кабине самолета протягивался с помощью водяного аспиратора со скоростью 0,5 л/мин через поглотительный прибор с пористой пластинкой № 1 малой модели, наполненный 3 мл поглотительного раствора (1% раствора иодистого калия и 1% раствора уксуснокислого натрия, играющего роль стабилизатора).

Для поглощения окислов азота, возможно присутствовавших в воздухе вместе с озоном, в заборную трубку поглотительного прибора вставлялся фильтрующий патрон, выполнявший функцию сорсента. Сорбент представлял собой прокаленный силикагель, который пропитывался раствором бихромата калия (K₂Cr₂O₇) в концентрированной серной кислоте до полного насыщения. После того как вся порошкообразная масса сорбента приобретала харажтерный оранжевый цвет, его помещали в банку с притертой пробкой для исключения доступа воздуха. Силикагель приготавливался заоб— 12 ч до проведения очередного экспериментального полета. Пбристая пластинка № 1 с сухим поглотителем, установленная можду сорбентом и поглотительным раствором, предназначалась для улавливания тумана кислоты.

Анализ содержания озона производился следующим образом. После пропускания кабинного воздуха, содержащего юзон, через водный раствор иодистого калия в колориметрическую пробирку вводили 2 мл поглотительного раствора с выделивнымся в результате реакции свободным иодом. Затем в колориметрические пробирки с отобранными пробами воздуха и во все пробирки стандартной шкалы вводили по одной капле 0,03% водного раствора солянокислого диметилпарафинилендиамина. В результате и реакции свободного иода с диметилпарафинилендиамином образовывалось вещество, окрашенное в розово-фиолетовый цвет. Колориметрирование интенсивности окраски исследуемых проб производилось, как правило, через 15—20 мин. Стандартную шкалу приготавливати из 0,01Н раствора иода по методике, подробно изложенной вирае боте [3].

Концентрация любого газа [X] мг/м³, определяемого химическим методом, вычисляется согласно [3] по следующей формуле:

$$[X] = \frac{ab}{cv_0} \cdot 1000,$$

где a — количество газа, найденное в анализируемом объеме жила кости, мг; b — объем жидкости (поглотительного раствора) во всей отобранной пробе, мл; c — объем поглотительного раствора, взятый для анализа, мл;  $v_0$  — объем воздуха, отобранного для анализа при нормальных условиях, л.

Применительно к изложенной методике определения озона  $b^2$ = 3 мл, c = 2 мл; тогда формула (2) примет вид

$$[\mathcal{O}_3] = \frac{3a}{2v_0} \cdot 1000.$$

В формуле (3) остается определить *а* и *v*₀. Величина *а* — количество озона, найденное в 2 мл поглотительного раствора после сравнения со стандартной шкалой; *v*₀ определяется по формуле

 $v_0 = \frac{v_t p \cdot 273}{(273+t) \cdot 760}, \qquad (4)$ 

(3)

где  $v_t$  — объем отобранного воздуха при температуре в кабине самолета  $t^{\circ}$  С.

Из формулы (4) видно, что  $v_0$  — это фактически объем отобранного воздуха, приведенный к нормальным условиям (в литрах); p — барометрическое давление воздуха в кабине самолета во времи отбора пробы на заданной высоте полета (в мм рт. ст.). Давление в кабине самолета изменялось в широких пределах, от 550 до 640 мм ря ст., в зависимости от типа самолета и высоты полета и определялось по кабинному высотомеру¹. Температура воздуха в кабине самолета определялась по аспирационному психрометру.

В связи с тем, что отбор проб воздуха на озон производился в необычных условиях, в стандартную методику мы внесли некоторые изменения.

1. Отбор проб воздуха проходил при пониженном атмосферном давлении внутри самолета (550-640 мм рт. ст.), что приводило к замедленной аспирации воздуха через поглотительный раствор. Согласно методиж, отбора проб воздуха на озон [3], мы должны были пропускать кабитый воздух со скоростью 0,5 л/мин, т. е. отбирать по 5 л воздуха за каждые 10 мин. Однако при замедленной аспирации в ряде случаев нам пришлось отбирать не 5 л, а 10 л, на что требовалось 20 ми Такое незначительное изменение условий отбора вознуха предусмотрено стандартной методикой [3], согласно которой при низких концентрациях озона рекомендуется отбирать 10, 15 или даже 20 л воздуха. Уменьшение скорости протягивания воздуха через повлитительный раствор не могло повлиять на конечный результат, так как при определении озона химическим методом крайне важно не превысить скорость аспирации, установленной станции. При завышенных скоростях аспирации озон может «проскочить» поглотительный раствор и, не успев вступить в реакций с иодистым калием, выйти через выходную трубку поглотителя.

• Методика отбора проб воздуха на озон предписывает вставлатъ в поглотительный прибор фильтр-сорбент для фильтрации возмож и, присутствующих окислов азота. Случаи резкого позеленения обычно оранжевого фильтра-патрона из бихромата калия, а также заних енные значения концентрации озона в кабинах самолетов при опборе воздуха с фильтром (при параллельных измерениях озона с фильтром и без него) позволили нам в последующих полетах откарться от патрона-сорбента. Бихромат калия активно вступал и реакцию с озоном, и поэтому некоторая часть озона оставалась в входной трубке. Что касается проблематического присутствия окислов азота в кабинах самолетов на высотах 8—12 км, для выяснения этого вопроса мы произвели параллельный отбор озона и окислов азота в ряде полетов. Ниже мы еще вернемся к обсуждению этого вопроса.

Результаты экспериментальных исследований содержания озона в кабинах реактивных самолетов, выполнявших полеты на различных воздушных трассах, представлены в табл. 1.

Из анализа данных этой таблицы следует, что, несмотря на недостаточный статистический материал экспериментальных данных, можно сделать следующие предварительные выводы.

1. Концентрация озона на высотах 8—11 км, по полученным данным, изменяется от 0,00 до 0,12 мг/м³ с отдельными вспышками до 0,18—0,27 мг/м³. Нулевые концентрации озона следует связывать

¹ Кабинный высотомер в отличие от барометрического определяет степень герметизации кабины и салонов самолета.

Габлица 1

Концентрация (мг/м³) озона в кабинах реактивных самолетов на различных воздушных трассах СССР

	<u>.</u>		,		-		1. C
	n de la companya de l La companya de la comp		n an	6	Конц	ентрация	озона
Дата	Тип самолета	Маршрут	Высота, м	оличество от ранных проб	едняя	аксиматьная	иниальная
				ХQ	6	Ŵ	W
28 III 1972	ТУ-134	Ленинград— Мурманск—	9000-8400	14	0,06	0,1	Следы
23 V	ТУ-134	Ленинград Ленинград— Мурманск—	11 000— 10 000	18	の中12 9次月 2	0,27 MIT B	0,07 V260
1 VII	Ил-18	Ленинград Амдерма—	7800	10	0-07	30 155	0,09
6 VII	Ил-18	Латанга Магадан — Омск—	8400	30	0,08	06.18	- 0,000 1 - 1
25 VIII 1971	Ил-18	Ленинград Ленинград— Свердловск—	8400—7800	19	0,02	9004 9004	i of of
28 VIII	Ил-18	Ленинград Ленинград— Пермь—	8400—9000	.16	0,03	0,04	0.00
2 X	Ил-18	Ленинград Ленинград— Одесса—	8400—7800	18	0,01	0,06	Следы НИКО
		Ленинград					HHHdÖ.

с недостаточной чувствительностью химического метода измерениямих концентраций озона.

2. Концентрация озона даже по данным химического анжиза обнаруживает высотную зависимость, хотя, по-видимому, главных фактором здесь является не столько высота полета, сколько высота и положение тропопаузы относительно высоты полета самолета.

3. Повышенная концентрация озона на авиатрассе Магадан-Ленинград, по-видимому, связана с резким снижением высоты тропопаузы в высотных циклонах на отдельных участках маршрута.

4. На полярной авиатрассе Амдерма—Хатанга средняя повышенная концентрация озона на высоте 7800 м связана с низким расположением тропопаузы, характерным для полярных районов, т. е. полет бо́льшую часть времени был стратосферным или выполнялся вдоль нижней кромки тропопаузы.

5. При выполнении полета даже на постоянной высоте концентрация озона претерпевает большие вариации, от «следов» озона до концентраций, часто наблюдаемых в средней стратосфере (0,27 мг/м³). Такие резкие изменения концентрации озона связаны, с метеорологическими условиями на высоте полета: с вертикал ными движениями в атмосфере, турбулентным перемешиванием вариациями высоты тропопаузы. Как было упомянуто выше, случаи резкого позеленения патронасорбента означали, что бихромат калия вступал в реакцию окисления либо с озоном, либо с окислами азота. Такие наблюдения навели нас на мысль произвести пробные экспериментальные полеты по параллельному отбору окислов азота и озона.

Анализ кабинного воздуха на озон производился химическим методом по методике, подробно изложенной в работе [6]. Химический анализ отобранных проб воздуха производился в пересчете на двуокись азота по методу, основанному на реакции двуокиси азота с иодистрим калием. Содержание двуокиси азота определялось колориметически по реакции образования азокрасителей с реактивом Грисса. Количество двуокиси азота находилось путем сравнения интерривности красной окраски поглотительного раствора со стандатной шкалой, которая приготавливалась по методике; [6].

Ребультаты нараллельного отбора озона и окислов азота представлены в табл 2. Из таблицы видно, что всплески окислов азота наблюдались осмовременно со всплесками концентрации озона. Болеектого, 16 абгуста 1972 г. на маршруте Ленинград—Пермь отсутствие вамоние концентраций озона сопровождалось отсутствием концентрации окислов азота. Трудно ожидать образования окислов азога при сжатии в компрессоре двигателя самолета чистого воздуха или при генерировании их самолетным оборудованием. Несовершенство химического метода определения озона заключается в ток, что согласно методике [6] мы определяли сумму окислителей, в состав которой могут входить и озон, и окислы азота. Наиболее вероятия, что главным окислителем в этой сумме является озон. В пользу такого предположения также свидетельствуют экспериментальные данные полетов (табл. 2) по маршруту Ленинград— Однеса 13 октября 1971 г. и 25 июля 1972 г.

Рак, 13 октября 1971 г. на самолете ТУ-134 по маршруту Оресса—Ленинград на высоте 11 000 м в течение всего полета наодались одновременно высокие концентрации окислов азота озона. Аэросиноптический анализ показал, что полет на высоте 11 000 м был стратосферным, так как тропопауза была располокена в это время на высотах 10 600—10 700 м. Следовательно, это уже говорит о том, что в сумме окислителей мы измеряли не окислы азота, а озон, высокие концентрации которого обычно наблюдаются в области озонопаузы, т. е. непосредственно над тропопаузой. Надо полагать, что фильтрация окислов азота скорее необходима при отборе проб воздуха на озон вблизи промышленных предприятий, где концентрация окислов азота в составе атмосферных загрязнений должна быть существенной.

В настоящей работе мы произвели также эксперимент по отбору и анализу воздуха кабин самолетов на озон роданоферратным методом.

Кохен и Буфалини [15] в лабораторных условиях показали, что Роданоферратным методом можно определять концентрацию озона и фотоксидантов в составе атмосферных загрязнений. Более

аблица 2

Концентрация (1	иг/м ³ ) озона и оки	слов азота (п	в пересчете на	ı NÖ
в кабинах	реактивных самол	етов на возду	ушных трасса	X. 🗐

				S. St.
Дата	Тип самолета	Маршрут	Высота, м	Концентралия - озоца-
13 X 1971	Ty-134	Ленинград— Одесса	10 000	0,02 0,04 0,22 0,22 0,22
			11.000	<b>6</b> 04 0,22
		Одесса— Ленинград	11 000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
23 V 1972	Ту-134	Ленинград— Мурманск Мурманск— Ленинграл	11 000 10 000	0412 85 1 140 140 85 5 T 5 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 7
25 VII 1972	Tv-134	Ленинград	11.000	0,08 0,23
		Одесса	11000	
16 VIII 1972	Ил-18	Ленинград— Пермь	7 800	Следы Не оснару- ", жена

Примечание. Здесь приводятся только те данные о концентраций озона и окислов азота, которые получены при параллельном отборе.

детально применительно к озону этот метод разработал М. Т. Дин риев [4, 5].

Роданоферратный метод основан на реакции взаимодей вия оксидантов с двойным железо-аммониевым сульфатей FeSO₄ (NH₄)₂SO₄ · 6H₂O (соль Мора) в кислой среде с образование ионов трехвалентного железа, которое определяется колориметри чески в виде железороданистого комплекта. Чувствительность определения по озону составляет 0,1 мкг в анализируемом объеме раствора.

Поглотительный раствор приготавливался, согласно [4], следующим образом: 0,1 г соли Мора растворялись в 100 мл дистиллированной воды, затем добавлялись 10 мл одномолярного раствора азотной кислоты и 10 мл ацетона. 10%-ный ацетон добавлялся для уменьшения диэлектрической постоянной и усиления стабильности окраски [9]. Перед приготовлением раствора концентрированную азотную кислоту продували током воздуха для удаления окислов азота.

Воздух в кабине самолета протягивался с помощью водяной аспиратора через два поглотительных прибора с пористой пластин кой № 1, наполненных 5 мл поглотительного раствора. Химический анализ отобранных проб заключался в сравнении ярко-красной окраски полотительного раствора после реакции с озоном со стандартной и алой, приготовленной по прописи [5].

Результы параллельных измерений озона в кабине самолета Ту-134 на воздушной трассе Ленинград—Одесса представлены в табл. 30 из таблицы следует, что роданоферратный метод систематически даст завышенные результаты. По-видимому, такое большое расхождение, данными, полученными иодидным методом, связано с недостаточной воспроизводимостью образующегося в результате реакции роданистого комплекса. Полеты, произведенные по другим маршругам, обнаружили аналогичные результаты.

Таблица З

Содержание озона (мг/м³) в кабине самолета Ту-134 на воздушной трассе Ленинбрад — Одесса и июля 1972 г., полученное иодидным и роданоферратным 76—26. 3 м. методами

стана Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Серектичка Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова Сорскова С	Используемый по	глотительный раствор	
иодистый (са	соль Мора	иодистый калий	соль Мора
0,07 0,03 001 Не бол ржено 000	0,20 0,28 0,17 0,14 0,04 0,56	0,06 0,04 Не обнаружено Не обнаружено Не обнаружено	0,20 Не обнаружено Не обнаружено 0,30 0,09

езюмируя, можно сделать следующие выводы.

Химический метод определения озона может успешно испольоблаться для приближенной оценки концентрации озона в кабинах облаться для приближенной оценки концентрации озона в кабинах облаться для приближенной оценки концентрации озона в кабинах

2. Из исследованных химических методов наиболее воспроизодимым следует считать иодидный нейтральный метод определеия озона.

3. Роданоферратный метод по методике, использованной в настоящей работе, дает завышенные результаты. Одним из факторов, влияющих на недостаточную воспроизводимость метода, является невозможность выдувания окислов азота из азотной кислоты. Выдувание окислов азота в течение 3 дней не дало требуемых результатов.

4. К недостаткам химического метода определения озона в условиях полета следует отнести невозможность проведения немедленного химического анализа отобранных проб воздуха. Транспорровка отобранных проб может привести к получению занижениях результатов вследствие разложения поглотительного раствора. 5. Химический метод не позволяет судить о динамике вариаций озона в кабинах самолетов, а следовательно, и в атмосферном воздухе, в зависимости от метеорологических условит на высоте полета.

6. Для исследования динамики вариаций озона на высотах полетов реактивных самолетов необходимо провести широки комплекс экспериментальных полетов самолетов, оборудованных автоматическими электрохимическим или хемилюминесцентным озонометрами.

Автор выражает глубокую признательность проф. Д. Астапенко за содействие в организации эксперимени тыных полетов, а также благодарит В. С. Масленникову и В. С. Воскову, оказавших помощь в отборе проб кабинного воздуха и в проведении его химического анализа.

#### СПИСОК ЛИТЕРАТУРЫ

- Бритаев А. С. Измерение концентрации озона в триосфере изпредвари-тельные результаты наблюдений. «Тр. ЦАО», 1962, пр. 45, с. 32—37.
   Бритаев А. С. Измерение концентрации атмосферного села жимичееким и электрохимическим методами. «Тр. ЦАО», 1960, вып 37-с. 12—23.
   Быховская М. С., Гинзбург Л. С., Хализовас П. Методы опре-деления вредных веществ в воздухе. М., «Медицина», 1960, 55. с.
   Дмитриев М. Т. и др. О методах определения фотооксидатель и озона в атмосферном воздухе. «Гигиена и санитария», 1972, № 2, с. 74—76.
   Дмитриев М. Т. С. Оврева Т. В. Аргирова М. А. Определение Conceptional of the osonal

- Дмитриев М. Т., Соловьева Т. В., Аргирова М. А. Опредение озона и фотооксидантов в атмосферном воздухе. В кн.: Унифицированные
- методы определения атмосферных загрязнений. Ч. 2. М., Изд. СЭВ, 1973. 6. Инструктивно-методические указания по организации исследова загрязне-ния атмосферного воздуха. М., Изд. Министерства здравоохрания СССР, 1963. 204 c.
- 7. Кэй Р. Г. Измерение с самолета вертикального распределения озона до высоты 12 км химическим методом. — В кн.: Ракетные исследования верхней атмосферы. Под ред. Р. Л. Ф. Бойда и М. Дж. Ситона. М., ИЛ 1957, c. 236-239.
- 8. Санитарные нормы проектирования промышленных предприятий СН 22571. М., Изд. Госстроя СССР, 1972. 96 с.
- 9. Шарло Г. Методы аналитической химии. М., «Химия», 1966. 622 с.
- 10. Bennett G. Ozone contamination of high altitude aircraft cabins. space Med.", 1962, vol. 33, No. 8, p. 969-973.
- 11. Bishof W. Carbon dioxide concentration in the upper troposphere and low
- stratosphere. "Tellus", 1971, vol. 23, No. 6, p. 558—561. 12. Brabets R. J., Hersch Ch. K., Klein M. J. Ozone measurement survey in commercial jet aircraft. - "J. Aircraft", 1967, vol. 4, No. 1, p. 59-64.
- 13. Brewer A. W. Ozone concentration measurement from an aircraft in N. Norway. — "Quart. J. Roy. Met. Soc.", 1957, vol. 83, No. 356, p. 266—268. 14. Brewer A. W., Milford J. R. The Oxford-Kew ozonesonde. — "Proc. Roy.
- Soc.", 1960, A 256, p. 470-495.
- 15. Cohen J. R., Buffalini J. J. Further observations on the ferrous ammonium thiocyanate reagent for ozone. -- "Environ. Sci. Technology", 1967, vol. 1, No. 12, 1014 p.
- 16. Ehmert A. Über den Ozongehalt der unteren Atmosphäre bei winterlichem Hochdruck-Wetter nach Messungen im Flugzeug. Forsch. und Erf. Ber. d. RWD, 1941, Berlin, 13 S.
- 17. Ehmert A. Ein einfaches Verfahren zur absoluten Messungen des Ozonge
- tes von Luft. "Met. Rundschau", 1951, Bd 4, S. 64—68. 18. Hering W. S., Borden T. R. Ozonesonde observations over North America, Vol. 4. AFCRL-64-30, Bedford, Mass. 365 p.

154

- Kidera G. J. Aeromedical aspects of a commercial jet operation. "Aerospace Mee", 1963, vol. 34, No. 7, p. 601—605.
   Komhy W. D. Report on ozone measurements conducted within the cabin of KC-138 aircraft. U.S.W.B. Report, April 1962.
- 21. Murgatto y d R. S. Some recent measurements of ozone concentration from a Canberra aircraft up to 15 km. IUGG WMO Ozone symposium, Oxford,

- a Canberra aircraft up to 15 km. IUGG WMO Ozone symposium, Oxford, Jule 1959. "IUGG Monograph", 1960, No. 3, Paris.
  22. Regener WH. New experimental results on atmospheric ozone "Sci. Proc. IAM, Rome, Carmon ber 1954". London, 1956.
  23. Seiler W., Wanneck P. Decrease of the carbon monoxide ratio at the tropopause. "Jitten oh. Res", 1972, vol. 77, No. 18, p. 3204—3214.
  24. Tiefenau H., Pruchniewicz P. G., Fabian P. Meridional distribution of tropospheric ozone from measurement aboard commercial airliners. "Z. Geophys", 1972, Barge, H. 1, p. 145—151.
  25. Young W. A., Show D. B., Bates D. V. Presence of ozone in aircraft flying at 35.000 feed. "Aerospace Med.", 1962, vol. 33, No. 3, p. 311—318.

## Д ФРОЛОВ

(3)

# АППРОКСИМАЦИОННЫЕ ФОРМУЛЫ ДЛЯ В УНКЦИИ ПРОПУСКАНИЯ В УЗКИХ СПЕКТРАЛЬНЫХ ИНТЕРВАЛАХ ПОЛОСЫ СО2 У 2 мкм

В настоящей работе предпринята попытка толучить точные и удобные аппроксимационные формулы для по пускания в узких спектральных интервалах, шириной несколько обратных сантиметров, для полосы  $CO_2$  у 2 мкм. Экспериментальное исследование этой полосы было проведено в работах [1—4], носолько в [4] спектр поглощения в полосе  $CO_2$  записывался с достато высоким разрещением, чтобы получить не искаженные прибор с значения пропускания в столь узких спектральных интервалах.

В [4] экспериментальный материал представын в виде больщого количества спектрограмм полосы  $CO_2$  у 2 мкм при рыдичных давлениях (*p*) и количествах (*u*) газа. Данные, представленные в таком виде, трудно использовать в расчетах. В работе [6] были предложены эмпирические формулы, аппроксимирующие с високой точностью экспериментальные данные [4]. Эти формуще и волили удобно представить результаты эксперимента и интерперировать значения пропускания для промежуточных величин *p* и *u*, не охваченных спектрограммами.

Аппроксимационные формулы имеют вид

$$\tau_{\lambda} = \exp\{-\left[(ku)^{-2} + (\ln \tau_s)^{-2} - M(ku \ln \tau_s)^{-1}\right]^{-1/2}\}.$$

Здесь  $\tau_{\lambda}$  — пропускание в спектральном интервале с центром  $\tau_s$  — пропускание в этом интервале в приближении сильной либо оно задается формулой

$$\tau_s = 1 - P \{n, [n\Gamma(n)(2cu p/\pi)^{1/2}]^{1/n}\},\$$

где

$$P\{a, x\} = [\Gamma(a)]^{-1} \int_{0}^{x} t^{(a-1)} e^{-t} dt;$$

k, M, n, с — некоторые постоянные, свои для каждого спектрального интервала, которые подбираются методом наименьших квадратов по экспериментальным спектрам.

Формула (1) может использоваться только для однородных оптических путей. Кроме того, она имеет довольно сложный вити ее применение без выполнения вспомогательных расчетов на ЭВ затруднительно. В [5] быле предложены три вида более простых аппроксимационных формал:

$$1 - \tau_{\lambda} = c_{\lambda} p^{m_{1,\lambda}} u^{n_{1,\lambda}}, \qquad (4)$$

$$\tau_{\lambda} = \exp\left(-\beta_{\lambda} p^{m_{2, \lambda}} u^{n_{2, \lambda}}\right), \tag{5}$$

$$1 - \tau_{\lambda} = \ln\left(k_{\lambda} p^{m_{3, \lambda}} u^{n_{3, \lambda}}\right), \qquad (6)$$

где  $c_{\lambda}$ ,  $\beta_{\lambda}$ ,  $k_{\lambda}$ ,  $m_{1}$ ,  $k_{\lambda}$ ,  $m_{3, \lambda}$ ,  $n_{3, \lambda}$ ,  $n_{2, \lambda}$ ,  $n_{3, \lambda}$  — постоянные для каждого спектрального интервала. Используя методику эффективных масс, их можно пименять и для неоднородных оптических путей [5].

тен [5]. В работе [3] по экспериментальным данным были найдены коэффициенты в формуле (5), в том числе и для полосы CO₂ у 2 мкм. Но, поскольку систральная ширина щели у 2 мкм в этой работе была 10 см⁻¹, споктральный интервал, в котором не будут сказываться искажения за счет аппаратной функции прибора, согласно [7], должен быть уже 60 см⁻¹. Только тогда ошибка в пропускании не будет болы с 5%. В работе [5] коэффициенты в формулах (4)— (6) находита по данным [1], полученным еще с более низким разрешение.

Т	a	б	Л	И	Ц	а	1
---	---	---	---	---	---	---	---

<b>Α</b> ν	СМ-1	β,		n.,
ит до 95- до 95- медээр иар	-4805,0 4815,0 4825,0 4834,6 4834,6 4843,1 4851,2 4859,7 4868,3 4876,4 4886,0 4894,8 4904,0 4912,3 4919,2 4928,7 4937,6 4946,1 4954,2 4961,7 4979,4 4979,4 4988,0	$\begin{array}{c} 0,734 \ 10^{-3} \\ 0,106 \ 10^{-2} \\ 0,710 \ 10^{-2} \\ 0,135 \ 10^{-1} \\ 0,135 \ 10^{-1} \\ 0,135 \ 10^{-1} \\ 0,113 \ 10^{-1} \\ 0,705 \ 10^{-2} \\ 0,198 \ 10^{-1} \\ 0,167 \ 10^{-3} \\ 0,617 \ 10^{-3} \\ 0,617 \ 10^{-3} \\ 0,377 \ 10^{-3} \\ 0,396 \ 10^{-3} \\ 0,396 \ 10^{-3} \\ 0,138 \ 10^{-2} \\ 0,569 \ 10^{-2} \\ 0,156 \ 10^{-1} \\ 0,297 \ 10^{-1} \\ 0,375 \ 10^{-1} \\ 0,375 \ 10^{-1} \\ 0,383 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588 \ 10^{-1} \\ 0,588$	$\begin{array}{c} 0,153\\ 0,186\\ 0,367\\ 0,487\\ 0,574\\ 0,549\\ 0,432\\ 0,585\\ 0,559\\ 0,396\\ 0,146\\ 0,143\\ 0,090\\ 0,077\\ 0,207\\ 0,361\\ 0,493\\ 0,539\\ 0,582\\ 0,599\\ 0,501\\ 0,562\\ 0,501\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,562\\ 0,$	$\begin{array}{c} 0,887\\ 0,834\\ 0,690\\ 0,640\\ 0,678\\ 0,673\\ 0,663\\ 0,663\\ 0,663\\ 0,663\\ 0,690\\ 0,892\\ 0,898\\ 0,937\\ 0,947\\ 0,826\\ 0,736\\ 0,666\\ 0,651\\ 0,666\\ 0,651\\ 0,667\\ 0,675\\ 0,638\\ 0,626\end{array}$
<b>\</b>	1331,0	0,000 10 1	0,040	0,090

В настоящей статье, чтобы получить формулы вида (4)—(6), по формуле (1) были вычислены значения пропускания та для каждого спектрального интервала. Вычисления были выполнены для

		and the second	an she Tan Mari	-	· .	А.Та	блица 2
u					ر <b>ل</b> ر	% дээр фюри	мул
атм-см	۳۷, 1	τν, 4	τ _{ν, 5}	τν,6	(4)	4	(6)
2.		$\Delta_{\nu} =$	= 4868,3	4876,4 см	-4	¢.	
500 750 1000 1250 1500 1750 2000	$\begin{array}{c} 0,390\\ 0,289\\ 0,222\\ 0,173\\ 0,138\\ 0,111\\ 0,090 \end{array}$	$\begin{array}{c} 0,414\\ 0,327\\ 0,257\\ 0,198\\ 0,146\\ 0,100\\ 0,058\\ \end{array}$	0,384 0,286 0,220 0,172 0,138 0,111 0,091	$\begin{array}{c} 0,393\\ 0,304\\ 0,241\\ 0,192\\ 0,152\\ 0,118\\ 0,089 \end{array}$	6 12,9 16,2 14 35 35	1,6 1,3 0,9 0,5 0,0 0,5 1,0	$\begin{array}{c} 0,6\\ 5,0\\ 8,7\\ 10,8\\ 10,4\\ 6,9\\ 0,8 \end{array}$
	1	$\Delta \nu =$	=4894,8 <i>÷</i> -	4904,0 см			
500 750 1000 1250 1500 1750 2000	$\begin{array}{c} 0,886\\ 0,837\\ 0,793\\ 0,752\\ 0,716\\ 0,682\\ 0,651\\ \end{array}$	$\begin{array}{c} 0,885\\ 0,841\\ 0,799\\ 0,760\\ 0,722\\ 0,685\\ 0,649\\ \end{array}$	$\begin{array}{c} 0,885\\ 0,838\\ 0,796\\ 0,756\\ 0,720\\ 0,685\\ 0,653\\ \end{array}$	$\begin{array}{c} 0,869\\ 0,810\\ 0,768\\ 0,735\\ 0,709\\ 0,686\\ 0,667\\ \end{array}$	0,5 0,5 1,0,5 0,9 0,5 0,3	0,1 0,1 0,4 10,5 0,6 0,5	1,9 3,2 3,1 2,2 0,9 0,7 2,5

набора давлений 1, 0,9, 0,8, 0,7, 0,6, 0,5, 0,4 атм и количеств 300, 400, 500, 600, 800, 1000, 1200, 1400, 1800, 2200, 2600, 3000 атм-см. По вычисленным та как по экспериментальным точка. методом наименьших квадратов были найдены постоянные в ормулах (4)—(6) для всех спектральных интервалов. В табл. 1 приведены коэффициенты формулы (5) для полос СО₂ у 2 мкм.

Анализ результатов расчета показал, что формула (5) даст раздо более точную аппроксимацию, чем (4) и (6). В подавля числе случаев ее относительная ошибка

 $\eta = (\tau_{\lambda, 1} - \tau_{\lambda, 5})/\tau_{\lambda, 1},$ 

где  $\tau_{\lambda,1}$  — пропускание по (1);  $\tau_{\lambda,5}$  — пропускание по (5) мены 1% и только, когда  $\tau_{\lambda} < 0.05$ , достигает 2%, а иногда 4%.

Как и отмечалось в работах [1, 5], формула (4) точнее в случае  $\tau_{\lambda} > 0.5$ , а (6) при  $\tau_{\lambda} < 0.5$ , но при  $\tau_{\lambda} < 0.1$  формула (6) дает уже большие ошибки. В табл. 2 приведены результаты сравнения для некоторых характерных спектральных интервалов при p = 0,7 атм.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Howard J. H., Burch D. E., Williams D. Infrared transmittance of sy
- thetic atmosphere. JOSA, 1956, vol. 46, No. 4, p. 237—241.
  B urch D. E. e. a. Infrared Absorption by Carbon Dioxide, Water Vapor Minor Atmospheric Constituents Research report. Ohio state university, contract AF 19(604) 2633, 1962.

158

- Кисслена, М. С., Пепорент Б. С. Измерение влажности газовых смесеи по инфрактеным спектрам поглощения. «Оптика и спектроскопия», 1964, ч. 1. т. 16, вычаб, с. 803—812.
   Zachor A. S. requations for the transmittance of the 2µ CO₂ band. "J. Quant. Spect. Reg. Transf.", 1968, vol. 8, No. 6, р. 1341—1349.
   Козлов В. П., Ф. дорова Е. О. Влияние разрешающей способности спек-трального прибора на точность определения интегрального пропускания. «Оптика и спектропония», 1961, т. 10, вып. 5, с. 663—667.

# СОДЕРЖАНИЕ

	∨ Н.	Н. Аксельрод. Оценка вероятности попадания соболета в зоны повышенных концентраций озона	3
	√ A.	М. Броунштейн, А. Д. Фролов, А. А. Шашков. О методе определения общего содержания СО ₂ в атмосфере пони К спектрам	
	1/-	поглощения солнечной радиации	6
	<b>∼</b> .J1.	А. 1 оворушкин. Қ методике измерения рассеянност суммарной ультрафиолетовой радиации	14
	∙⁄ B.	И. Горышин. Оптический метод измерения колисства твердых осадков	21
	JB.	И. Горышии, В. И. Корниенко. Изменчивость гористичей- дальности видимости	40
	/Γ.	К. Гущин. К вопросу о точности измерения общего содержания озо- на фильтровыми озонометрами на морях и океанах	50
	⊸ Г.	К. Гущин. О связи между общим содержанием озона и количество водяного пара в атмосфере над океанами	68
	%Г.	П. Гущин. Методика и прибор для измерения спектральной про рачности атмосферы и характеристик атмосферных аэрозолей .	77
_	<i>У</i> _{Г.}	П. Гущин. Сопоставление некоторых характеристик прозрачности атмосферы и аэрозоля	101
	• J E.	Н. Довгялло. О погрешностях осреднения данных по видимости в о временной дискретности наблюлений	106
	₩ E.	Н. Довгялло, В. А. Ковалев, И. Н. Нечаев. Визуально-инстру- ментальное определение метеорологической дальности видимости в	110
1	¥́∽В.	А. Ковалев. Некоторые вопросы перехода от прозрачности к на-	
	V.B.	И. Корниенко. О повышении эффективности использования при-	125
	✓ K.	Д. Лебедева. Вопросы точности актинометрических наблюдений	128
	√ E.	Л. Махоткина. К вопросу об определении спектральных поправок пиранометра Янишевского	134
	<b>v</b> B.	В. Осечкин. Экспериментальное исследование содержания озона в кабинах реактивных самолетов химическим методом	144
	U А.	Д. Фролов. Аппроксимациопные формулы для функции пропускания в узких спектральных интервалах полосы $CO_2$ у 2 мкм	156
			A3