ГЛАВНОЕ УПРАВЛЕНИЕ ГИДРОМЕТЕОРОЛОГИЧЕСКОЙ СЛУЖБЫ ПРИ СОВЕТЕ МИНИСТРОВ СССР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А. И. ВОЕЙКОВА

ТРУДЫ

06 T78

ВЫПУСК 326

ФИЗИКА ПОГРАНИЧНОГО СЛОЯ АТМОСФЕРЫ

> Под редакцией канд. физ.-мат. наук А. С. ДУБОВА

ГИДРОМЕТЕОИЗДАТ

ЛЕНИНГРАД • 1975

Публикуются результаты исследований по трансформации воздушной массы в пограничном слое атмосферы под влиянием скачков температуры и влажности подстилающей поверхности, а также при натекании воздушного потока на лесные массивы или большие города. Излагаются также вопросы турбулентного обмена вблизи уровня шероховатости, в частности в условиях штормов на море и песчаных бурь на суше. Приводятся статистические характеристики скоростей ветра в планетарном пограничном слое по экспериментальным данным, результаты обобщений актинометрических наблюдений над океаном, распределение теплофизических характеристик почвы по территории Советского Союза.

Сборник представляет интерес для специалистов по атмосферной турбулентности, раднации, почвоведов, а также для студентов старших курсов и аспирантов соответствующих специальностей.

20807-051 20-74(2) 069(02)-75

Главная геофизическая обсерватория им. А. И. Воейкова (ГГО), 1975 г.

Б. Г. ВАГЕР, Е. Д. НАДЕЖИНА

МОДЕЛЬ МАСШТАБА ТУРБУЛЕНТНОСТИ И РАСЧЕТ СТРУКТУРЫ ПОГРАНИЧНОГО СЛОЯ АТМОСФЕРЫ

1 -

Известно, что для замыкания системы уравнений, описывающих режим турбулентного течения, необходимо иметь сведения о поведении масштаба турбулентности. В настоящее время для описания структуры пограничного слоя атмосферы существует несколько способов такого замыкания. Наиболее распространенными являются: в советской литературе — формула Лайхтмана — Зилитинкевича для масштаба турбулентности [1], в зарубежной литературе — формула Блэкадара [2] для той же величины. Указанные соотношения позволяют определить масштаб турбулентности через локальные средние характеристики потока. Связи такого рода отличаюся сравнительно небольшой универсальностью и, будучи пригодными для определенного класса течений, должны быть значительно изменены при переходе к описанию течений другого класса. Для достижения большей универсальности в целом ряде работ, посвященных расчету турбулентных течений в лабораторных условиях, предлагается использовать дифференциальное уравнение переноса, определяющее масштаб турбулентности. Эта модель впервые была предложена в работе Колмогорова [3]. В 1951 г. Ротта развил и обобщил аналогичную модель на случай неоднородной и неизотропной турбулентности [4]. Это направление развивалось в дальнейшем в работах Глушко [5, 6], Сполдинга [7, 8, 9] и некоторых других авторов [10, 11]. Следует отметить, что, вообще говоря, в силу физических особенностей турбулентного движения трудно установить число неизвестных, определяемых из решения (и соответственно число уравнений переноса), которые с достаточной полнотой характеризовали бы режим потока. Однотипная процедура, примененная к уравнениям Навье — Стокса [4], позволяет получить уравнения переноса не только для кинетической энергии и масштаба турбулентности, но и для напряжений Рейнольдса, третьих, четвертых и т. д. моментов (см. например, цикл работ Давыдова [2,13]). Увеличение числа использованных уравнений должно приводить к большей универсальности решения. Однако в настоящее время нет реальной технической возможности использовать такую п-мерную модель турбулентности. В то же время модель с использованием дифференциального уравнения для масштаба турбулентности позволяет уже сейчас получать интересные,

обозримые и сравнимые с экспериментом результаты [9, 10]. Могут быть намечены и пути дальнейшего развития этой модели.

Представляет интерес исследовать возможности применения модели, использующей уравнение переноса для *l*, к описанию турбулентных течений в атмосфере. Для этой цели рассмотрим стационарный двумерный планетарный пограничный слой, описываемый уравнениями:

1) уравнениями движения:

$$u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial u}{\partial z} + 2\omega_z v, \qquad (1)$$

$$u\frac{\partial v}{\partial x} + w\frac{\partial v}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial v}{\partial z} - 2\omega_z(u - U_g), \qquad (2)$$

2) уравнением неразрывности

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0, \tag{3}$$

3) уравнением баланса энергии турбулентности

$$u\frac{\partial b}{\partial x} + w\frac{\partial b}{\partial z} - k\left[\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2\right] = -\frac{Cb^{3/2}}{l} + \frac{1}{\sigma_l}\frac{\partial}{\partial z}k\frac{\partial b}{\partial z}.$$
 (4)

При решении задачи используются соотношения Колмогорова, связывающие коэффициент обмена k и диссипацию Ds с кинетической энергией b и масштабом турбулентности $l(k=l\sqrt{b}, Ds=C^{1/4}b^{3/2}l^{-1})$. Изучается случай нейтрально стратифицированной атмосферы. Использованы общеизвестные обозначения.

Рассмотрим прежде всего решение системы (1)—(3) для случая однородного по горизонтали установившегося потока. Сравним различные варианты замыкания системы уравнений (1)—(4). При этом масштаб турбулентности задается:

а) по формуле Лайхтмана — Зилитинкевича

$$l = -\varkappa C^{1/4} \frac{b/k}{\frac{\partial}{\partial z}(b/k)},\tag{5}$$

б) по формуле Лайхтмана — Зилитинкевича, исправленной по аналогии с формулой Блэкадара [16]

$$l = - \varkappa C^{1/4} \frac{b/k}{\frac{\partial}{\partial z} (b/k)} \frac{1}{1 + \alpha z}.$$
 (6)

Здесь α — функция числа Ro = $\frac{G}{f z_0}$.

Кроме того, для определения *l* было использовано дифференциальное уравнение вида:

$$u \frac{\partial l}{\partial x} + \overline{w} \frac{\partial l}{\partial z} = \frac{1}{\sigma_1} \frac{\partial}{\partial z} k \frac{\partial l}{\partial z} - d \cdot l + f_1, \tag{7}$$

где

$$\overline{w} = w - \left(\frac{1}{\sigma_1} + \frac{1}{\sigma_2}\right) \frac{k}{b} \frac{\partial b}{\partial z};$$

$$d = (1 - C_b) \frac{k}{b} \left[\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \right];$$

$$f_1 = (C - C'_{\rm M}) \cdot \sqrt{b} + \left(\frac{1}{\sigma_2} - \frac{1}{\sigma_l}\right) \frac{1}{b} \frac{\partial}{\partial z} k \frac{\partial b}{\partial z}.$$

Уравнение (7) получается после несложных преобразований из дифференциального уравнения для импульса турбулентности (*b*·*l*), приведенного в работе [9]:

$$u \frac{\partial}{\partial x} (b \cdot l) + w \frac{\partial}{\partial z} (b \cdot l) = \frac{\partial}{\partial z} \left(\frac{b^{3/2}l}{\sigma_1} \frac{\partial l}{\partial z} + \frac{b^{1/2}l^2}{\sigma_2} \frac{\partial b}{\partial z} \right) + C_b b^{1/2} l^2 \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] - C'_{\rm M} b^{3/2}.$$
(8)

Подробный вывод уравнения (8) приведен в работе [4]. Определив масштаб турбулентности как средний диаметр турбулентных образований, автор статьи [4] считает, что для того чтобы описать поведение l в турбулентном потоке, необходимо исследовать пространственную структуру турбулентности, которая описывается, по существу, энергетическим спектром. Поэтому, получив из уравнений Навье-Стокса, домноженных на соответствующие компоненты пульсационной скорости, уравнение для корреляционной функции, Ротта не переходит от этого уравнения к уравнению для масштаба l так, например, как это делает Глушко [6]. Уравнение для корреляционной функции в работе [4], домноженное на соответствующий коэффициент и проинтегрированное по всему пространству (рассматривается случай неоднородной и неизотропной турбулентности), сводится к уравнению для спектральной функции. Если проинтегрируем уравнение для спектральной функции по всем волновым числам от 0 до ∞, то получим известное уравнение (4) для энергии турбулентных пульсаций. Умножив энергетического спектра на уравнение для коэффициент 8 6' (здесь k' — волновое число) и проинтегрировав его по всем k' от $\dot{0}$ до ∞ , получим уравнение для функции $(\dot{b} \cdot l)$, которое может быть записано в форме (8). Разумеется, для того чтобы выразить диффузионные и диссипативные члены в том виде, в каком они содержатся в выражении (8), делаются дополнительные предположения относительно спектрального распределения диффузии и диссипации

энергии турбулентности. При этом в уравнении для импульса турбулентности (б) появляются константы $\frac{1}{\sigma_1}$; $\frac{1}{\sigma_2}$, C_b и $C'_{\rm M}$. Для того чтобы от уравнения (8) перейти к уравнению (7), описывающему изменения среднего диаметра турбулентных образований, уравнение (4) домножается на l и вычитается из уравнения (8).

В уравнении (8) так же, как в уравнении (4), два члена в левой части описывают адвекцию величины $(b \cdot l)$, а члены правой части описывают воздействие на эту величину диффузии, притока энергии от среднего движения и диссипации соответственно. Отметим, что приведенное без вывода в работе [3] уравнение для средней частоты турбулентных пульсаций $\omega = \frac{Cb}{k}$ может быть тоже получено из уравнения (8). При этом становится ясно, что в уравнении для ω опущены члены, существенно влияющие на поток вблизи поверхности. Однако уравнение для ω привлекает своей простотой, и был получен вариант решения с использованием этого уравнения.

Уравнения (7) и (8) содержат следующие константы, знание которых необходимо для получения решения: C, C_b; C_i; σ_l; σ_l; σ₂ Предполагается, что эти константы являются универсальными. В работе [9] исследованы с большой тщательностью величины констант путем сравнения решения и соответствующего эксперимента для разных типов течений в трубах. Там же приведена таблица констант, которой мы и воспользовались. Авторы работы [9] отмечают, что для лучшего описания экспериментальных зависимостей вблизи стенки необходимо признать по крайней мере одну из перечисленных констант функцией высоты в этой области течения. Без какого-либо теоретического обоснования предполагается: $C'_{\rm M} = C_{\rm M} + C_w \left(\frac{l}{z}\right)^q$. Универсальность приписывается теперь «действительным» константам $C_{\rm M}$; C_w и q. В более ранней работе Сполдинга величина $C_{\rm M}'$ считалась постоянной. Мы исследовали поведение решения при $C'_{M} = \text{const}$ и $C'_{M} = f(z)$. Для остальных констант использованы следующие числовые значения: С=0.1: С_b= $=0,84; \sigma_l=2; \sigma_1=1,2; \sigma_2=2,0.$

Граничные условия для неизвестных *u*; *v*; *b*; *w* не отличаются от общепринятых условий в задачах пограничного слоя:

1) при
$$z = z_0;$$
 $u = v = w = 0;$ $\frac{\partial b}{\partial z} = 0;$
2) при $z = H;$ $u = U_g;$ $v = 0;$ $b = 0;$

H — верхняя граница рассматриваемого слоя (*H*=const).

Для решения уравнения (7) или (8) необходимо задать граничные условия для масштаба турбулентности.

Условие для l на уровне шероховатости очевидно: при $z=z_0$; $l=\varkappa \cdot z_0$. Условие для l на уровне z=H требует специального исследования. В упоминавшейся уже работе [9] на верхней границе пограничного слоя принимается условие $(b \cdot l) = 0$, которое считается справедливым в силу того, что выше уровня H поток предполагается нетурбулентным. При этом можно предположить, что масштаб турбулентности обращается в нуль на верхней границе слоя, так как в нетурбулентном потоке, по-видимому, все характеристики турбулентности нулевые. С другой стороны, рассматривая масштаб l как средний размер турбулентных вихрей, увеличивающийся по мере удаления от поверхности, и, имея в виду неопределенность задания высоты H, можно думать, что $l \neq 0$ на уровне H

Рис. 1. Профили коэффициента обмена, полученные с использованием двухпараметрической модели.

1)	$C'_{M} = 0,$	055; $b_{H} = 0$,	$l_{H} = 0,0;$	(2) $C'_{\rm M} =$	0,055 + az	$l_{H} =$
=	$0,0; \frac{\partial b}{\partial z}$	$z = H^{=0; 3}$	$C'_{\rm M} = 0,075$; $l_H = 0.01$;	<i>b_H=0; 4</i>)	C'_M ==
= 1	0,075;	$l_{H} = 0,02,$	${}^{b}{}_{H} = 0;$	5) $C'_{\rm M} = 0$,075; <i>l_H</i> =	= 0,0;
	db Dz	$z = H^{=0;}$	6) $C'_{\rm M} = 0.08$	5; $l_{H} = 0.05$	$b_{H} = 0.$	

и сохраняет здесь постоянное и даже не слишком малое значение. Кроме того, одним из необходимых требований является сглаживание всех характеристик пограничного слоя по мере удаления от поверхности, т. е. требование условия $\frac{dl}{dz}|_{z=H} = 0$. Одновременное выполнение условий для l и для градиента $\frac{dl}{dz}$ может быть обеспечено лишь в том случае, когда высота пограничного слоя H является внутренним параметром задачи и определяется из решения. В силу ограниченности нашей постановки, мы можем при заданном H выяснить только, какое из условий для l больше отвечает физическим представлениям. Система (1) - (4), дополненная со-

ответствующим соотношением для l, решалась численно. Метод решения описан в работе [14]. Прежде всего исследовалась зависимость решения от выбора констант в уравнении (7) и от выбора граничного условия для l и b на верхней границе рассматриваемого слоя. В качестве примера на рис. 1 приведены профили коэффициента турбулентного обмена для разных случаев вариации констант и граничного условия. Наибольшее влияние на рассчитываемый профиль коэффициента обмена оказывает изменение константы $C'_{\rm M}$. Увеличение константы $C'_{\rm M}$ на 30% уменьшает величину максимума $k(z) \sim в$ трираза. При использовании условия $l|_{z=H} = {\rm const}$

Рис. 2. Сравнение годографа скорости и профиля k(z) с результатами натурного эксперимента. 1) экспериментальные точки, 2) модель Лайхтмана — Зилитинкевича, 3) модель Лайхтмана — Зилитинкевича с поправкой, 4) модель Колмогорова для ω , 5) двухпараметрическая модель.

изменение константы (в разумных пределах) мало влияет на распределение k(z) (рис. 1). Использование условия $\frac{dl}{dz}\Big|_{z=H} = 0$ оказалось невозможным, так как при этом условии коэффициент обмена обращался в нуль уже на очень малых высотах. Программа не давала технической возможности довести решение до конца, не сдвигая верхнюю границу слоя. Наиболее удачные профили k(z), т. е. наилучшим образом согласующиеся с физическими представлениями, получаются при использовании условия $l|_{z=H} = 0$ и $\frac{\partial b}{\partial z}\Big|_{z=H} = 0$.

Результаты численных экспериментов сравнивались с данными натурного эксперимента Леттау (классический Лейпцигский профиль) [15]. Рисунок 2 — иллюстрация этого сравнения. На рис. 2 приведены годографы скорости для всех перечисленных случаев за-

дания масштаба турбулентности. Здесь же показан натурный годограф для Ro=10⁶ (Ro = $\frac{G}{fz_0}$). Экспериментальные и вычисленные значения скорости ветра лучше всего согласуются при использовании формул (6) и (7) с коэффициентом $C'_{M} = C_{M} + C_{w} z^{q}$. Эти же модели позволяют получить достаточно низкий максимум на профиле k(z) (кривые 3, 4 на рис. 2). В то же время ни одна из перечисленных моделей не дает возможности получить значительное уменьшение градиента dk/dz при приближении к верхней границе слоя.

Кривые 4 и 5 на рис. 2 соответствуют случаю использования в данной схеме дифференциального уравнения для средней частоты турбулентных пульсаций ω. Уравнение для ω, введенное в схему, позволяет довольно правильно вычислить составляющие среднего ветра, однако профиль k(z) сохраняет перечисленные выше недостатки: большой градиент $\frac{dk}{dz}$ при $\tilde{z} > 0,5$ и высокое расположение максимума на графике k(z).

Таким образом, анализ проведенных численных экспериментов показал, что двухпараметрическая модель турбулентности (термин, употребляющийся Сполдингом) может быть применена для описания режима турбулентного течения в планетарном пограничном слое. Несомненно, требуют дальнейшего исследования и развития такие вопросы, как уточнение констант в уравнениях (7) и (8), аппроксимация членов уравнения (8), уточнение граничного условия на верхней границе слоя и т. п. Представляет интерес исследовать возможности применения двухпараметрической модели для расчета процессов тепло- и влагопереноса в турбулентной атмосфере, для описания нестационарных и горизонтально-неоднородных пропессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зилитинкевич С. С. Динамика пограничного слоя. Л., Гидрометеоиздат, 1970, c. 251.
- 2. Blackadar A. K. The vertical distribution of wind and turbulent exchange in
 - а neutral atmosphere.— "J. Geophys. Res." 1962, v. 67, No. 8, р. 3095—3102.
 Колмогоров А. Н. Уравнения турбулентного движения несжимаемой жидкости.—«Изв. АН СССР», сер. физ. 1972, т. 6, с. 56—58.
 Rotta I. K. Statistische Theorie nichthomogener Turbulenz.— "Zeitschrift für Physik", 1951, N. 131, s. 51—77.

 - 5. Глушко Г. С. Некоторые особенности турбулентных течений несжимаемой жидкости с поперечным сдвигом.-«Изв. АН СССР», Механика жидкости и газа, № 4, 1971, с. 129—136.
 - 6. Глушко Г. С. Дифференциальное уравнение для масштаба турбулентности и расчет турбулентного пограничного слоя на плоской пластине.-«В кн.: Турбулентные течения. М., Наука, 1970. 7. Spalding D. B., Patankar S. V. Heat and mass transfer in Boundary La-
 - yers. Intertext Books, 1970.

 - Ng K. H. and Spalding D. B. A two-parameter model of turbulence and its application to free jets. "Warme und Stoffübertragung", 1970, No. 3, p. 85—95.
 Ng K. H. and Spalding D. B. Turbulence model for boundary layers near walls. "The phys. of fluids," 1972, v. 15, No. 1, p. 20—30.
 Jones W. P., Launder B. E. The prediction of laminarization with a

2 eguation model of turbulence.—"Quart. J. Heat and Mass Transfer" 1972, v. 15, No. 30.

- 11. Hanjalic K., Launder B. E. Fully developed asymmetric flow in a plane channal.— "J. Fl. Mech". 1972, v. 51, p. 301—306.
- 12. Давыдов Б. И. К статистической динамике несжимаемой турбулентной жидкости.—«ДАН», 1961, т. 136, № 1, с. 47—50.
- Давыдов Б. И. К статистической теории турбулентности.—«ДАН», 1959, т. 127, № 5, с. 980—982.
- 14. Вагер Б. Г., Надёжина Е. Д. Изменение режима планетарного пограничного слоя под влиянием изменения влажности поверхности.—«Тр. ГГО», 1973, вып. 297, с. 165—172.
- 15. Lettau H. H. A re-examination of the "Leipzig wind profile".— "Tellus", 1950, v. 2, p. 125—129.
- 16. Быкова Л. П. Опыт расчета характеристик пограничного слоя атмосферы по заданным параметрам подслоя шероховатости.—«Тр. ГГО», 1973, вып. 297, с. 12—19.

ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ ПО РАСЧЕТУ ГОРИЗОНТАЛЬНО-НЕОДНОРОДНОГО ПЛАНЕТАРНОГО ПОГРАНИЧНОГО СЛОЯ

Режим потока над неоднородной поверхностью формируется под влиянием различных взаимосвязанных воздействий. Например, изменение влажности поверхности ведет за собой изменение температуры поверхности, что в свою очередь обусловливает изменение динамических характеристик потока. Чаще всего характеристики поверхности изменяются в комплексе. Поэтому при постановке задачи о строении пограничного слоя над горизонтально-неоднородной поверхностью должно учитываться воздействие разных факторов на движущийся поток. Попытки учета взаимодействия теплового и динамического эффектов в задаче о трансформации воздушной массы делались и раньше, но применительно к малым размерам неоднородностей [1]. Если размеры неоднородностей велики, то возмущения, вызванные ими, могут распространяться до значительных, высот. Это обстоятельство следует учитывать при постановке задачи.

В работе [2] сформулирована двумерная задача тепло- и влагообмена в турбулентном пограничном слое атмосферы с учетом горизонтальной неоднородности потока. Безразмерная система уравнений, описывающих процесс перестройки потока под влиянием меняющихся свойств поверхности, выглядит таким образом:

$$u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial u}{\partial z} + mv; \qquad (1)$$

$$u\frac{\partial v}{\partial x} + w\frac{\partial v}{\partial z} = \frac{\partial}{\partial z} k \frac{\partial v}{\partial z} - m(u-1);$$
(2)

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0; \tag{3}$$

$$u\frac{\partial \tau}{\partial x} + w\frac{\partial \tau}{\partial z} = \frac{\partial}{\partial z} k \frac{\partial \tau}{\partial z};$$
(4)

$$u \frac{\partial q}{\partial x} + w \frac{\partial q}{\partial z} = \frac{\partial}{\partial z} k \frac{\partial q}{\partial z}; \tag{5}$$

$$u \frac{\partial b}{\partial x} + w \frac{\partial b}{\partial z} - k \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 - \beta \frac{\partial \tau}{\partial z} - \beta_1 \frac{\partial q}{\partial z} \right] = \\ = -\frac{cb^2}{k} + \alpha_b \frac{\partial}{\partial z} k \frac{\partial b}{\partial z}; \tag{6}$$

$$k = l\sqrt{b}.$$
 (7)

Здесь т — отклонение температуры от заданного значения температуры внешнего потока, q — удельная влажность. Остальные обозначения общеизвестны.

Уравнения (1) — (7) выписаны с учетом обычных упрощений теории пограничного слоя и в предположении, что производные от всех величин по координате у малы (ось х направлена вдоль геострофического ветра, ось *z* — вертикально вверх). В уравнениях движения опущен член, учитывающий изменения давления при смене температуры поверхности (в отличие от аналогичных задач по теории бризовых явлений). Вообще говоря, при разности температур разнородных поверхностей $\Delta T > 3^{\circ}$ в уравнении движения следует сохранять член $\frac{1}{\rho} \frac{\partial P}{\partial x}$, который формально оказывается одного порядка с адвективными членами. Однако при оценке этих членов следует принимать во внимание то, что целью исследования в нашем случае является расчет внутреннего пограничного слоя, образовавшегося над поверхностью с новыми свойствами. Поэтому $\frac{1}{\rho} \frac{\partial P}{\partial x}$ при оценке сравнительной величины члена в качестве вертикального масштаба следует выбирать среднюю толщину внутреннего пограничного слоя (величина этого члена определится без- $\frac{g}{T} \frac{\tau_{\rm M} z_{\rm M}}{\mu_{\rm C}^2}$, так как масштаб давления выразмерным множителем ражается через температуру и высоту следующим образом: Р_м= $=\frac{g}{T}\rho \theta_{M} z_{M}$. Исходя из этого, следует оценивать и предел горизонтальных расстояний, для которого будет пригодно решение, описывающее строение пограничного слоя над полуограниченным по х возмущением на поверхности. Использованы следующие масштабы величин:

1) для составляющих скорости ветра

 $u_{\rm M}=v_{\rm M}=w_{\rm M}=G,$

где *G* — геострофический ветер;

2) для горизонтальных и вертикальных расстояний и масштаба турбулентности

$$l_{\rm M} = z_{\rm M} = x_{\rm M} = H$$

(H - высота пограничного слоя, внешний параметр задачи); $3) для отклонений температуры (<math>\tau = \theta - \theta_H$)

$$\tau_{\rm M} = \theta_H,$$

где θ_H — заданная температура на уровне *z*=*H*; 4) для коэффициента обмена и кинетической энергии турбулентности

$$k_{\mathrm{M}} = GH; \quad b_{\mathrm{M}} = G^2;$$

5) для удельной влажности

$$q_{\rm M}=q_m \ (\theta_H),$$

где q_m — максимальная влажность при данной температуре,

Граничные условия:

при *z*=*z*₀ (здесь *z*₀ — безразмерная шероховатость)

$$u = v = w = 0; \quad l = x z_0; \quad q = q_0; \quad \frac{\partial b}{\partial z} = 0;$$
 (8)

$$k \frac{\partial \tau}{\partial z} = -\left[M + pk \frac{\partial q}{\partial z}\right] + n \tau; \tag{9}$$

при *z*=1

$$u = 1; \quad v = 0; \quad q = q_1; \quad \tau = b = 0;$$
 (10)

πри *х*=0

$$\vec{a}(z; \ x < 0) = \vec{u}(z; \ x > 0); \ b(z, \ x < 0) = b(z; \ x > 0);$$
(11)
$$\tau(z; \ x < 0) = \tau(z; \ x > 0); \ q(z; \ x < 0) = q(z; \ x > 0);$$

$$k(z; \ x < 0) = k(z; \ x > 0);$$

здесь

$$\beta = \frac{\alpha_H g H \tau_M}{\theta G^2}; \quad \beta_1 = \frac{0.61 q_m(\theta_H)}{G^2}; \qquad (1 + 1)$$

$$m = \frac{2 \omega_z H \sin \varphi}{G}; \quad n = \frac{4 \sigma \theta_H^3}{\rho \cdot c_p G}; \quad M = \frac{R - B - 4 \sigma \theta_H^4}{\rho \cdot c_p \cdot G \tau_M}; = p = \frac{q_m(\theta_H) L}{c_p \theta_H}.$$

Выписанные уравнения и граничные условия полностью определяют функции u, v, w, τ , q, b, k в зависимости от x и z при заданных значениях определяющих параметров M, m, p, n, z_0 и коэффициентов β ; β_1 ; c; α_b ; α_H .

Выражение для масштаба турбулентности *l* выбиралось исходя из необходимости прежде всего правдоподобно описать квазистационарный режим пограничного слоя. Известно, что наиболее заметным недостатком схемы Лайхтмана — Зилитинкевича являются завышенные значения коэффициента обмена в верхней части пограничного слоя. Избежать этого можно, введя поправочный множитель к формуле Лайхтмана — Зилитинкевича для *l*, т. е. записав *l* в виде

$$l = - \varkappa c^{1/4} \frac{b/k}{\frac{\partial}{\partial z} (b/k)} \frac{1}{(1+az)}.$$

Здесь множитель (1+az) введен по аналогии со схемой Блэкадара [3, 4]. Коэффициент *а* зависит не только от числа $\operatorname{Ro} = \frac{G}{fz_0}$, но и от условий устойчивости. Используя эту модель для масштаба турбулентности, мы можем весьма точно описать экспериментальные натурные профили метеоэлементов (см., например, [5]). Конечно, добавляя заданный параметр *a* в схему, мы несколько нарушаем корректность постановки задачи. Однако хорошее согласование рассчитанных и экспериментальных величин в квазистационарном случае дает бо́льшую уверенность в результатах, получаемых по этой схеме для горизонтально-неоднородных условий.

Уравнения (1)—(8) аппроксимировались конечно-разностными выражениями и решались методами прогонки и матричной факторизации с приближениями по нелинейным членам на каждом шаге по *x*.

Рис. 1. Деформация профилей удельной влажности (а) и температуры (б) при изменении увлажнения подстилающей поверхности.

1) $q_0 = 1 \rightarrow 1,3; M = \text{const}; 2) q_0 = \text{const}; M = 10^{-3} \rightarrow 10^{-2}; 3) q_0 = 1 \rightarrow 0,5; M = \text{const};$ 4) исходный профиль; 5) — безразмерные горизонтальные расстояния.

Перейдем к результатам численных экспериментов, моделировавших режим пограничного слоя в переходной зоне. Переходной зоной назовем область, в которой происходит перестройка полей метеорологических элементов и их постепенное приспосабливание к условиям измененной поверхности. Иллюстрацией такой перестройки является рис. 1. На нем показано, как изменяются профили температуры и удельной влажности под влиянием изменения альбедо и влажности подстилающей поверхности. Влияние альбедо учитывается изменением параметра *M*. Из рисунка видно, что влияние изменения альбедо и влияние влажности неодинаковы. Уменьшение параметра *M* вдвое почти не сказывается на профиле температуры, тогда как уменьшение удельной влажности на повсрхности в два раза заметно искажает профиль температуры. На

рис. 1 б (кривые 2) показаны профили температуры, полученные при изменении M в 10 раз. В этом случае профили температуры в переходной зоне искажаются более существенно по сравнению с исходным профилем θ , характерным для области x < 0. Следует иметь в виду, что реальные значения $\frac{M}{M'} = 3 \div 4$ (M' — значение M при x < 0). Это соответствует изменению альбедо при переходе от пустынных участков к орошенным примерно на 10%. Значит, тем-

1) $v_{\pm 0}^2$ при $z_0 = \text{const}$; 2) $v_{\pm 0}^2$ при $z_0 = 10^{-4} \rightarrow 10^{-2}$; 3) Q_0 . при $z_0 = \text{const}$; 4) P_0 при $z_0 = 10^{-4} \rightarrow 10^{-2}$; 5) P_0 при $z_0 = \text{const}$; 6) Q_0 при $z = 10^{-4} \rightarrow 10^{-2}$; 7) $M = 10^{-3} \rightarrow 10^{-2}$; $q_0 = \text{const}$; 6) M = const; $q_0 = 1 \rightarrow 0.5$; 9) M = 0.5 M'; $q_0 = \text{const}$; 10) M = 0.5; M'; $q_0 = \text{const}$; 10) M = 0.5; $q_0 = 1 \rightarrow 1.3$; 11) – при изменении относительной: влажности $r = 0.5 \rightarrow 0.1$.

пературный режим над орошенными участками будет определяться в основном степенью увлажнения подстилающей поверхности (при характерных для пустыни перепадах влажности), а не радиационными характеристиками последней.

Представляет интерес расчет температуры поверхности почвы при различном изменении свойств этой поверхности. На рис. 2 приведена температура поверхности в функции от горизонтального расстояния x для всех указанных выше вариантов изменения Mи q_0 . Видно, что температура поверхности равномерно растет или убывает по x при соответствующем изменении условия для q и τ на уровне $z=z_0$. Такая гладкая зависимость температуры поверхности от x наблюдается для всех случаев задания удельной влажности на уровне шероховатости. Если же на поверхности задана относительная влажность, то наблюдается иная картина распределения температуры поверхности по x. В этом случае значения q_0 не фиксированы, а подстраиваются к значениям θ_0 , и, наоборот, значения температуры поверхности подстраиваются к величинам измененного испарения. Это приводит, в частности, к экстремуму в графике $\theta_0 = f(x)$ (рис. 2, кривая 11).

Таким образом, выбор граничного условия для влажности оказывается весьма существенным в данной задаче, так как в зависимости от способа задания влажности результат изменяется даже качественно. Несомненно, только наличие надежных экспериментальных данных по распределению температуры поверхности позволит определить, какое граничное условие для влажности в данной схеме соответствует реальному состоянию.

При расчете турбулентных потоков тепла и влаги у Земли чаще всего не принимается во внимание изменение шероховатости поверхности. Считается, что изменение z_0 , особенно в условиях суши, является эффектом второго порядка. Однако в естественных условиях и на суше нередки случаи изменения шероховатости на два порядка (например, при переходе от пустынных участков к орошенным полям). Представляет интерес проверить влияние изменения z_0 на расчет турбулентных потоков у Земли по данной модели. Оказалось, что это влияние весьма существенно и величины пото-KOB $P_0 = -k \frac{\partial \theta}{\partial z}, Q_0 = k \frac{\partial q}{\partial z}, v_*^2 = k \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right]$ заметно искажаются. учитывается в (рис. если изменение z_0 не расчете 2 a). Злесь обратить внимание на особенности. необходимо те которые вносит в решение использование уравнения баланса тепла в качестве граничного условия. Если бы мы задавали при $z=z_0$ температуру поверхности, то закрепленное значение θ_0 не позволило бы существенно измениться градиенту вблизи Земли и величина потока P₀ определилась бы в основном значениями коэффициента обмена. Следовательно, при увеличении z₀ мы имели бы увеличение потока так же, как это получилось для Q₀ при закрепленном значении удельной влажности на поверхности. Результатом использования уравнения теплового баланса для получения решения явилось следующее: количественное влияние z₀ на поток

тепла у Земли такое же, как влияние z_0 на поток Q_0 . Однако качественно характер этого влияния существенно различается. В то время как при увеличении z_0 поток Q_0 увеличивается, поток тепла P_0 уменьшается при росте шероховатости за счет увеличивающихся значений испарения.

Распределение вертикальных скоростей в пограничном слое над плоской горизонтально-неоднородной поверхностью — малоизученный вопрос. Рассматриваемая схема позволяет рассчитать поле вертикальных скоростей в переходной зоне (рис. 3). Рисунок 3 а

Рис. 3. Пространственное распределение вертикальных скоростей над горизонтально-неоднородной поверхностью.

a) $M = 0.5 M'; q_0 = 1 \rightarrow 1.5; z_0 = 10^{-4} \rightarrow 10^{-2}; 6$) $z_0 = \text{const}; M = \text{const}; q_0 = 1 \rightarrow 1.5.$

соответствует случаю изменяющейся шероховатости. Во втором случае (рис. 3 б) шероховатость поверхности постоянна, но изменяется удельная влажность на уровне $z=z_0$. Известно, что поле встра мало чувствительно к изменениям характеристик турбулентности, и профиль среднего ветра перестраивается главным образом под влиянием шероховатости (см. рис. 3). При увеличивающейся шероховатости ветер (u — составляющая) на всех уровнях уменьшается и всюду возникают положительные значения w. Максимальные величины w при этом наблюдаются вблизи границы x==0. При удалении от этой границы вниз по потоку поле размывается. Когда z_0 =const, а температура поверхности увеличивается, картина распределения w совершенно иная. В этом случае профиль u перестраивается от инверсионного к сверхадиабатическому, скорости в верхней тасти пограничного слоя растут, а внизу

2 624

85429

3

INAR MOTORE OF WHICKEN NH-T

убывают. Соответственно имеем положительные значения ω в нижней части слоя и отрицательные — на больших высотах. Очевидно, что сложное распределение ω на рис. З б вовсе не похоже на распределение вертикальных скоростей, возникающих только под влиянием динамических причин (рис. З α).

Исследуемая модель дает возможность получить информацию об особенностях распределения компонент баланса энергии турбулентности в переходной зоне по сравнению с этим распределением в установившемся потоке. Составляющие баланса *b* для этих двух

Рис. 4. Составляющие баланса энергии турбулентности.

а — установившийся поток: 1-4 — при $z_n = 10^{-2} 1'-4'$ — при $z_0 = 10^{-4}$, δ — переходная зона: 1 — трансформация энергии b от среднего движения, 2 — диссипация b, 3 — адвекция b, 4 — приток энергии за счет архимедовых сил, 5 — диффузия энергии b.

случаев изображены на рис. 4. На рис. 4а показаны составляющие баланса b в установившемся состоянии для двух значений шероховатости: 10^{-2} и 10^{-4} . Очевидно, что при бо́льшей шероховатости усиливается диссипация энергии в тепло в нижних слоях и соответственно приток энергии от среднего движения. Адвективная и диффузионная компоненты баланса в квазистационарном случае исчезающе малы. Напротив, в переходной зоне диффузия и адвекция энергии турбулентности играют заметную роль. Следует отметить, что эти составляющие баланса b достигают максимума и уравновешивают друг друга на высотах z < 0,5 H. Этот результат подтверждается экспериментально [6].

Таким образом, в настоящей работе показано, что рассматриваемая модель в основном правильно отражает особенности структуры горизонтально-неоднородного пограничного слоя. Однако еще требуют уточнения модель для масштаба турбулентности и условия вблизи верхней границы пограничного слоя. Необходимо также разработать схему строения пограничного слоя атмосферы, позволяющую учесть изменчивость верхней границы.

СПИСОК ЛИТЕРАТУРЫ

- Надёжина Е. Д. О взаимодействии динамического и теплового процессов при трансформации воздушной массы.—«Тр. ГГО», 1971, вып. 282, с. 71—78.
- 2. Вагер Б. Г., Надёжина Е. Д. Изменение режима планетарного пограничного слоя под влиянием изменения влажности поверхности.—«Тр. ГГО», 1973, вып. 297, с. 165—172.
- Blackadar A. K. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. ..., J. Geophys. Res.", 1962, v. 67, No. 8., p. 3095—3102.
 Быкова Л. П. Опыт расчета характеристик пограничного слоя атмосферы
- Быкова Л. П. Опыт расчета характеристик пограничного слоя атмосферы по заданным параметрам подслоя шероховатости.—«Тр. ГГО», 1973, вып. 297, с. 12—19.
- Вагер Б. Г., Надёжина Е. Д. Модель масштаба турбулентности и расчет структуры пограничного слоя атмосферы. См. наст. сборник.
- Antonia R. A., Luxton R. E. The response of a turbulent boundary layer to a stepchange in surface roughness.— "J. Fl. Mech.", 1971, v. 48, p. 721—761.

ОБ ИЗМЕНЕНИИ ХАРАКТЕРИСТИК ТУРБУЛЕНТНОСТИ ПРИ НАТЕКАНИИ ВОЗДУШНОГО ПОТОКА НА ЛЕСНОЙ МАССИВ

С физической точки зрения задача о трансформации воздушной массы при переходе на лесной массив значительной горизонтальной протяженности эквивалентна задаче о влиянии на поток скачка шероховатости. Изменение характеристик турбулентности под влиянием резкой смены шероховатостей подстилающей поверхности исследовалось за последнее время в работах [5—10].

В принятой нами модели при описании полей характеристик турбулентности при взаимодействии с растительным покровом в систему уравнений включаются члены, учитывающие взаимодействие растительности с потоком воздуха. Характер поверхности определяется при этом высотой растительности *h*, коэффициентом аэродинамического сопротивления *c*_f и удельной плотностью фитомассы *s* [12, 13]. При условии пренебрежения силами горизонтальной турбулентной вязкости исходная система уравнений, описывающая установившееся движение воздуха над покрытыми растительностью поверхностями, записывается в виде

$$u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial u}{\partial z} + fv - \begin{cases} c_f S\sqrt{u^2 + v^2 + w^2}u & z \le h\\ 0 & z > h, \end{cases}$$
(1)
$$u\frac{\partial v}{\partial x} + w\frac{\partial v}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial v}{\partial z} - f(u - G) - \begin{cases} c_f S\sqrt{u^2 + v^2 + w^2}v & z \le h\\ 0 & z > h, \end{cases}$$
(2)
$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = \frac{\partial}{\partial z}k\frac{\partial v}{\partial z} - f(u - G) - \begin{cases} c_f S\sqrt{u^2 + v^2 + w^2}v & z \le h\\ 0 & z > h, \end{cases}$$
(2)

$$\frac{\overline{\partial x} + \overline{\partial z}}{\partial x} = 0,$$

$$u \frac{\partial b}{\partial x} + w \frac{\partial b}{\partial z} = k \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] + \alpha_b \frac{\partial}{\partial z} k \frac{\partial b}{\partial z} - \frac{c_0 b^2}{k} + \begin{cases} c_f s (u^2 + v^2 + w^2)^{3/2} & z \le h \\ 0 & z > h, \end{cases}$$
(3)

 $k = c_0^{1/4} l \sqrt{b}.$ (4)

Здесь *и*, *v*, *w* — составляющие средней скорости ветра по осям *x*, *y*. *z* соответственно, *G* — скорость геострофического ветра, \hat{l} — параметр Кориолиса, *b* — средняя энергия турбулентных пульсаций, *k* — коэффициент турбулентного обмена по вертикали для количества движения, *l* — масштаб турбулентности, α_b , c_0 — универсальные постоянные; ось *x* направлена по геострофическому ветру, ось *z* — по вертикали вверх.

Для замыкания системы уравнений, согласно развитым Колмогоровым представлениям [14], используем уравнение переноса средней частоты пульсаций ω

$$u\frac{\partial\omega}{\partial x} + w\frac{\partial\omega}{\partial z} = -0,635\,\omega^2 + \alpha_\omega\,\frac{\partial}{\partial z}\,k\frac{\partial\omega}{\partial z},\tag{5}$$

где $\omega = c_1 - \frac{b}{k}$, α_{ω} , c_1 — эмпирически определяемые константы.

Проверка применимости уравнения (5) для задач пограничного слоя выполнена Б. Г. Вагером и Е. Д. Надёжиной [10].

Для того чтобы результаты расчетов с использованием этого уравнения для горизонтально-однородных условий ($\frac{\partial \omega}{\partial x} = 0$, w = 0) совпадали с ранее выполненными расчетами, в которых для определения пути смешения вводилась поправка Блэкадара [4], введем эту поправку и в уравнение (5)

$$u\frac{\partial \omega}{\partial x} + w\frac{\partial \omega}{\partial z} = -\frac{0.635}{(1+\beta z)^2}\omega^2 + \alpha_{\omega}\frac{\partial}{\partial z}k\frac{\partial \omega}{\partial z}.$$
 (5a)

Уравнение (5а) используется только на высотах, превышающих высоту растительности. Внутри растительного покрова масштаб турбулентности описывается приближенным соотношением, полученным нами из сопоставления экспериментальных данных о распределении скорости ветра по высоте в различных растительных сообществах с результатами теоретических расчетов

$$l = \frac{2.2}{1 + 2.5z} \sqrt{\frac{c_f s}{h}}^{-},$$
 (56)

где *ж* — постоянная Кармана.

Рассмотрим граничные условия для выписанной системы уравнений. Профили характеристик турбулентности и средней скорости ветра в набегающем потоке при *x*=0 отыскиваются из решения системы при отсутствии адвекции [13].

На верхней границе рассматриваемой области z=H предполагается, что все возмущения затухают:

$$u(x, H) = G; \quad v(x, H) = 0;$$

$$b(x, H) = b(0, H), \quad \omega(x, H) = \omega(0, H).$$
(6)

На нижней границе $z=z_0$ принимаются условия прилипания (обращение всех компонент средней скорости в нуль) и равенство нулю потока турбулентной энергии через подстилающую поверхность:

$$u(x, z'_{0}) = v(x, z'_{0}) = w(x, z'_{0}) = 0, \quad k \frac{\partial b}{\partial z} \Big|_{z = z'_{0}} = 0.$$
(7)

Второе граничное условие для ω ставится на уровне z=h, т. е. на нижней границе области, где используется уравнение для ω . Значение ω на этом уровне находится с помощью 5б) и требования непрерывности ω при переходе через уровень z=h.

Решение задачи выполнено при следующих значениях постоянных: $f = 1,26 \cdot 10^{-4}$ с⁻¹; $\varkappa = 0,4$; $c_{\rm g} = 0,046$; $\alpha_b = \alpha_{\omega} = 0,73$; $z_0 = 10^{-3}$ м; H = 600 м; $\beta = \kappa f/0,00027 G$.

Для нахождения постоянной c_1 в выражении $\omega = c_1 \frac{b}{k}$ воспользуемся следующими соображениями. Для горизонтально-однородных условий при малых $z(\beta z \ll 1)$ имеет место соотношение

$$0{,}635\,\omega^2 = \alpha_\omega\,\frac{\partial}{\partial z}\,k\,\frac{\partial\,\omega}{\partial z}.$$

Используя равенство $\omega = c_1 \frac{b}{k}$ и условия, выполняющиеся в нейтрально стратифицированном приземном слое, $\frac{\partial b}{\partial z} = 0$; $\frac{\partial k}{\partial z} = x u_*$ $\frac{\partial u_*}{\partial z} = 0$, получим

$$c_1 = \frac{\alpha_{\omega}}{0.635} \, \varkappa^2 \, \frac{u_*^2}{b}.$$

Принимая, что $\alpha_w = \alpha_b = 0.73$, т. е. равенство коэффициентов обмена для турбулентной энергии и частоты возмущений, $\varkappa = 0.40$ и $\frac{b}{u^2} = 4.8$, получим, что $c_1 = 0.039$.

Для упрощения анализа расчетов значения коэффициентов аэродинамического сопротивления и удельной плотности фитомассы приняты постоянными по высоте (c_fs_1 и h_1 — параметры исходной поверхности, c_fs_2 и h_2 — параметры поверхности, на которую набегает поток).

Система уравнений (1)—(7) решена численно на ЭВМ М-222. Уравнения второго порядка аппроксимировались конечно-разностными уравнениями по неявной схеме [11] и решались методом прогонки с использованием последовательных приближений по нелинейным членам.

Построенная таким образом модель позволяет выявить особенности трансформации воздушной массы в зависимости от характеристик структуры элементов подстилающей поверхности.

Анализ результатов расчета

1. Зависимость расстояния 90%-ного установления характеристик потока от фитометрических параметров леса, продуваемого в нижней части, рассмотрена в работе [2]. Поэтому здесь мы ограничимся изложением результатов, которые не были получены в использованных ранее моделях.

Одной из особенностей, которые были обнаружены в выполненных расчетах, является усиление горизонтальной скорости ветра в нижней части леса по сравнению со скоростью потока на той же

Рис. 1. Профили горизонтальной скорости ветра в набегающем потоке и на расстоянии 30 м от края леса (при различных характеристиках сопротивления леса).

1) $C_f S_1 = 0.5 \text{ m}^{-1}$, $h_1 = 0.5 \text{ m}$, x = 0; 2) $C_f S_2 = 0.02 \text{ m}^{-1}$, $h_2 = 10 \text{ m}$, x = 30; 3) $C_f S_2 = 0.1 \text{ m}^{-1}$, $h_2 = 10 \text{ m}$, x = 30 m; 4) $C_f S_2 = 0.5 \text{ m}^{-1}$, $h_2 = 10 \text{ m}$, x = 30 m.

высоте до набегания на опушку. Наличие такого эффекта вблизи поверхности земли неоднократно отмечалось в экспериментальных исследованиях [2, 15]. Было замечено также, что поток, входящий в нижнюю часть покрова, опускается вместо подъема, который имеет место обычно в верхней части леса. Этот эффект наблюдался, в частности, Рейнором (ссылка на его работы содержится в [1]), который измерял концентрации специальных трассеров, запускаемых по потоку перед лесом. При этом обнаружилось четкое разбиение облаков суспендирующего вещества на две части, одна из которых опускается, в то время как другая поднимается вверх. Этот эффект приписывался обтеканию потоком плотных крон деревьев. Такое объяснение физически правдоподобно, но им не всегда можно воспользоваться, поскольку явление раздвоения потока было обнаружено Вано (см. [1]) в ветровом туннеле при обтекании препятствий, состоящих из простых колышков.

Рис. 2. Изолинии вертикальных токов вблизи передней кромки леса. Натекание с равнины $(h_1=0,5 \text{ м}, C_fS_1=0,5 \text{ м}^{-1})$ на лес $(h_2=10 \text{ м}, C_fS_2=0,1 \text{ M}^{-1})$.

Нам представляется, что одна из возможных причин возникновения ускорения потока и наличия зон с вертикальными скоростями различных знаков связана с различием параметров сопротивления исходной и новой поверхностей. Если коэффициент c_{fs} уменьшается при переходе на новую поверхность, то на высотах $z \leq h$ скорость ветра должна увеличиваться по сравнению с исходной на той же высоте. Увеличение горизонтальной скорости приводит к появлению нисходящих вертикальных токов согласно уравнению неразрывности.

На рис. 1 показаны расчетные вертикальные профили модуля горизонтальной скорости ветра при различных параметрах сопротивления леса (кривые 2—4) и одинаковых характеристиках исходной поверхности (кривая 1). Из этого рисунка видно, что струйный эффект наблюдается в случае, когда коэффициент c_{fs} поверхности, откуда набегает поток, не очень существенно (не более чем в пять раз) превышает эту величину для условий леса (кривая 3).

В этом примере производная $\frac{\partial u}{\partial z}$ внутри леса знакопеременна. Вертикальные скорости, рассчитанные для этого случая, приведены на рис. 2. Здесь имеет место разбиение потока на две области: в нижней части леса появляются вертикальные движения, направленные к земле. Во втором примере ($c_f s = 0,02$), хотя максимума скорости внутри леса не наблюдается, однако скорость ветра на

Рис. 3. Изменение границы деформированного слоя над лесом. 1) $z_{ca}/z_{ci}=2;$ 2) $z_{ca}/z_{ci}=6;$ 3) $z_{ca}/z_{ci}=20.$

высотах, близких к h_1 , превышает скорость в набегающем потоке. Здесь, как и в предыдущем случае, появляется область нисходящих вертикальных токов в нижней части леса. Кривая 4 на рис. 1 соответствует случаю, когда коэффициент сопротивления не изменяется при переходе с одной поверхности на другую. Максимум скорости ветра возникает здесь вблизи вершин, однако скорость в этом случае не превышает исходную. Вблизи передней кромки леса всюду наблюдается подъем воздушных масс. Нужно сказать, что последний пример является чисто модельным, поскольку в естественных условиях более низкие покровы являются более плотными и отличаются бо́льшим удельным насыщением фитомассы.

2. При трансформации воздушной массы над лесом образуется пограничный слой, который является внутренним по отношению к планетарному пограничному слою атмосферы. Следуя работам

[6, 9], толщину внутреннего пограничного слоя δ определим как высоту, на которой выполняется условие

 $\left|\frac{\tau_2(z)-\tau_1(z)}{\tau_1(z)}\right| \leqslant 0,1.$

Из рис. З можно получить представление о росте внутреннего пограничного слоя над лесом. Для результатов расчетов по модели

Рис. 4. Профили модуля скорости ветра на различных расстояниях от границы раздела поверхностей.

-характерен очень быстрый рост δ при малых x. Это, очевидно, связано со значительным смещением линий тока при натекании потока воздуха на лесной массив (вертикальная составляющая скорости ветра вблизи границ леса сравнима с горизонтальной). На расстоянии 1,5 h от границы лесного массива влияние леса распространяется до высоты, в 2—4 раза превосходящей h. Эти результаты подтверждаются шаропилотными наблюдениями в зоне лесонасаждений [16]. По мере удаления от передней кромки леса рост

²26

внутреннего пограничного слоя несколько замедляется и, начиная с расстояния $\sim 30~h$ от края кромки, средний наклон поверхности раздела составляет около $^{1}/_{10}$, что согласуется с теоретическими результатами, полученными другими авторами [5—9].

Решение приведенной выше системы позволяет исследовать изменение характеристик турбулентности, вызванное сменой свойств

подстилающей поверхности. На рис. 4 представлены профили скорости ветра на нескольких расстояниях от границы раздела поверхностей. На этом рисунке заметно искривление логарифмичекого профиля скорости потока при трансформации. Аналогичная картина получена в теоретических расчетах Петерсена [6] и при некоторых экспериментальных исследованиях, описанных в [6].

На рис. 5 показано, как деформируется профиль кинетической энергии турбулентности по мере развития внутреннего пограничного слоя. Установление этого профиля над новой подстилающей

поверхностью так же, как и профиля скорости ветра, происходит очень медленно.

3. Одним из основных недостатков существующих моделей динамической трансформации является предположение о скачкообразном изменении параметра щероховатости на границе двух поверхностей. При переходе от равнины к лесу параметр шероховатости изменяется на один-два порядка, поэтому представляет ин-

терес выявить характер изменений этой величины вблизи границы раздела. В нашей задаче величина z_0 является внутренним параметром задачи и определяется с помощью решения так же, как это сделано в [4]. Расчет параметра шероховатости z_0 и высоты слоя вытеснения d выполняется методом наименьших квадратов в слое, приспособившемся к условиям новой поверхности. Пример расчета z_0 при натекании воздушной массы с равнины на лес приведен на рис. 6. Из этого рисунка следует, что параметр z_0 вблизи передней кромки леса изменяется достаточно плавно и на расстоянии более 20 h эти изменения становятся несущественными.

Таким образом, к числу особенностей переходной зоны можно отнести изменчивость z_0 по горизонтали. К сожалению, в настоящее время еще не имеется экспериментальных данных, позволяющих надежно определять изменения параметра шероховатости в зависимости от расстояния от кромки леса.

Наиболее жестким ограничением исследуемой модели является пренебрежение горизонтально турбулентной вязкостью. Очевидно, что турбулентное перемешивание вдоль потока играет немаловажную роль вблизи границ раздела поверхностей.

Фундаментальной проблемой теории остается вопрос о правомерности замыкания системы уравнений с помощью гипотезы Колмогорова для горизонтально-неоднородного потока.

СПИСОК ЛИТЕРАТУРЫ

- 1. Barr S. A. A modeling study of several aspects of canopy flow.— "Month. Weath. Rev." 1971, v. 99, No. 6, p. 485-497.
- H s i G., N a t h T. H. Wind drag within simulated forest canopies. ,,Journ. Appl. Meteorol." 1970, v. 9, No. 4, p. 592-602.
 B r a d l e y E. F. A micrometeorological study of velocity profiles and surface
- 3. Bradley E. F. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness, ,,Quart. Journ. Roy. Met. Soc." 1968, v. 94, No. 401, p. 361-379.
- Быкова Л. П. Опыт расчета характеристик пограничного слоя атмосферы по заданным параметрам подслоя шероховатости. «Тр. ГГО», 1973, вып. 297, с. 12—19.
- 5. Panofsky H. A., Townsend A. A. Change of terrain and the wind profile.— ,,Quart. Journ. Roy. Met. Soc.". 1964, v. 90 No. 384, p. 147—155.
- Peterson E. W. Modification of mean flow and turbulent energy by a change in surface roughness under condition of neutral Stability.— ,,Quart. Journ. Roy. Met. Soc." 1969, v. 95, No. 405, p. 561—575.
- Taylor P. A. On wind and shear stress profiles above a change in surface roughness.— "Quart. Journ. Roy. Met. Soc." 1969, v. 95, No. 403, p. 77—90.
 Taylor P. A. The planetary boundary bayer above a change in surface rough-
- Taylor P. A. The planetary boundary bayer above a change in surface roughness.—, Journ. Atm. Sci", 1969, v. 26, No. 3, р. 432—440.
 Надёжина Е. Д. К вопросу о влиянии скачка шероховатости подстилаю-
- Надёжина Е. Д. К вопросу о влиянии скачка шероховатости подстилающей поверхности на режим турбулентного пограничного слоя.—«Тр. ГГО», 1970, вып. 257, с. 109—116.
- 10. Вагер Б. Г., Надёжина Е. Д. Модель масштаба турбулентности и расчет структуры пограничного слоя атмосферы.— См. наст. сборник.
- 11. Вазов В. и Форсайт Дж. Разностные методы решения дифференциальных уравнений в частных производных. М., Изд. иностр. лит. 1963, с. 335.
- Циприс И. Б., Мепжулин Г. В. Расчет взаимодействия проницаемых полезащитных лесных полос с приземным потоком.—«Метеорол. и Гидрол.» 1972, № 11, с. 82—88.
- Дубов А. С., Быкова Л. П. Характеристики турбулентного течения в пограничном слое атмосферы над лесом и внутри его.— «Тр. ГГО», 1973, вып. 297, с. 3—10.
- Колмогоров А. Н. Уравнение турбулентного движения несжимаемой жидкости.—«ДАН», сер. физ., т. 4, № 1—2, 1942, с. 56—58.
- 15. Merony R. N. Characteristics of wind and turbulence in and above model forest. "Journ. Appl. Meteor." 1968, v. 7, No. 5, p. 780-788.
- 16. Воронцов П. А. Аэрологические исследования пограничного слоя атмосферы. Л., Гидрометеоиздат, 1960, с. 191—194.

Г. Х. ЦЕЙТИН

К ВОПРОСУ О ТРАНСФОРМАЦИИ ТЕМПЕРАТУРЫ ВОЗДУХА НАД ТЕРРИТОРИЕЙ ГОРОДА

В последние годы ввиду бурного роста существующих и образования новых городов все большее значение приобретает проблема обеспечения комфортного микроклимата города. Исследованию связанных с этим вопросов посвящено много работ, в частности [1—5], носящих в основном экспериментальный характер. Хотя такие исследования весьма важны, актуальными остаются также методы, сочетающиеся с теоретическими разработками. Последние, вообще говоря, позволяют делать более общие выводы. Частично подобные методы исследования применены в некоторых из упомянутых выше работах.

В настоящей работе предпринята попытка теоретически оценить один из аспектов формирования микроклимата города — тепловую трансформацию воздушных масс под влиянием подстилающей поверхности города.

1. Постановка задачи

Территорию города представим как замкнутую область (рис. 1), подстилающая поверхность которой состоит из отдельных «пятен» (участки зеленых насаждений, водоемы и т. п.), заметно отличаю-

Рис. І. Схема подстилающей поверхности. І вариант.

щихся в температурном отношении от окружающей поверхности-(улицы, крыши домов и т. п.). Предполагая процесс трансформации стационарным, можно поставленную задачу свести к решению уравнения притока тепла вида

$$u\frac{\partial\tau}{\partial x} + w\frac{\partial\tau}{\partial z} = k\frac{\partial^2\tau}{\partial z^2}.$$
 (1)

Здесь т — отклонение температуры воздушной массы от некоторого значения, под которым понимаем среднюю величину между температурой нетрансформированной воздушной массы (до прихода ее на рассматриваемую поверхность) и температурой окружающей пятна поверхности. Ось х направлена по среднему за рассматриваемый период направлению движения масс (и — средняя скорость ветра), ось z отсчитывается от упомянутой выше поверхности, отождествляемой со средней высотой деревьев, крыш зданий и т. п. Остальные обозначения: k — коэффициент вертикальной турбулентной дифузии, w — вертикальная скорость (метеорологические параметры u, k и w принимаются постоянными).

Учитывая сказанное выше, граничными условиями задачи будут:

$$\tau(x, y, z) \rightarrow 0$$
 при $z \rightarrow \infty$, (2)

$$\tau(x, y, z) \rightarrow 0$$
 при $x \rightarrow -\infty$. (3)

Предполагается, что на подстилающей поверхности (z=0) известна температура

$$\tau(x, y, z) = \tau_0(x, y)$$
 при $z = 0$ (4)

(способы определения или расчета температуры $\tau(x, y)$ в условиях города, приведены, например, в [1]).

Заметим, что ввиду неучета горизонтального турбулентного обмена $\tau(x, y, z)$ и $\tau_0(x, y)$ будут зависеть от координаты у параметрически.

2. Общее решение

Решение задачи выполняется следующим образом: а) вместо функции $\tau(x, y, z)$ временно вводится другая:

$$q(x, y, z) = \tau(x, y, z) e^{-\frac{w}{2k}z - \frac{w^2}{4ku}x}, \qquad (5)$$

для которой уравнение (1) упрощается и принимает вид

$$u\frac{\partial q}{\partial x} = k\frac{\partial^2 q}{\partial z^2};\tag{6}$$

б) решая (6) при соответствующих граничных условиях, вытекающих из (2)—(5) и возвращаясь к первоначальной функции, находим формулу для расчета температуры $\tau(x, y, z)$ в виде

$$\tau(x, y, z) = \int_{-\infty}^{x} \tau_0(\overline{x}, y) F(z; x - \overline{x}) d\overline{x}, \qquad (7)$$

где

$$F(z; \xi) = \frac{z}{2} \sqrt{\frac{u}{\pi k}} e^{\frac{w}{2k} z} e^{-\frac{w^2}{4ku} \xi - \frac{z^2 u}{4k \xi} \frac{1}{\xi^{3/2}}}.$$
 (8)

Формула (7) в принципе решает задачу, ибо позволяет при заданных метеорологических параметрах u, k, w и известной температуре подстилающей поверхности $\tau_0(x, y)$ рассчитать температуру трансформированной воздушной массы $\tau(x, y, z)$ в любой точке (x, y, z) над этой поверхностью.

3. Решение для ограниченной поверхности

Предположим, что температуру τ_j *j*-того пятна можно считать постоянной по всей его поверхности. Точнее, τ_j — перепад температуры между указанным пятном и температурой окружающей поверхности, принимаемой условно за нуль.

Как известно, этот перепад для теплого времени года может достичь нескольких градусов, иногда 10—15° [1—3].

Предположим далее, что пятна неправильной формы можно заменить равными им по площади прямоугольниками, расположенными вдоль направления преобладающего ветра, вдоль оси x(рис. 1). При этих условиях, предполагая вначале, что внутри рассматриваемой территории других пятен — прямоугольников, кроме *j*-того пятна, нет, вычислим температуру воздушной массы $\pi(x, y, z)$ на высоте z над точкой A (рис. 1) с координатами (x, y)в двух случаях:

1) точка A находится над пятном и 2) точка A — вне пятна, справа от него (рис. 1).

Применяя общее решение (7), получим в первом случае:

$$\tau(x, y, z) = \tau_j \int_{x_j}^x F(z; x - \overline{x}) d\overline{x} = \tau_j \int_0^{x - x_j} F(z; \xi) d\xi, \qquad (9)$$

ered.

а во втором

$$\tau(x, y, z) = \tau_j \int_{x_j}^{x_j} F(z; x - \overline{x}) d\overline{x} = \tau_j \int_{x - x_j}^{x - x_j} F(z; \xi) d\xi, \quad (10)$$

где x_j и x_j — крайние абсциссы *j*-того прямоугольника (пятна) (рис. 1).

Формула (9) характеризует трансформацию температуры воздушной массы при ее прохождении непосредственно над *j*-тым прямоугольником $(x_j \leqslant x \leqslant x'_j)$, а формула (10) — трансформацию температуры, когда масса уже прошла этот прямоугольник $(x > x'_j)$ (рис. 1). Если до поступления массы на рассматриваемый *j*-тый прямоугольник она двигалась над другими пятнами — прямоугольниками, то общий эффект трансформации может быть рассчитан по тем же формулам (9) и (10) плюс трансформации, возникшие при прохождении упомянутых пятен, причем каждая из этих трансформаций температуры рассчитывается по формулам типа (10).

По этим причинам ограничимся рассмотрением лишь формул (9) и (10), которые для удобства расчетов несколько преобразуем. Обозначим

$$S(z; m) = \int_{0}^{m} F(z; \xi) d\xi, \qquad (11)$$

тогда формулы (9) и (10) примут вид

$$\tau(x, y, z) = \tau_j W(z; x), \tag{12}$$

где

$$W(z; x) = \begin{cases} S(z; x - x_j) & \text{при } x_j \leq x \leq x'_j, \\ S(z; x - x_j) - S(z; x - x_j - m_j) & \text{при } x \geq x'_j \end{cases}$$
(13)

и где $m_j = x'_j - x_j - длина j$ -того прямоугольника по ветру (рис. 1).

Функция W(z; x) численно равна трансформации температуры воздушной массы (в градусах) для единичного перепада температуры на поверхности (τ_j =1°) для случаев, когда масса над *j*-тым пятном ($x_j \leqslant x \leqslant x'_j$) и за ним ($x \geqslant x'_j$). Подставим (8) в (11) и введем безразмерные параметры:

$$\sigma_{j} = \frac{z}{2} \sqrt{\frac{u}{km_{j}}},$$

$$t_{j} = \frac{w}{2} \sqrt{\frac{m_{j}}{ku}},$$
(14)

тогда

$$S(z; m_j) = S(\sigma_j; t_j) = \frac{1}{2} [1 - \Phi(\sigma_j - t_j)] + \frac{1}{2} e^{4\sigma_j t_j} [1 - \Phi(\sigma_j + t_j)],$$
(15)

где $\Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-v^2} dv - \phi$ ункция Крампа.

3 624

Введем далее безразмерное расстояние θ_j , отсчитываемое от левого края *j*-того прямоугольника в долях длины его m_j

$$\theta_j = \frac{x - x_j}{m_j}.$$
 (16)

Следовательно $\theta_j \leq 1$ для точек, расположенных над *j*-тым пятном и $\theta_j \geq 1$ для точек, расположенных справа от него. С учетом (13)—(16) функция единичной трансформации W(z, x) примет вид

WZ (and)

$$= \begin{cases} S\left(\frac{\sigma_j}{\sqrt{\theta_j}}; t_j\sqrt{\theta_j}\right) & \text{при } 0 \leq \theta_j \leq 1, \\ S\left(\frac{\sigma_j}{\sqrt{\theta_j}}; t_j\sqrt{\theta_j}\right) - S\left(\frac{\sigma_j}{\sqrt{\theta_j-1}}; t_j\sqrt{\theta_j-1}\right) & \text{при } \theta_j \geq 1. \end{cases}$$
(17)

11777 . 1

В табл. 1 Приложения приведена зависимость S(σ ; t) (индекс j опущен).

Согласно (14), при фиксированных значениях параметров u, k и m, σ_j есть безразмерная высота над подстилающей поверхностью, а параметр t отличен от нуля лишь в случаях учета вертикальной скорости w (при $w \neq 0$). Интервалы для параметров σ и tв табл. 1. Приложения выбраны в соответствии с возможными в данной задаче интервалами значений метеорологических параметров u, k, $w(u \sim 2 \div 5 \text{ м/c}; k \sim 1 \div 5 \text{ м}^2/\text{c}; |w| \sim 0.01 \div 0.02 \text{ м/c})$ и масштабов x, z, $m(x \sim m \sim 10^2 - 10^4 \text{ м}; <math>z \sim 1 - 10^2 \text{ м})$.

Из этих оценок можно заключить, пользуясь (14), что для небольших высот над подстилающей поверхностью ($z \sim 1 \div 10$ м), безразмерная высота $\sigma \sim 0, 1 \div 0, 5$. В этих пределах, как видно из табл. 1 Приложения, функция $S(\sigma; t)$ сравнительно слабо зависит от параметра t, т. е от вертикальной скорости w. Там, где эта зависимость заметна (на больших высотах $z \sim 10^2$ м, где $\sigma \sim 1 \div 2$), функция $S(\sigma, t)$ мала (< 0, 1). Следовательно, в большинстве случаев можно не учитывать вертикальную скорость. Расчетная формула для трансформации в этих случаях ($t_1 = 0$) будет иметь вид

$$\tau(x, y, z) = \tau_j \widetilde{W}(\sigma_j; \theta_j), \qquad (18)$$

где единичная трансформация $w(\sigma_j; \theta_j) = W(\sigma_j; t_j; \theta_j)_{|t_j=0,.}$

В табл. 2 Приложения представлена функция $W(\sigma; \theta)$, вычисленная по формуле (17). Анализ этой таблицы дает общую картину трансформации воздушной массы над отдельно взятым пятном — прямоугольником. В полном соответствии с физическими представлениями, когда масса находится над пятном ($\theta < 1$), трансформация по мере продвижения массы возрастает от нуля до максимального значения, причем очень резко на малых высотах ($\sigma \sim 0, 1 \div 0, 2$) и медленнее на больших ($\sigma > 0, 2$). После прохожде-

ния полосы (θ >1) трансформация очень резко сходит на нет на малых высотах и медленнее — на больших. Максимальная трансформация по мере продвижения массы достигается на небольших высотах в конце пятна (при θ =1), а на больших высотах (σ >0,5)— за пятном (θ >1). Приведем конкретный пример расчета для иллюстрации методики вычислений.

Таблица 1

Расчет трансформации для $z=10$ м ($ au$ в градусах)													
$x - \overline{x}$	0	10	50	1 0 0	200	500	550	600	800	1000	2 0 00	500 0	10000
θ	0	0,02	0,10	0,20	0,40	1	1,1	1,2	1,6	2	4	10	2 0
~ ₩(σ,θ)	0	0	0,074	0,206	0,370	0, 572	0,515	0,400	0,200	0,117	0,039	0,0076	0,0026
[`] τ (<i>z,x</i>)	0	0 —	-0,74 -	-2, 0 6	—3,70	—5,72	—5,15		-2,00	—1,17	0,39	-0,08	-0,03

Исходные данные: u=4 м/c; $k=1,25 \text{ м}^2/\text{c}$; w=0 (без учета вертикальной скорости), длина прямоугольника m=500 м, перепад температуры на поверхности $\tau_j=-10^\circ$. Трансформацию вычисляем на расстояниях $x-\overline{x}$ (в метрах) от левого края полосы (см. табл. 1 н 2) и на уровнях z над поверхностью (табл. 2). Проиллюстриру-

Таблица 2

Трансформация	(в	градусах)) на	различных	высотах	\boldsymbol{z}	И	на	разных
1	pac	стояниях	ОТ	левого края	и полосы				

	x x										
Ź	0		o	50	100	20 0	500				
Над прямоугольником											
0	ſ —10	_1	0 1	10	10	-10	_10				
2,5	0	:	3,17		-7,52	-8,12	-8,88				
5	0		0,46	-3,71	-5,27		7,77				
10	0) c		-0,74	-2,06	-3,70					
20	- 0	C C		0	-0,11	-0,80	-2,58				
50	0	0		0	0	0	0 ,05				
<u> </u>	x-x										
Z	550	600	800	1000	2000	5000	10 000				
За прямоугольником											
0	0	0	0	0	0	0	0				
2,5	2,38	—1,45	-0,5	9 -0,32	—0,10	-0,02	-0,01				
5	_4,16	-2,70	1,1	4 -0,65	0,20	0,04	0,01				
10	—5,15		1,8	9 -1,17	-0,39	-0,08	0,03				
20	-2,81	-2,92		0 -1,66	-0,65	-0,14	0,05				
50	0 -0,07 -0,10 -0,		-0,2	5 -0,41	0,51	0,25	-0,11				
	1 1 1 1 1	1	•	1	1	1	1.				

ем методику на примере расчета для z=10 м. Вначале вычисляем безразмерную высоту с. Согласно (14), получим $\sigma = \frac{10}{2} \sqrt{\frac{4}{1,25\cdot 500}} = = 0.40$. Дальнейшие расчеты для z=10 м представлены в табл. 1.

Аналогично вычислялись трансформации и для других уровней z. Результаты расчетов помещены в табл. 2. Как видно, характер трансформации здесь соответствует рассмотренной выше общей картине. Трансформация практически уже не ощущается на высоте z=50 м, а при продвижении массы за прямоугольником, она фактически исчезает примерно на 2—5-кратной длине прямоугольника. Заметим, что последнее обстоятельство может служить определенным оправданием предположения, что воздушная масса приходит на рассматриваемую территорию нетрансформированной.

При учете вертикальной скорости w расчеты трансформации проводятся аналогичным способом по формулам (12), (14), (17), где функция $S(\sigma; t)$ находится по табл. 1 Приложения.

Согласно вышесказанному, картина трансформации не должна существенно изменяться.

4. Средняя трансформация на данном уровне для ограниченной поверхности

Средняя трансформация $\overline{\tau}(z)$ на уровне z для замкнутой территории (рис. 1) есть

$$\overline{\tau}(z) = \frac{1}{D} \int dy \int \tau(x, y, z) dx, \qquad (19)$$

где интегрирование выполняется по всей площади замкнутой поверхности (*D* — ее общая площадь).

Как и прежде, предположим вначале, что кроме *j*-того прямоугольника (рис. 1), внутри этой поверхности других пятен нет. Тогда, используя (12) и (13), найдем

$$\int \tau(x, y, z) dx = \tau_j \int_{x_j}^{x_j'} S(z; x - x_j) dx - \tau_j \int_{x_j'}^{x_j'} S(z; x - x_j') dx,$$

или

$$\int \tau(x, y, z) dx = \tau_j \int_0^{M_j + m_j} S(z; \circ) d\circ - \tau_j \int_0^{M_j} S(z; \circ) d\circ, \qquad (20)$$

где $M_j = X'_j - x'_j$ — расстояние середины правого края *j*-того прямоугольника (в направлении оси *x*) до границы области X'_j — абсцисса соответствующей точки пересечения (см. рис. 1).
Так как, согласно (11), имеем

$$\int_{0}^{M_{j}} S(z,\sigma) d\sigma = M_{j} S(z;M_{j}) - \widetilde{S}(z;M_{j}), \qquad (21)$$

где

$$\widetilde{S}(z; m) = \int_{0}^{m} F(z; \xi) \xi d\xi =$$

$$= \frac{m \sigma}{2t} \Big\{ 1 - \Phi(\sigma - t) - e^{4\sigma t} [1 - \Phi(\sigma + t)] \Big\}, \qquad (22)$$

σ и t определяются по формулам (14) (индекс j опущен), то получим

$$\int \tau(x, y, z) dx = \tau_j \Big\{ [M_j + m_j] \widetilde{R}(z; M_j + m_j) - M_j \widetilde{R}(z; M_j) \Big\}, \quad (23)$$

где

$$\widetilde{R}(\sigma; t) = S(z; m) - \frac{1}{m} \widetilde{S}(z; m) =$$

$$= \frac{1}{2} \left\{ \left(1 - \frac{\sigma}{t}\right) \left[1 - \Phi(\sigma - t)\right] + \left(1 + \frac{\sigma}{t}\right) e^{4\sigma t} \left[1 - \Phi(\sigma + t)\right] \right\}. (24)$$

(Таблица функции $\tilde{R}(\sigma, t)$ помещена в табл. З Приложения.) Следовательно,

$$\int dy \int \tau(x, y, z) dx = \tau_j h_j \Big\{ [M_j + m_j] \widetilde{R}(z; M_j + m_j) - M_j \widetilde{R}(z; M_j) \Big\},$$
(25)

где h_j — ширина *j*-того прямоугольника (в поперечном к ветру направлении, рис. 1).

Обозначим площадь *j*-того прямоугольника через $d_j = m_j h_j$ и введем безразмерное расстояние α_j (в долях длины m_j) указанного прямоугольника до границы области, т. е.

$$\alpha_j = \frac{M_j}{m_j}.$$
 (26)

Формула (19) для средней трансформации $\overline{\tau}(z)$ принимает вид

$$\overline{\tau}(z) = \frac{1}{D} \sum_{j} \tau_{j} d_{j} P(\sigma_{j}, t_{j}, \alpha_{j}), \qquad (27)$$

где

$$P(\sigma_j, t_j, a_j) = (1 + a_j) \widetilde{R} \left(\frac{\sigma_j}{\sqrt{1 + a_j}}; t_j \sqrt{1 + a_j} \right) - a_j \widetilde{R} \left(\frac{\sigma_j}{\sqrt{a_j}}; t_j \sqrt{a_j} \right)$$
(28)

и σ_i и t_j определяются (14).

Суммирование в (27) проводится по всем пятнам — прямоугольникам, расположенным внутри рассматриваемой области.

В случае неучета вертикальной скорости ($w=t_j=0$) формула (27) принимает вид

$$\overline{\tau}(z) = \frac{1}{D} \sum_{j} \tau_{j} d_{j} \widetilde{P}(\sigma_{j}; \alpha_{j}), \qquad (29)$$

где $P(\sigma, \alpha) = P(\sigma, t, \alpha)_{t=0}$ (см. табл. 4 Приложения). На подстилающей поверхности ($z=\sigma=0$), согласно табл. 3 и 4 Приложения и формуле (28) $P=\tilde{P}=1$, и формулы (27) и (29) примут вид

$$\overline{\tau}(0) = \frac{1}{D} \sum_{j} \tau_j d_j.$$
(30)

Следовательно, средний трансформационный эффект на поверхности тем больше, чем, вообще говоря, больше общая площадь всех пятен внутри рассматриваемой территории. С высотой z (с ростом

Таблица З

Размены и пасположение п	атен

<i>j</i>	 1	2	3
<i>т</i> _ј м	 900	1000	1500
<i>h</i> _j м	 500	800	1600
<i>d</i> _j м	 0, 45 · 10 ⁶	0,80 · 106	2,4.106
<i>М</i> _ј м (I вариант)	 5400	2000	750
<i>M_j</i> м (II вариант)	 0	0	0

Таблица 4

Расчет \overline{z} (z) для z = 10 м (I вариант)

-			j	
	1	2	3	Примечания
α_j	6	2	0,50	
$\sim \sigma_j$	0,298	0,283	0,231	Формула (17)
P ($\sigma_j \alpha_j$)	0,689	0,799	0,736	Табл. 4 Приложения
$d_i \cdot \stackrel{\sim}{P}$	0,391 · 106	0,639 • 106	1,762.106	M ²
$-\tau_j \cdot d_j \widetilde{P}$	3,91.106	6,39 • 106	17,62.106	град·м²

параметра σ) средняя трансформация для отдельно взятого пятна убывает, что видно из формулы (28) и табл. 3, 4 Приложения, ибо функции P и \widetilde{P} уменьшаются. Однако при наличии многих пятен разной площади средний трансформационный эффект $\overline{\tau(z)}$ и его изменение с высотой будет еще зависеть от расположения этих пя-

тен внутри области, характеризуемого параметром α (табл. 4 Приложения).

Приведем пример расчета. Пусть внутри ограниченной площади ($D = 12 \text{ км}^2$) расположены три пятна— прямоугольника, температурный перепад на которых $\tau_j = -10^\circ$. Геометрические размеры их указаны в табл. 3. С целью иллюстрации влияния на $\tau(z)$

Рис. 2. Схема подстилающей поверхности. II вариант.

Таблица 5

Средняя трансформация $\overline{z}(z)$ в градусах

<i>z</i> M	•••	 . 0	2,5	10	20	50
т (z) (1 вариант)		 . —3,04	-2,86	- 2,33	—1,70	0,49
т (z) (II вариант) .		 3,04	2,63	-1,68	0,86	0,08

расположения пятен расчеты проводятся для двух вариантов расположения их внутри области (рис. 1 и 2), характеризуемых расстояниями M_j (табл. 3). Метеорологические параметры те же, что и в предыдущем примере. Порядок расчета для z=10 м (первый вариант) можно уяснить из табл. 4.

Согласно (29), искомая величина $\overline{\tau}(z)$ для z=10 м находится суммированием чисел последней строки табл. 4 и делением суммы на $D=12\cdot 10^6$ м². Таким образом, $\overline{\tau}_{|z=10} = -2,33^\circ$. Аналогично вычисляется $\overline{\tau}(z)$ и для других уровней z. Результаты расчетов для двух вариантов расположения пятен приведены в табл. 5.

В случае учета вертикальной скорости w расчеты проводятся аналогичным способом по формулам (27), (28) с помощью табл. 3 Приложения. Как видно из табл. 5, средняя трансформация $\tau(z)$ убывает с высотой и на уровне порядка 50 м уже мало ощущается. Однако на одних и тех же уровнях z величина $\tau(z)$ во втором варианте меньше. Это вызвано меньшей длиной «пути трансформации», под которым мы понимаем расстояние от левого (наветренного) края полосы до границы рассматриваемой области (рис. 1 и 2).

Таким образом, с нашей точки зрения, полученное решение, несмотря на заметную стилизацию постановки, дает качественно правильную картину трансформации воздушной массы над температурно-неоднородной подстилаюшей поверхностью.

В заключение автор выражает благодарность канд. геогр. наук Н. С. Краснощековой и М. М. Чернавской, а также д-ру геогр. наук Б. А. Айзенштату, принимавшим участие в обсуждении этой работы.

СПИСОК ЛИТЕРАТУРЫ

- I. Раунер Ю. Л., Чернавская М. М. Тепловой баланс города и влияние городского озеленения на температурный режим.—«Изв. АН СССР, сер. reorp.», 1972, № 5, с. 46—54.
- Айзенштат Б. А. Исследование теплового баланса Средней Азии. Современные проблемы климатологии. Л., Гидрометеоиздат, 1966, с. 94—130.
- Полтараус Б. В. О микроклимате парков, площадей большого города.— «Вестник МГУ», сер. геогр., 1966, № 2, с. 48—51.
 Раунер Ю. Л. Изменение тепла и влагообмена между лесом и атмосферой
- 4. Раунер Ю. Л. Изменение тепла и влагообмена между лесом и атмосферой под влиянием окружающей территории.—«Изв. АН СССР», сер. геогр., 1963, № 1, с. 15—28.
- Myrup J. O. A Numerical model of the Urban Heat Island.— "J. Appl. Meteor". v. 8, No. 6, 1969, p. 908—918.

	ица 1		2,0	2,04	3,12	4,70	6,93	10,1	ица 2		2,0	0	0	0	0,063	4,7	2,0	6'6	21,0	40,8	56,9	49,0	25,3	10.7
	абл		1,8	5,12	7,56	10,9	15,5	21,6	Габл		1,8	0	0	0	0,31	10,9	15,2	20,2	37,9	60,8	69,69	51,8	24,7	9.88
	T		1,6	12,1	17,1	23,7	32,4	43,5			1,6	0	0	0	1,4	23,6	31,0	38,9	64,0	86,0	82,0	53,6	23,6	9.19
			1,4	26,4	35,8	47,7	62,8	81,0			1,4	0	0	0	5,1	47,7	59,0	70,9	0'66	116	68	53,6	22,0	8.28
			1,2	54,0	70,0	89,7	113	141			1,2	0	0	0,15	16,4	89,7	105	121	150	140	97	51,7	19,9	7.29
			1,0	103	128	157	191	229			1.0	0	0	1,6	45,5	157	178	195	202	160	97	47,7	17,4	6.20
			0.00	138	168	203	241	285	3)		0,90	0	0,056	3,5	72,0	203	225	241	227	165	94	44,6	16,0	5.63
	a3)		0 ,80	184	219	258	B 01	348	0³ pa		0,80	0	0,35	11,4	110	258	281	292	246	166	0 6	41,3	14,5	5 05
	10 ³ p		0,70	238	278	322	368	417	ая в 1		0,70	0	1,7	2,69	161	322	343	340	258	162	84	37,4	12,9	4.39
	IAR B		0,60	298	350	396	444	482	ченна		0,60	0	7,4	57,7	230	396	412	381	259	153	75	32,2	1,1,	3.86
	иченн	ט	0,50	384	432	480	528	575	увели	b	0,50	0	25,3	114	317	480	475	405	247	138	65	28,1	9,40	3.24
. А (ували	(увел		0,45	432	477	524	571	618	; 0) (;		0,45	0	43,9	154	368	525	500	408	236	128	60	25,6	8,51	2.85
** *	(2 ; <i>t</i>)		0,40	480	526	572	617	662	•) A		0,40	0	73,6	206	423	572	515	400	222	117	55	23,0	7,58	2.60
	ия S (0,35	533	577	621	662	704	ниция		0,35	0	118	269	484	621	519	383	203	105	49	20,3	6,67	2.28
	ункц		0,30	588	630	671	712	748	Фy		0,39	0	180	343	550	671	512	355	179	93	41	17,5	5,72	1.95
	ф		0,25	649	686	724	758	793			0,25	0	263	430	618	724	473	317	155	79	36	14,7	4,80	1 63
			0,20	708	745	177	807	832			0,20	0	371	527	689	777	416	270	129	65	28	11,8	3,84	1.30
]		0, 15	778	806	832	857	878			0,15	0	503	636	764	832	337	210	66	49	22	8,9	2,89	0.98
			0,10	850	869	888	904	920			0,10	0	655	752	842	888	238	145	66	32	15	6,0	1,93	0.65
			0,05	922	934	944	953	960			0,05	0	823	874	920	944	123	75	34	16	7,0	3,0	0,97	0.33
			0	1000	1000	1000	1000	1000			0	1000	1000	1000	1000	1000	0	0	0	0	0	0	0	C
				0,2	-0,1	0	0,1	0,2			€0 <u>.</u>	0	0,1	0,2	0,5	1,0	1,1	1,2	1,5	2,0	3,0	5,0	10	20

ПРИЛО ЖЕНИЕ

41:

-

	ti di Dite de			:			φ.	и пин/	я <i>R</i> (a, t) (увели	іченна	a R	lô³ pa	3) (E				<i>4</i>	абли	сца Гца
							ł.				ь				1						
2	0	0,05	0, 10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,60	0,70	0,80	06'0	1,0	1,2	1,4 -	1,6	1,8	2,0
0,20	1000	865	759	660	572	495	424	363	313	266	226	163	115	80,2	55,3	38,4	16,4	6,88	2,71	0,94	0,32
0,10	1000	884	778	681	597	523	454	393	341	295	253	184	133	96,0	67,7	45,8	21,4	9.30	3,70	1,40	0,50
0	1000	894	794	703	623	549	483	422	369	321	280	209	153	113	81,5	57,4	27,2	12,4	5,20	2,20	0,72
0,10	1000	902	803	723	648	578	512	452	400	353	309	234	176	132	97,0	68,5	34,6	16,2	7,10	2,80	1,10
0,20	1000	910	823	744	671	603	539	481	431	381	337	263	201	152	114	85,4	42,9	21,1	9,72	3,94	1,57
	*	•							2										T	аблг	ца 4
.]						-	Функи	ция Р	(α, α)	(yBe.	личен	ная в	103 1	Ja3)			I				
											ь										
8	0	0.05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,60	0,70	0,80	0,90	1,0	1,2	1,4	1,6	1,8	2,0

0,720,750,750,731,301,311,311,311,311,322,53 $\begin{array}{c} 2,20\\ 3,10\\ 3,10\\ 3,10\\ 3,5,5\\ 3,5,5\\ 3,17\\ 3,5,5\\ 5,18\\ 3,17\\ 3,17\\ 5,5\\ 5,18\\ 3,17\\ 5,5\\ 5,18$ $\begin{array}{c} [2,4] \\ 18,7 \\ 10$ 57,472,5153,57224236736736784966075488788788781,5 99,0 198,0 2291 2291 2365 548 617 6641 6641 778 8859 8859 8859 8859 113 113 113 113 113 113 113 113 1142 113 11472 11472 11472 1172 1172 1172 1172 1172 1103693693693613613623613623613623613623613623613624422661066106610661068258882888788979897000000110864330001 0000110864330001 00000110864330001

А. С. ДУБОВ

О ВЛИЯНИИ ПЕРЕБРОСА ЧАСТИ СТОКА СИБИРСКИХ РЕК НА ТЕРМИЧЕСКИЙ РЕЖИМ ПРОЦЕССОВ ПЛАНЕТАРНОГО МАСШТАБА

Развитие экономики бассейна Аральского моря в ближайшее десятилетие потребует такого количества воды для осуществления мелиоративных мероприятий, что весь сток рек Сырдарьи и Амударьи будет недостаточен для удовлетворения этих потребностей. Интенсивное использование стока названных выше рек для оросительных систем приведет к высыханию Аральского моря, что, естественно, крайне нежелательно с самых разных точек зрения.

Выходом из создавшегося положения может служить переброс части стока из верховьев реки Оби в бассейн Аральского моря. В настоящее время существует целый ряд проектов мелиорации такой переброски, этот вопрос довольно широко обсуждался в советской печати [1].

Упомянутые выше проекты касались чисто инженерных аспектов проблемы, в то время как при реализации изменений водного баланса в глобальных масштабах, естественно, возникают вопросы о последствиях этих мероприятий во всем природном комплексе, включая как гидрологические и метеорологические циклы, так и биологические процессы. Опасения, связанные с проведением мелиоративных мероприятий глобального масштаба без достаточно глубокого анализа их последствий, были высказаны, в частности, и в западной прессе.

Изучение изменений метеорологического режима под влиянием орошения наиболее естественно проводить по трем основным направлениям:

1) исследование процессов в пределах приземного слоя,

2) изучение процессов в пограничном слое,

3) изучение влияния орошения на глобальные процессы.

Может оказаться, что в первом приближении эти направления окажутся между собой мало связанными в том смысле, что каждое из них потребует специфической детализации процесса и введения соответствующих упрощений в физические модели явления.

Целью настоящей работы является оценка изменений температурного режима над территориями масштаба северного полушария под влиянием упоминавшихся мелиоративных мероприятий в Средней Азии.

Согласно картам Атласа теплового баланса [2], с бассейна Аральского моря (не считая площадей, занятых морями) в сред-

нем за год испаряется несколько больше 300 км³ воды. По имеющимся данным, предполагается осуществить переброску воды в объеме, превышающем 100 км³ в год [11]. Поскольку вся переброшенная вода пойдет в основном на орошение, это приведет в среднем к увеличению испарения на 30% на площади около $2 \cdot 10^6$ км, т. е. примерно на 0,1 территории Советского Союза. На основании этих цифр можно полагать, что мелиоративные мероприятия такого масштаба могут сказаться на глобальном термическом режиме.

Для количественной оценки исследуемого процесса мы воспользуемся моделью, разработанной Л. С. Гандиным, Б. М. Ильиным и Л. В. Руховцом [3]. Остановимся кратко на ее особенностях.

Уравнение притока тепла записывается для стационарных условий в виде

$$\frac{\partial (P+\Lambda)}{\partial z} = LS + c_p \,\rho \,k \,\nabla^2 \,\widetilde{T},\tag{1}$$

где P и Λ — турбулентный и радиационный потоки тепла соответственно, z — вертикальная координата, L — скрытая теплота преобразования (конденсации), S — количество водяного пара, конденсирующегося в единицу времени в единице объема воздуха, c_p — теплоемкость при постоянном давлении, ρ — плотность воздуха, k — коэффициент горизонтальной турбулентной диффузии, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ — оператор Лапласа (x и y — горизонтальные координаты), T — температура.

Как видно из этого уравнения, циркуляционные факторы описываются в этой модели только с помощью макромасштабного горизонтального турбулентного перемешивания. Адвекции температуры в выражении (1) не содержится. Такой прием описания циркуляции используется обычно, когда не нужно слишком детально знать распределение температуры по горизонтали. Подобные подходы используются, в частности, при численном моделировании общей циркуляции атмосферы, гидродинамических долгосрочных прогнозов погоды и др. [4].

Равенство (1) интегрируется по высоте при условии постоянства коэффициента горизонтального турбулентного обмена и использования уравнения статики $dp = -g\rho dz$ (g — ускорение силы тяжести)

$$(P+\Lambda)_{z=\infty} - (P+\Lambda)_{z=0} = L \int_{0}^{\infty} Sdz + \frac{c_{pk}}{g} \nabla^{2} \int_{0}^{\infty} \widetilde{T}dz.$$
 (2)

Турбулентный поток тепла на верхней границе атмосферы отсутствует ($P_{x=\infty} = 0$). Использование уравнения теплового баланса на уровне подстилающей поверхности

$$P + \Lambda + LE + B = 0$$

(Е — испарение, В — поток тепла в почву) приводит к равенству

 $\Lambda|_{z=\infty} + LE + B = Lr + b \nabla^2 T,$

где $r = \int_{0}^{\infty} Sdz$ — конденсация во всей толще атмосферы, отнесенная

к единице площади горизонтального сечения, $b = \frac{c_p \, k P_0}{g}, \ T = \frac{1}{P_0} \int_0^{P_0} \widetilde{T} dp$

(Ро — давление на уровне Земли).

Суммарный поток радиации на верхней границе атмосферы (радиационный баланс системы Земля — атмосфера) выражается в биде

$$-\Lambda|_{z=\infty} = Q(1-\alpha) - I,$$

где Q — поток солнечной радиации, α — альбедо системы Земля — атмосфера, I — уходящее длинноволновое излучение, величина которого зависит от температуры T. Представление I в виде $I = I_0 + \beta T$ позволяет записать уравнение (2) в форме

$$b \nabla^2 T - \beta T = - [Q(1 - \alpha) - I_0 + L(r - E) - B.$$
 (3)

Весьма существенной особенностью описываемой модели является зависимость поля альбедо от температуры, что связано с возможным изменением границ ледовой шапки. Сопоставление границ ледового покрова с полем T, которое отождествлялось с полем температуры на уровне 500 мб, показало, что положение этой границы близко к изотерме T_{500} =243 К. При переходе через эту границу альбедо меняется скачком от значения 0,42 (отсутствие льда) до 0.60 (наличие льда).

Коэффициент горизонтального макрообмена k подбирался таким образом, чтобы при расчетах с входными параметрами, характеризующими современное состояние атмосферы, обеспечивался существующий климатологический перепад температур экватор — полюс. Это значение k оказалось равным 2,65 · 10⁶ м²/с, что вполне соответствует данным других авторов о величине этого параметра [5].

Нахождение поля температуры *T* с помощью уравнения (3) по известной правой части сводится к решению уравнения Пуассона. Необходимым граничным условием является задание температуры на границах области интегрирования. При расчетах будущих термических состояний атмосферы эта температура либо принималась постоянной, либо рассчитывалась из условия равенства нулю среднего притока тепла по всей рассматриваемой территории.

В исследовании [3] при работе с изложенной выше моделью в уравнении (3) варьировались либо величина приходящей радиации (моделирование изменения солнечной постоянной), либо в правую часть добавлялась некоторая положительная функция координат (моделирование притока тепла в атмосферу за счет производственной деятельности человека). В нашем случае постановка задачи несколько иная. Во-первых, приходящая радиация на верхней границе атмосферы не меняется. На нижней границе в результате мелиорации, вообще говоря, меняются обе компоненты водного баланса (испарение и осадки), а также поток тепла в почву. Степень изменчивости их различна. Так, по данным экспедиции Главной геофизической обсерватории (рис. 1), изменения потоков тепла в почву при переходе от сухой

Рис. 1. Ход потока тепла в почву по времени для пустыни и орошенного участка. 1- оазис, 2- пустыня.

почвы к увлажненной пренебрежимо малы. Как известно, это связано с тем, что хотя увлажнение почвы приводит к увеличению коэффициента молекулярной теплопроводности, уменьшение вертикального градиента температуры компенсирует этот эффект. Поскольку вообще поток тепла в почву на порядок меньше затрат тепла на испарение, то изменением этих потоков при мелиорации можно пренебречь.

Оценка изменений величины испарения в результате переброски части стока р. Оби в южный район приведена в начале настоящей статьи.

Сложнее обстоит дело с осадками. Гидродинамической теории изменения осадков под влиянием изменений испарения с подстилающей поверхности в настоящее время не существует. Статистические проработки по этому вопросу были сделаны О. А. Дроздовым и А. С. Григорьевой [10]. Естественно, выделение тепла конденсации при выпадении осадков должно несколько изменить термический режим, поэтому мы выполним расчеты с учетом этого эффекта. Схема увеличения тепла конденсации за счет изменения режима осадков за период с апреля по октябрь, согласно [6], дана на рис. 2. Естественно, что область увеличения осадков оказалась больше территории бассейна Аральского моря, что связано

с выносом влаги воздушными течениями. Так же, как и в нашей постановке задачи, в расчетах О. А. Дроздова [6] циркуляция принималась неизменной.

Изменение характера подстилающей поверхности вследствие орошения (появление покрова сельскохозяйственных культур в орошаемых оазисах) приводит к различию в альбедо между пустыней.

Рис. 2. Изменение теплоты конденсации L∆r под. влиянием орошения (ккал/(см²⋅мес)).

и оазисом. По данным Справочника по климату СССР [7], это различие для летнего времени составляет примерно 10—15%. Поскольку орошаемые площади будут составлять только 10% от всей. территории бассейна Аральского моря, то в среднем по всему бассейну изменение альбедо составит 2—1,5%. Если еще учесть, чтонас интересуют средние годовые величины, то принимая во внимание, что в зимние месяцы эта разность близка к нулю, изменения окажутся равными 0,5—0,7%. (Если осреднение альбедо в годовом

ходе делать с учетом величины приходящей радиации в различные сезоны года, что будет, несомненно, более корректно, то цифры будут несколько больше, однако не более 1—1,5%.) В выражение (3) входит значение альбедо не на подстилающей поверхности, а на верхней границе атмосферы. В климатологических работах по тепловому балансу системы Земля — атмосфера [8] было использовано следующее эмпирическое соотношение между этими характеристиками:

$$\alpha_s = (0,66 \,\alpha_0 + 0,08)(1-n) + 0,48n, \tag{4}$$

где α_s — альбедо верхней границы атмосферы (системы Земля — атмосфера), α_0 — альбедо подстилающей поверхности, n — облачность.

В дальнейших расчетах мы будем принимать, что облачность в результате мелиоративных мероприятий изменится незначительно и ее изменениями при расчетах альбедо можно пренебречь, т. е.

$$\Delta \alpha_s = 0.66 \Delta \alpha_0 (1-n).$$

Согласно работе [9], средние годовые значения облачности над бассейном Аральского моря составляют 4 балла (3 балла для июня и 6 — для декабря). Тогда с учетом всего вышесказанного изменение альбедо на верхней границе атмосферы составит 0,24%.

В работе [3] приходящая на верхнюю границу атмосферы радиация принималась равной 20,9 ккал/(см²·мес). Следовательно, приращение поглощенной радиации составит 0,05 ккал/(см²·мес). В силу линейности соотношения (3), постоянства Q и I_0 , а также пренебрежения изменением потока тепла в почву, получим следующее уравнение для изменений средней температуры тропосферы δT :

$$b \nabla^2 \delta T - \beta \delta T = Q \Delta \alpha_0 (1 - n) + L(\Delta r - \Delta E).$$
(5)

В соответствии с [3], будем интегрировать уравнение (5) по северному полушарию. В качестве граничного условия ставится неизменность температуры на экваторе. Правые части равенства (5) отличны от нуля только в области бассейна Аральского моря (изменения поглощенной радиации и испарения), изменения осадков охватывают несколько большую территорию (рис. 2). На рис. 3 нанесена часть регулярной сетки, используемой для численного интегрирования (5), в узлах которой правые части не равны нулю. Из этого рисунка следует, что, как и следовало ожидать, изменение осадков и альбедо компенсирует в некоторой степени потери тепла за счет изменения испарения. В зоне максимального испарения эта компенсация составляет 20-30%, но в отдельных областях она может приводить к смене знака притока тепла. Это имеет место в районе Копетдагского хребта, где особенности циркуляции (преобладающее направление воздушного потока почти пернендикулярно к хребту) приводят к интенсивным восходящим движениям, и добавление влаги, поступающей за счет испарения, согласно

-48

О. А. Дроздову, влечет за собой увеличение осадков, в 5—10 раз большее по сравнению с другими районами.

Интегрирование уравнения (5) со значениями правых частей, приведенными на рис. 3, показало, что максимальные изменения температуры на уровне 500-миллибаровой поверхности составляют 0,2°, если пренебречь изменениями осадков и альбедо, и дела-

Рис. 3. Величины правой части уравнений (5) и ее отдельных слагаемых в узлах регулярной сетки в ккал/(см²·мес).

В правом верхнем углу сетки дается расшифровка приводимых цифр. Шаг сетки равен 750 км на широте 40°.

ются еще меньше, если учесть эти компенсирующие эффекты. Причем и эти величины имеют место только над бассейном Аральского моря.

Поскольку эти цифры находятся в пределах точности расчетов, то можно сделать заключение, что изменение орошения в указанных выше объемах не приведет к ощутимому изменению термического режима в глобальных масштабах.

Однако остается невыясненным еще ряд вопросов. Так, например, не оценен эффект уменьшения стока р. Оби на ледовый режим северных морей (это уменьшение составляет 20-25%). Согласно исследованиям О. А. Дроздова, изменение ледовитости северных морей заметным образом сказывается на режиме осадков на территории СССР.

Естественно, что проводимые мелиоративные мероприятия скажутся более всего на термическом режиме нижних слоев атмосферы. К сожалению, в нашем распоряжении не было многоуровенной расчетной схемы, моделирующей формирование атмосферных процессов в масштабе полушария. Этот вопрос также нуждается в более аккуратной оценке.

СПИСОК ЛИТЕРАТУРЫ

- 1. «Правда», 2 июля 1971 г. Северные воды югу. Беседа с главным техническим руководителем комплекса проектов по переброске и распределению стока северных и сибирских рек. И. А. Герарди. 2. Атлас теплового баланса. Под ред. М. И. Будыко. М., Междуведомствен-
- ный геофизический комитет. 1963, с. 69.
- 3. Гандин Л. С., Ильин Б. М., Руховец Л. В. О влиянии изменений внешних параметров на термический режим атмосферы.— «Тр. ГГО», 1973, вып. 315, с. 21-38.
- 4. Адем Х. О физических основах численного прогноза среднемесячных и среднесуточных температур в системе тропосфера — океан — материк. — В кн.:
- Теория климата. Перев. с англ. Л., Гидрометеоиздат, 1967, с. 258—292. 5. Григорьева А. С. К вопросу о горизонтальном обмене в атмосфере.— «Тр. ГГО», 1958, вып. 84, с. 14—21.
- Дроздов О. А., Калинин Г. П., Львович М. И. Водообмен в приро-де. В сб.: Генеральные доклады IV Всесоюзного гидрологического съезда, Л., Гидрометеоиздат, 1973, с. 196—218.
 Справочник по климату СССР, ч. I, вып. 19, с. 74, Л., Гидрометеоиздат, 1966.

- 8. Винников К. Я. Альбедо системы Земля атмосфера и поле уходящей коротковолновой радиации.—«Тр. ГГО», 1965, вып. 170, с. 207—213.
- 9. Берлянд Т. Г. Распределение солнечной радиации на континентах. Л., Гидрометеоиздат, 1961, с. 226.
- 10. Дроздов О. А., Григорьева А. С. Влагооборот в атмосфере. Л., Гидрометеоиздат, 1963, с. 314. 11. Шикломанов И. А. К проблеме оценки влияния деятельности человекана
- ресурсы поверхностных вод.—«Метеорол. и гидрол.», 1973, № 10, с. 27—36.

Н. З. АРИЕЛЬ, Р. С. БОРТКОВСКИИ, А. С. ДУБОВ

ХАРАКТЕРИСТИКИ ТУРБУЛЕНТНОГО ОБМЕНА В ПРИВОДНОМ СЛОЕ ТРОПИЧЕСКОЙ ЗОНЫ АТЛАНТИКИ

По программе тропического эксперимента (ТРОПЭКС) летом 1972 г. проводились измерения характеристик приводного слоя в тропической зоне Атлантики. В задачу измерений, проводившихся на НИСП «Пассат», входило получение данных для расчета турбулентных потоков количества движения τ , тепла H, затрат тепла на испарение LE, а также для анализа особенностей временной структуры метеоэлементов и турбулентных потоков в приводном слое тропического района Атлантики.

Данные о временной структуре метеоэлементов и потоков тепла, влаги и количества движения в широком диапазоне частот представляют самостоятельный интерес — они необходимы для определения дискретности измерений и интервала осреднения при отдельном измерении, они могут быть использованы и при определении оптимального пространственного распределения сети судов.

На НИСП «Пассат», помимо основных стандартных гидрометеорологических измерений, выполнявшихся экспедиционным составом судна, проводились дополнительные измерения: скорости ветра на грот-мачте—анемометром М-92 и индукционным малоинерционным анемометром; температуры и влажности воздуха психрометром с электротермометрами сопротивления.

В настоящей статье анализируются результаты стандартных и специальных метеорологических измерений на НИСП «Пассат» и «Муссон» на двух полигонах: мезометеорологическом (ММП) с 13 до 21 VII и синоптическом (СП) с 13 до 19 VIII. Дискретность измерений, использованных при анализе, один час, период осреднения — 10 мин. Расчет потоков тепла *H*, затрат тепла на испарение *LE* и динамической скорости v_* производился по методике, изложенной в работе [1].

Оказалось, что во всех случаях суммарный поток (H+LE) направлен из океана в атмосферу, величина (H+0,07LE) соответствует условиям сверхадиабатической стратификации. Как следует из табл. 1, где приведены средние значения потоков H и LE за период измерения на полигоне, затраты тепла на испарение много больше турбулентного потока тепла. Для анализа условий стратификации были вычислены величины $\frac{z}{L_0}$ и $\frac{z}{L_*}$ по соответствующим формулам (см., например, [2]):

$$\frac{z}{L_0} = \frac{z \times gH}{v_*^3 T \rho c_p},\tag{1}$$

$$\frac{z}{L_*} = \frac{z}{L_0} \left(1 + \frac{m}{Bo} \right). \tag{2}$$

Здесь z — высота, L_0 — масштаб длины Монина — Обухова, \varkappa — постоянная Кармана, g — ускорение силы тяжести, H — турбулентный поток тепла, v_* — динамическая скорость, T — абсолютная температура воздуха, ρ — плотность воздуха, c_p — удельная теплоемкость, L_* — масштаб длины Монина — Обухова с учетом стратификации влажности, $m=0.61\frac{c_pT}{L}$, Во — отношение Боуэна.

				Габлица І
· · · ·	"Пасса	AT"	"Муссон	çă
	ммп	сп	ммп	сп
\overline{H} кал/(см $^2\cdot$ мин)	0,023	0,012	0,018	0,018
σ _Н кал/(см²∙мин)	0 ,01 9	0,007	0,019	0,006
\overline{LE} кал/(см ² ·мин)	0,129	0,158	0,118	0,230
σ _{<i>LE</i>} кал/(см²∙мин)	0,057	0,046	0,063	0,044
σ_{H}/\overline{H}	0,84	0,59	1,07	0,33
$\sigma_{LE} \overline{LE} $	0,44	0,29	0,53	0,19 ·

Рис. 1. Повторяемость z/L_0 и z/L_* . — мезометеорологический полигон, НИСП «Пассат»; б—синоптический полигон, НИСП «Пассат».

Рис. 2. Зависимость отношения Боуэна от разности температур вода — воздух и от температуры поверхности воды из работы [3].

1, 2— НИСП «Пассат», 3, 4— НИСП «Муссон»; 1, 3— мезометеорологический полигон, 2, 4— синоптический.

В анализируемых случаях z=10 м; для параметров принимались следующие значения: $\varkappa = 0,4, g=9,8$ м/с², T=300 К, $\rho \simeq 1,2 \times \times 10^{-3}$ г/см³, $c_p=0,24$ кал/(г град), m=0,075. На рис. 1 показано распределение повторяемости значений $\frac{z}{L_0}$ и $\frac{z}{L_*}$. Прежде всего, совершенно очевидно, что во время измерений на обоих полигонах стратификация была неустойчивой. На мезометеорологическом полигоне большая часть измерений происходила в условиях режима чистой конвекции, т.е. при $\frac{z}{L_*} \ll -0,07$. Отметим, что учет стратификации влажности приводит к заметному усилению гидростатической неустойчивости приводного слоя.

Среднее значение величины отношения Боуэна Во $=\frac{pc_p}{0,622L}\frac{\Delta\theta}{\Delta e}$ по анализируемым данным находится в пределах 0,08—0,18 ($\Delta\theta$ —разность температур, а Δe — разность влажностей на уровне 10 м и поверхности воды). Построенная по анализируемым данным зависимость величины отношения Во от разности температур вода воздух и от температуры поверхности воды (рис. 2) в основном хорошо согласуется с результатами работы [3], в которой при-

ведена номограмма для определения числа Во по $\Delta \theta$ и температуре воды θ_w . Следует, однако, отметить, что точки, соответствующие данным тропического эксперимента, расположены на кривой номограммы С. П. Малевского-Малевича, относящейся к более низкой температуре воды, чем наблюдавшаяся в действительности $(\theta_w = 27^\circ)$. Видимо, учет региональных особенностей зависимости $e(\theta_w)$ позволил бы уточнить определение Во на основе [3]. Тем не менее, номограмма из работы [13] позволяет при $\Delta \theta \approx 2^\circ$ оценивать величину Во с небольшой погрешностью, порядка 0,05 (в диапазоне 0,1 \leq Bo \leq 0,3). При меньших $\Delta \theta$ погрешность быстро уменьшается. Такая точность оценки числа Боуэна достаточна для уче-

Рис. 3. Спектр потоков тепла в кал/(см²·мин). 1- мезометеорологический полигон (шкала 1), 2- синоптический (шкала 2).

та стратификации влажности при расчете потоков в случаях отсутствия измерений влажности над океаном. Наличие зависимости Во ($\Delta\theta$, θ_w) можно объяснить, обратившись к данным табл. 1. Действительно, так как отношение Боуэна определяется отношением H и *LE*, а, как следует из табл. 1, изменчивость *LE* примерно в два раза меньше, чем изменчивость *H*, то вполне понятно наличие корреляционной связи Во ($\Delta\theta$, θ_w).

Для оценки изменчивости потоков в течение суток вычислялись средние величины \overline{H} и \overline{E} за каждые сутки и отношение H/\overline{H} и E/\overline{E} для основных 8 сроков наблюдения; эти отношения осреднялись по всем 8 или 11 суткам (длительность наблюдений на полигонах). Таким образом оценивалось среднее относительное отклонение по-

тока в данный срок. Оно оказалось заметным (30%) только для потока тепла и лишь на мезометеорологическом полигоне (НИСП «Пассат»), в остальных случаях отклонение не превышало 10— 15% средних суточных значений. На наличие суточного хода *H* на мезометеорологическом полигоне указывает также рост спектра́льной плотности на низкочастотном участке спектра потока тепла (рис. 3). Правда, недостаточная длина ряда не позволила провести расчет до периодов, больших 20 ч. В спектре турбулентного потока тепла, вычисленного по данным синоптического полигона

Τ	~	б	π	•		•	ົາ
1	a	υ	11	и	ц	۵	4

		σ <i>u</i>	/ū		αΔί	/ 40
Полигон	<i>и₁₀ м/с</i>	Северная Атлантика	Тропэкс	Δθ°	Северная Атлантика	Тропэкс
Синоптический	5,5	0,58	0,35	1,0	2,1	0,45
Мезометеорологиче- ский	5,1	0,59	0,45	1,7	1,35	0,57

(кривая 2 на рис. 3), суточной волны нет. Спектры v_* и LE не имеют четко выраженных максимумов в рассчитанном диапазоне частот.

Как показано в [4], в расчетах потоков по климатологическим данным необходим учет относительных дисперсий скорости ветра, разности температур и влажностей за рассматриваемые интервалы времени. Такие величины были получены по многолетним данным кораблей погоды в Атлантике и приведены в работе [4].

В табл. 2 сопоставляются значения σ_u/u и $\sigma_{\Delta\theta}/\overline{\Delta\theta}$ в зависимости от средней скорости ветра и среднего перепада температур, полученные по кораблям погоды в Северной Атлантике, с соответствующими величинами, рассчитанными по данным Тропического эксперимента. Очевидно, что изменчивость в тропической зоне существенно меньше, чем в Северной Атлантике (особенно — перепада температур). Хотя период осреднения при получении σ_u/u и $\sigma_{\Delta\theta}/\overline{\Delta\theta}$ по данным Тропического эксперимента меньше (около 10 дней), чем принятый в статье [4] (30 дней), вряд ли это может быть главной причиной полученного расхождения значений σ_u/u и $\sigma_{\Delta\theta}/\Delta\overline{\theta}$. По-видимому, зависимости $\sigma_u/u(u)$ и $\sigma_{\Delta\theta}/\overline{\Delta\theta}(\Delta\overline{\theta})$ не являются универсальными и различны для разных районов океана. Поэтому методика расчетов климатологических значений потоков должна уточняться с учетом этих зависимостей.

По измерениям пульсаций скорости ветра индукционным анемометром на высоте 26 м над морем были получены дисперсии, масштабы корреляции и спектры. Оказалось, что величина $\sigma u'/v_*$ менялась в пределах 2—3,5 при z/L_* от —0,15 до —0,6; отдельные значения $\sigma u'/v_*$ (преимущественно в ночные часы) достигали ~7.

Эти результаты согласуются с данными, приведенными, например, в работе [5]. Величина интегрального масштаба корреляции составляла по ночным данным несколько десятков метров, а днем — 100—200 м. Спектры, рассчитанные в диапазоне 60—10 с, подчиняются «закону 5/3».

Помимо турбулентного потока тепла и затрат тепла на испарение представляет интерес рассмотреть и другие компоненты тепло-

Рис. 4. Суточный ход компонент теплового баланса поверхности океана. 1 – поток тепла в глубь океана. 2 – радиационный баланс. 3 – турбулент-

1 — поток тепла в глубь океана, 2 — радиационный баланс, 3 — турбулентный поток тепла, 4 — затраты тепла на испарение.

вого баланса. С этой целью была использована информация о радиационном балансе поверхности океана R по данным корабельных наблюдений с помощью балансомеров в те же сроки, для которых были получены значения турбулентных потоков. С помощью уравнения теплового баланса

$$R = H + LE + B \tag{3}$$

был определен поток тепла в глубь океана *B*, как остаточный член соотношения (3). На рис. 4 приведен средний суточный ход всех компонент уравнения баланса (3). Как и следовало ожидать, в тропических широтах внутрисуточная изменчивость турбулентных потоков над океаном очень мала. Средние суточные значения радиационного баланса составляют 0,24, затраты тепла на испаре-

ние — 0.19, потока тепла в воду — 0.045 и турбулентного потока тепла — 0,015 (все величины даны в кал/(см² мин)).

Таким образом, если, как это видно из рис. 4, в околополуденные часы поток тепла в глубь океана составляет 76% от радиационного баланса, а затраты тепла на испарение — только 21 %, тодля средних суточных величин это соотношение меняется, а именно, затраты тепла на испарение составляют 79% от радиационного баланса, а поток тепла в воду — 15%.

Полученные величины потоков хорошо согласуются с данными: об их климатологических значениях в исследуемых районах океана [6].

Для суждения о пространственной изменчивости изучаемых потоков в тропической Атлантике необходимы дополнительные наблюдения в этом районе.

На основании проведенного анализа полученных измерений можно высказать следующие рекомендации для проведения будущих экспериментов в тропической зоне. Для получения детальной пространственной и временной структуры турбулентных потоков. необходимо:

а) увеличить продолжительность ежечасных измерений на полигоне до 25-30 суток,

б) интервал осреднения при отдельном измерении увеличить. до 15—20 мин, так как преобладают условия сильной неустойчивости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бортковский Р. С. Расчет турбулентных потоков тепла, влаги и количества движения над морем по данным судовых измерений.-«Метеорол. и гидрол.», 1971, № 3, с. 23, 94. 2. Зилитинкевич С. С. Динамика пограничного слоя атмосферы. Л., Гид-
- рометеоиздат, 1970. 291 с.
- 3. Малевский Малевич С. П. К определению величин отношения Боуэна. над океаном.—«Метеорол. и гидрол.», 1973, № 9, с. 72—73.
- 4. О расчете среднемесячных значений потоков тепла и влаги над океаном.— «Метеорол. и гидрол.», 1973, № 5, с. 3—11. Авт.: Н. З. Ариель, Р. С. Борт-ковский, Э. К. Бютнер, Н. В. Кучеров, Л. А. Строкина.
- Ковский, О. К. Бюласр, П. Б. Кучеров, Л. А. Срокина. ., Boundary-Layer Meteorology", 1971, v. 1, № 4, р. 438—457. 6. Атлас теплового баланса. Под ред. М. И. Будык о. М., Межведомственный геофизический комитет, 1963. 69 с.

Р. С. БОРТКОВСКИЙ

К УТОЧНЕНИЮ ОЦЕНОК ТЕПЛО- И ВЛАГООБМЕНА ОКЕАНА И АТМОСФЕРЫ ПРИ ШТОРМЕ

Предварительные оценки, приведенные в [1], показали, что брызги, заполняющие часть приводного слоя воздуха при шторме. «существенно усиливают испарение и теплоотдачу поверхности океана. Изменение теплосодержания капель, взлетающих за 1 с «с 1 см² поверхности воды, за время их полета сопоставлялось в [1] с суммой турбулентного теплообмена поверхности Н_т и затрат тепла на испарение $LE_{\rm T}$. Отношение $\frac{H_{\rm K} + LL_{\rm K}}{H_{\rm T} + LE_{\rm T}}$ $H_{\rm K} + \hat{L}E_{\rm K}$ где *H*_к и *LE*_к — потоки тепла, определяемые соответственно диффузионным теплообменом капель и затратами их тепла на испарение, рассматривалось в [1] как общая характеристика увеличения при шторме и теплообмена и испарения с морской поверхности за счет появления брызг. Иначе говоря, допускалось, что обычно принимаемое равенство коэффициентов теплообмена С. и испарения С. достаточно надежно подтвержденное для обычных, нештормовых условий [2, 3], сохраняет силу и при переносе тепла и пара брызгами. Полученные в [4] результаты подтвердили, что с достаточной для грубых оценок точностью можно принять

$$C_{\theta}(z) = \frac{H_{\mathrm{T}} + H_{\mathrm{K}}}{\rho_{a} c_{p} u_{z} (T_{w} - T_{z})} \simeq C_{E}(z) = \frac{E_{\mathrm{T}} + E_{\mathrm{K}}}{u_{z} (a_{w} - a_{z})}, \tag{1}$$

где u_z — скорость ветра, T_z и a_z — температура и абсолютная влажность воздуха на высоте z, T_w — температура поверхности воды, a_w — насыщающая влажность при этой температуре, ρ_a и c_p — плотность и удельная теплоемкость воздуха.

Однако более строгий анализ показывает, что равенство $C_{\theta} = C_E$ при шторме не выполняется. Полное изменение теплосодержания *n* капель за время полета, определяемое диффузионным теплообменом с воздухом, затратами тепла на испарение и радиационным теплообменом $R_{\rm K}$, представляет поток тепла, который должен быть включен в уравнение теплового баланса поверхности океана как особый член, неравный нулю только при шторме:

$$P_{\kappa} = H_{\kappa} + LE_{\kappa} + R_{\kappa}. \tag{2}$$

В уравнение водного баланса поверхности таким же образом должно быть включено испарение капель, которое естественно объ-

единить с турбулентным потоком пара — испарением поверхности, и выразить полное испарение E в виде, согласующемся с (1):

$$E = E_{\rm T} + E_{\rm K}.\tag{3}$$

Тогда затраты тепла на испарение следует записать в виде

$$LE = LE_{\rm T} + LE_{\rm K} \tag{4}$$

и, очевидно, выделить из полных теплопотерь капли затраты тепла на испарение; разность P_{κ} — $LE_{\kappa}=H_{\kappa}+R_{\kappa}$ удобно отнести к турбулентному теплообмену поверхности океана с атмосферой, рассматривая сумму

$$H = H_{\rm T} + H_{\rm K} + R_{\rm K} \tag{5}$$

как полный поток тепла в явном виде.

Выражения (3), (5) соответствуют определению коэффициентов C_{θ} и C_{E} в [1] (с уточнением, касающимся включения в поток тепла в явном виде радиационного баланса капель). Соотношения между C_{θ} и C_{E} при шторме могут быть изучены на основании анализа теплового баланса капли.

Уравнение баланса тепла для капли записывается в виде

$$-c_{w}m\frac{dT}{dt} = H_{i} + LE_{i} + R_{i}, \qquad (6)$$

где c_w — удельная теплоемкость воды; $m = \rho_w - \frac{4}{3}\pi r^3$ — масса капли радиусом r при плотности воды ρ_w ; T — температура капли; t — время.

Испарение E_i г/с и диффузионный теплообмен капли с потоком воздуха H_i кал/с описываются выражениями [5]:

$$E_i = -\frac{dm}{dt} = -4\pi r D(1,00 + 0.23\sqrt{\text{Re}})(a_s - a), \tag{7}$$

$$H_i = -4\pi r \,\chi(1,00 + 0.23\sqrt{\text{Re}})(T - T_a), \tag{8}$$

где D — коэффициент молекулярной диффузии водяного пара в воздух, χ — коэффициент молекулярной теплопроводности воздуха, T — температура капли, a_s — насыщающая влажность у поверхности капли при температуре T, T_a и a — температура и влажность воздуха.

Ветровой множитель 1,00 \pm 0,23 $\sqrt{\text{Re}}$ включает число Рейнольдса $\text{Re} = \frac{2rU}{v}$, где U — модуль скорости капли относительно возлуха, v — коэффициент молекулярной вязкости воздуха.

Помимо H_i и LE_i , уже рассматривавшихся при анализе баланса тепла капли в [1], в уравнение (6) включен радиационный баланс капли R_i , представляющий разность поглощаемой и излучаемой каплей радиации. Поглощенную каплей радиацию J_i можно [6] описать выражением

$$J_i = \pi r^2 \int_0^\infty (1 - e^{-2r \, \alpha'}) J_0(\lambda) d\lambda, \qquad (9)$$

где $J_0(\lambda)$ — поток приходящей радиации, λ —длина волны, $\alpha' = = \alpha'(\lambda)$ — коэффициент поглощения.

В [6] приведены значения J_i при $J_0(\lambda)$, соответствующей солнечной постоянной, т. е. при потоке радиации в атмосфере, близком к наибольшему возможному значению.

Результаты, приведенные в [6], позволяют оценить поглощение радиации каплями различных размеров.

Эффективное излучение сферической капли в пространство, при пренебрежении «серостью» воды, описывается известной формулой:

$$F_i = 4 \pi r^2 \sigma (T^4 - T_a^4), \tag{10}$$

где о — постоянная Стефана — Больцмана.

В рассматриваемом случае, когда капля находится вблизи поверхности воды, половина сферы излучает в направлении к воде и выражение (10) записывается в виде

$$F_{i} = 2\pi r^{2} \sigma [(T^{4} - T^{4}_{a}) + (T^{4}_{w} - T^{4})] = 2\pi r^{2} \sigma (T^{4}_{w} - T^{4}_{a}).$$
(11)

С учетом малости отношения $2 \frac{T_w - T_a}{T_w + T_a}$ в приводном слое формулу (11) можно записать в виде

$$F_i \approx 8 \pi r^2 \, \overline{T}^3 (T_w - T_a), \tag{12}$$

где \overline{T} — средняя абсолютная температура приводного слоя. Таким образом, согласно (12), эффективное излучение капли, находящейся вблизи поверхности воды, зависит почти исключительно от перепада температур «вода — воздух». Следовательно, радиационный баланс капли $R_i = F_i - J_i$ зависит только от ее размера и внешних параметров: $T_w - T_a$ и потока приходящей радиации $\int_{0}^{\infty} J_0(\lambda) d\lambda$.

Проанализируем уравнение (6) с целью его упрощения и нахождения решения в квадратурах. Помимо неизвестной переменной *T*, зависящими от времени являются, строго говоря, и параметры *m*, *cw*, *L*. С учетом изменения массы капли при испарении ($-m = m_0 + \int_0^t \frac{dm}{dt} dt$) уравнение (7) (после перехода от перепада влажности в (8) к перепаду температуры, о котором речь пойдет ниже) становится интегро-дифференциальным. Однако оценка порядка отношения $\left(\int_0^t \frac{dm}{dt} dt\right) / m_0$ показывает, что даже при завышающих оценку предположениях это отношение мало. Расчеты ве-

личины $\Delta m > \int_{0}^{t} \frac{dm}{dt} dt$ велись с использованием формулы (7), причем предполагалось, что перепад влажности между каплей и воздухом сохраняет свое начальное, наибольшее значение, равное разности влажности у поверхности воды $a_s(T_w)$ и влажности воздуха a; выбранное значение, t=1 с, несколько превышает реальное время полета капель. В табл. 1 приведены результаты таких расчетов для капель разных радиусов при характерном для приводного слоя над океаном значении $a_s(T_w) - a = 3,4 \cdot 10^{-6}$ г/см³.

m		~					
Т.	2	n	Π	u	TT	2	
	a	•	¥1		ш	а	

<i>г</i> ₀ см	1.			•'						5.10-3	10 - 2	5.10-?
$\frac{\Delta m}{m_0}$		•		•	•			•	•	0,15	0,05	0,005
$\frac{\Delta r}{r_0}$.					•	•	•			0,05	0,02	0,002

Очевидно, что при решении уравнения (6) можно считать массу и радиус капли постоянными для капель с начальным радиусом $r_0 \ge 5 \cdot 10^{-3}$ см.

Скрытая теплота испарения L и удельная теплоемкость воды c_w , входящие в (8), зависят от переменных температуры T и солености S капли; однако относительные изменения этих величин при возможных за время полета капли изменениях T и S не превышают соответственно 0,003 и 0,002, поэтому L и c_w можно считать постояннными.

										Таблица 2						
<i>z</i> см	•	•	•	•	•	•	•		10	15	20	25				
$\frac{T_z - T_w}{T_z - T_{rot}}$		•						•	1,06	1,09	1,13	1,15				

Поскольку вертикальная координата капли зависит от времени, а температура и влажность воздуха меняются с высотой, то оказываются зависящими от времени и температура и влажность воздуха, обтекающего каплю, входящие в (7), (8), а следовательно, и в (6), величины T_a , a. Однако измерения показывают, что вертикальные градиенты температуры и влажности воздуха над водой быстро убывают с высотой. Используя модель турбулентного теплообмена [2], можно рассчитать отношения перепада температуры между водой и воздухом на произвольной, но малой высоте, в области полета брызг, к перепаду, отнесенному к фиксированной высоте (5 см). Отношения перепадов влажности, в силу равенства коэффициентов турбулентной температуропроводности и диффузии, принятому в [2], равны отношениям перепадов температур,

-61

приведенным в табл. 2. Расчеты выполнялись в предположении о квазинейтральной стратификации плотности в приводном слое, что для нижней части этого слоя и при большой скорости ветра (25 м/с на уровне 10 м), к которой относятся данные табл. 2, вполне оправдано.

Данные табл. 2 свидетельствуют о малом относительном изменении разности между температурой поверхности воды и воздуха на разных высотах. Нетрудно показать, что в первом приближении можно считать температуру и влажность воздуха на пути полета капли постоянными.

Чтобы получить решение уравнения (6), необходимо перейти от входящей в (7) влажности на поверхности капли a_s к температуре T. Абсолютная влажность над плоской поверхностью пресной воды определяется температурой в соответствии с формулой Магнуса:

$$a_{S_0} = 4,56 \cdot 10^{-6} e^{\frac{17,6(T-273)}{T-31}}.$$
(13)

Отклонения влажности a_s у поверхности капли от a_{S_0} зависят от кривизны поверхности и солености воды. Однако увеличение насыщающей влажности за счет кривизны поверхности делается заметным только у очень маленьких капель, $r < 10^{-5}$ см, которые здесь не рассматриваются. Соленость S изменяется за время полста не очень малых капель ($r > 5 \cdot 10^{-3}$ см) незначительно — очевидно, что изменение солености пропорционально изменению массы капли: $\frac{\Delta S}{S_0} = -\frac{\Delta m}{m_0}$ (см. табл. 1). При обычной солености океанской воды, S = 35%, a_s понижается на 2% по сравнению с a_{S_0} [7]. Таким образом, с достаточной точностью можно считать, что абсолютная влажность воздуха у поверхности капли однозначно определяется температурой капли. Зависимость (13) можно аппроксимировать линейным выражением

$$a_s(T) \approx \alpha (T - T_a) + a_s(T_a), \tag{14}$$

 α — коэффициент, принимающий значения от 0,5·10⁻⁶ до 10^{-6} г/см³ · град при изменении температуры от 5 до 20°.

При небольших отклонениях температуры капли T от температуры воздуха T_a точность аппроксимации формулы Магнуса (13) линейной зависимостью достаточно высока.

Как показали расчеты динамики капель [1], изменения числа Рейнольдса капель за время полета не очень велики; поскольку в ветровой множитель входит $\sqrt{\text{Re}}$, то представляется возможным в (7), (8) заменить число Re его средним значением.

С учетом сделанных допущений уравнение (6) упрощается и после подстановки в него выражений (8), (9), (14) сводится к уравнению

$$-c_{\omega}m\frac{d\theta}{dt} = k\theta + Ll\alpha\theta + Ll\delta + F_i - J_i.$$
(15)

Здесь введены обозначения:

$$k = 4 \pi r \chi (1 + 0.23 \sqrt{\text{Re}}),$$

$$l = 4 \pi r D (1 + 0.23 \sqrt{\text{Re}}),$$

а перепад абсолютной влажности между каплей и воздухом на, основании (14) представлен в виде

$$a_s - a = a_s(T_a) - a + \alpha(T - T_a) = \delta + \alpha(T - T_a),$$

где о сефицит влажности в воздухе.

Решение уравнения (15) имеет вид

$$\theta = \left(\theta_0 + \frac{Ll\,\delta + F_i - J_i}{Ll\,\alpha + k}\right) e^{-\frac{Ll\,\alpha + k}{c_w m}t} - \frac{Ll\,\delta + F_i - J_i}{Ll\,\alpha + k}.$$
 (16)

Начальное значение определяется как $\theta_0 = T_w - T_a$. Из (16) следует, что $\lim_{t\to\infty} \theta = -\frac{Ll\delta + F_i - J_i}{Lla + k}$, т. е. температура капли стремится к постоянному значению, при котором диффузионный теплообмен, затраты тепла на испарение и радиационный приток тепла взаимно уравновешиваются. По смыслу это значение аналогично температуре смоченного термометра. Решение (16) показывает, что радиационный баланс может влиять на величину температуры равновесия, причем роль его определяется отношением $\frac{F_i - J_i}{Ll\delta}$.

Выразив дефицит влажности на основании (14) в форме

$$\delta = \theta_0 \left(\frac{\rho_a c_p}{L \text{ Bo}} - \alpha \right), \tag{17}$$

где Во = $\frac{\rho_a c_p T_w - T_a}{La_w - a}$ — отношение Боуэна, и воспользовавшись формулами (11), (12), (17), можно записать

$$\frac{F_i - J_i}{Ll \,\delta} = \frac{8 \,\pi \, r^2 \,\sigma \,\overline{T^3} \,\theta_0 - J_i(r)}{L4 \,\pi \,r D (1 + 0.23 \sqrt{\text{Re}}) \theta_0 \left(\frac{\rho_a c_o}{L \,\text{Bo}} - \alpha\right)} \,. \tag{18}$$

Вычисления по формуле (18) проводились для двух вариантов: 1) $\theta_0 = +1,0^{\circ}$ при Во=0,1 и 2) $\theta_0 = -1,0^{\circ}$ при Во=-0,5. Первый вариант соответствует характерным условиям приводного слоя над океаном в умеренных и низких широтах, второй — менее типичным условиям, которые, однако, наблюдаются летом над обширной зоной Атлантического океана — «ревущими» сороковыми широтами южного полушария. Рассчитанные значения $\left| \frac{F_i - J_i}{L l \delta} \right|$ приведены в табл. 3. Из таблицы видно, что для капель с $r \leq 0,05$ см влиянием радиационного притока тепла можно пренебречь. Для более крупных капель $(r > 5 \cdot 10^{-2} \text{ см})$ влияние радиационного притока может оказаться существенным при малых значениях дефицита влажности δ . Надо иметь в виду, что эти результаты получены при значении потока приходящей радиации, близком к максимально возможному, и что для широкого диапазона размеров капель поглощаемая радиация J_i , будучи на два порядка больше излучения капли F_i , почти полностью определяет радиационный баланс капли.

Т	а	б	л	и	я	а	3
	•••	~			н	•	

		го СМ						
	Во	5.10-3	10-2	5.10^{-2}				
$+1 \\ -1$	0,1 0,5	0,004 0,008	0,007 0,017	0,031 0,074				

Данные табл. З характеризуют роль поглощения радиации в формировании температуры равновесия, устанавливающейся, как это следует из (16), за время порядка времени релаксации $t_0 = \frac{c_w m}{Lla + k}$. Для капель разных размеров соотношения реального времени полета t_f и времени релаксации оказываются совершенно различными.

В табл. 4 приводятся некоторые данные об элементах полета капель. Эти данные получены в результате численного решения уравнений движения капель [1], реализованного на ЭВМ М-220

Таблица 4

<i>r</i> ₀ см	•	·	•				5.10-3	10-2	5.10-2
<i>t</i> ₀ c					•	•	0,019	0,062	0,868
t_f c				•			0,7	0,5	0,4
$t_f t_0$			•	•	•		37	8,1	0,46
₩ ₀ см/с							450	300	150
W_f см/с		•					—14	34	_120

с учетом логарифмического профиля скорости ветра. При задании начальных условий использовалась стохастическая зависимость, связывающая вертикальную скорость капли в момент отрыва от поверхности воды W_0 с ее радиусом r; такая зависимость следует из данных лабораторных измерений [8]. В последней строке табл. 4 помещена вертикальная составляющая скорости капли в момент ее надения в воду W_f . Очевидно, что большие капли $(r \ge 5 \cdot 10^{-2} \text{ см})$ состояния равновесия не достигают, время релаксации для них больше, чем время полета. Роль радиационного обмена в балансе тепла таких капель выявляется не из оценок решения (16) при $t \to \infty$, а из сопоставления членов уравнения (7) при $0 \le t \le t_f$. В табл. 5 приведены значения отношения радиационного притока к затратам тепла капли на испарение $\left|\frac{F_i - I_i}{L E_i}\right|$ при $t = t_f$ и $t = \theta$ для рассматриваемых вариантов условий в приводном слое эти два члена уравнения (7) сохраняют свои знаки в течение всего времени полета капли, причем действие их противоположно. Для общности в таблицу включены и данные для меньших капель.

θ°	· .	<i>г</i> ₀ См						
	t	5.10-3	10-2	5.10-2				
+1	0	0,002	0,005	0,022				
	t_{f}	0,012	0,039	0,044				
-1	0	0,016	0,034	0,150				
	t_{f}	0,018	0,039	0,160				

Таблица 5

Очевидно, что и при $\tilde{t}_f = t_f/t_0 \ll 1$ роль радиационного теплообмена при типичной стратификации приводного слоя ($\theta_0 > 0$) оказывается пренебрежимо малой; несколько больше она при инверсии ($\theta_0 < 0$).

Рис. 1. Зависимость потерь удельного теплосодержания капли от безразмерного времени.

Если пренебречь в решении (16) ролью радиационного баланса, которая большей частью оказывается малой (см. табл. 3), то можно построить зависимость затрат тепла от безразмерного времени $\tilde{t}=t/t_0$, универсальную для капель разных размеров. На рис. 1 приведена зависимость $\overline{P}(\tilde{t})/r^3$. где

$$\overline{P}\left(\widetilde{t}\right) = \int_{0}^{\widetilde{t}} (H_i + LE_i) d\widetilde{t}$$
(19)

для тех же, что и выше, двух случаев стратификации приводного слоя.

Зависимости
$$\overline{H}(\tilde{t}) = \int_{0}^{\tilde{t}} H_{i}d\tilde{t}$$
 и $\overline{E}(\tilde{t}) = \int_{0}^{\tilde{t}} E_{i}d\tilde{t}$, полученные на

основе решения (16), позволяют оценить соотношения коэффициентов теплообмена и испарения при шторме, определяемых выражениями (1), (3), (5). Пусть реальное облако брызг с характерным спектром капель по размерам представлено каплями среднего эффективного размера r. Тогда потоки пара и тепла, переносимых брызгами, можно записать в форме:

$$E_{\rm r} = \overline{E(r)}, \ t_f n(U), \tag{20}$$

$$H_{\kappa} = \overline{H}(\overline{r}, t_f)n(U), \qquad (21)$$

а соответствующие добавки к коэффициентам $C_{E_{\mathbf{T}}}, C_{\theta_{\mathbf{T}}}$ испарения и теплообмена определить как

$$C_{E_{\kappa}} = \frac{\overline{E}(\overline{r}, t_f)n(U)}{U(a_w - a)},$$
(22)

$$C_{\theta_{\kappa}} = \frac{H(\overline{r}, t_f)n(U)}{\rho_a c_p U(T_w - T_a)}.$$
(23)

Здесь n(U) — вертикальный поток капель на поверхности воды (капель/см² с). Отношение полных коэффициентов при шторме записывается в виде

$$\frac{C_{\theta}}{C_E} = \frac{C_{\theta_{\mathrm{T}}} + C_{\theta_{\mathrm{K}}}}{C_{E_{\mathrm{T}}} + C_{E_{\mathrm{K}}}} = \frac{1 + \frac{C_{E_{\mathrm{K}}}}{C_{E_{\mathrm{T}}}} \frac{C_{\theta_{\mathrm{K}}}}{C_{E_{\mathrm{K}}}}}{1 + \frac{C_{E_{\mathrm{K}}}}{C_{\theta_{\mathrm{T}}}}}.$$
(24)

Принимая, как и выше, что при чисто турбулентном механизме переноса $C_{\theta_{\rm T}} = C_{E_{\rm T}} = C_{\theta, E}$ и, учитывая, что, согласно (22), (23), $\frac{C_{\theta_{\rm K}}}{C_{E_{\rm K}}} = \frac{\overline{H}(a_w - a)}{\overline{E}_{\rho_a}c_p(T_w - T_a)}$, можно найти C_{θ}/C_E в зависимости от скорости ветра. Необходимые для расчета значения $C_{E_{\rm K}}/C_{E_{\rm T}}$ были оце-

нены в [1]; отношения \bar{H}/\bar{E} определены после подстановки решения (16) в формулы (7), (8) и интегрирования по времени от 0 до $t = t_{f}$. Полученные зависимости приведены на рис. 2 для $\bar{r} = 0.05$ см и соответствующего времени полета капли tf=0,4 с (см. табл. 4).

Влияние выбора средэффективного разнего мера r капель на перенос ими тепла и пара можно оценить следующим образом. Если известна водность, т. е. масса капель, в единице находящихся объема воздуха *М* г/см³, то с выбранным средним радиусом капель r и концентрацией N капель/см³, она связана очевидным соотношением

$$N(\overline{r}) = \frac{M}{\frac{4}{3}\pi \rho_{\overline{w}} \overline{r}^3}$$
(25)

Рис. 2. Отношение коэффициента теплообмена поверхности к коэффициенту испарения в зависимости от скорости ветра (при $\bar{r}=0.05$ cm, $t_f=0.4$ c).

1 – при $T_w - T_a = 1,0^\circ$; $a_w - a = 3,4 \cdot 10^{-6}$ г/см³; 2 – при $T_w - T_a = -1,0^\circ$; $a_w - a = 0,5 \cdot 10^{-6}$ г/см³.

Концентрация в свою очередь связана с потоком капель, проходящих через любую плоскость $n(\overline{r})$ и с составляющей их скорости, нормальной к этой плоскости, У следующим образом:

$$n = NV. \tag{26}$$

Выражение (26) легко обобщается на рассматриваемый здесь случай, когда через сечение горизонтальной плоскости проходят два равных по величине и противоположно направленных потока капель, все взлетающие с поверхности воды капли затем падают обратно¹:

> $n = N \frac{|W_{+}| \cdot |W_{-}|}{|W_{+}| + |W_{-}|},$ (27)

где |W₊| и |W₋| — модули значений вертикальной [составляющей скорости капель при пересечении плоскости вверх и вниз соответственно; в общем случае $|W_+| \neq |W_-|$. При данной водности M из (25), (27) можно найти отношение

¹ Взвешивание в воздухе очень мелких капель здесь не учитывается.

вертикальных потоков брызг, которые будут определены выбором различных значений эффективного радиуса $\overline{r_1}, \overline{r_2}$:

$$\frac{n_1}{n_2} = \frac{\overline{r_2}^3}{\overline{r_1}^3} \frac{V_1}{V_2},\tag{28}$$

где $V_i = \frac{|W_{+i}| \cdot |W_{-i}|}{|W_{+i}| + |W_{-i}|}$. Из (20), (21), (28) получается выражение для отношения потоков тепла (и аналогичное для пара), переносимых брызгами:

$$\frac{H_{\kappa}/\vec{r}_{1}}{H_{\kappa}/\vec{r}_{2}} = \frac{\overline{H}(r_{1})}{\overline{H}(r_{2})} \frac{r_{2}^{3}}{r_{1}^{3}} \frac{V_{1}}{V_{2}}.$$
(29)

На основании результатов натурных измерений и косвенных данных в [1] было принято $\overline{r} = 0.05$ см. При измерениях в аэрогидродинамической трубе [9] было найдено существенно меньшее модальное значение распределения капель по размерам — $r \approx$ \approx 0,01 см. Подстановка в (29) $\overline{r_1}$ =0,01 см, $\overline{r_2}$ =0,05 см величин $(\overline{H}+L\overline{E})|_{\overline{r}=0,01}$ и $(\overline{H}+L\overline{E})|_{\overline{r}=0,05}$, определенных по кривым рис. 1 при \tilde{t}_f , взятом из табл. 4, и величин $V_i = \frac{W_{0_i} \cdot |W_{f_i}|}{W_{0_i} + |W_{f_i}|}$, также вычисленных по данным табл. 4, дает следующие результаты:

$$\frac{(\Pi_{\kappa} + LE_{\kappa})|_{\vec{r}=0,01}}{(H_{\kappa} + LE_{\kappa})|_{\vec{r}=0,05}} = 1,10 \text{ при } \theta_{0} = +1,0^{\circ}, \text{ Bo} = 0,1;$$

$$\frac{(H_{\kappa} + LE_{\kappa})|_{\vec{r}=0,01}}{(H_{\kappa} + LE_{\kappa})|_{\vec{r}=0,05}} = 1,80 \text{ при } \theta_{0} = -1,0^{\circ}, \text{ Bo} = -0,5.$$

Таким образом, оказывается, что при замене капель с реальным спектром монодисперсным их множеством выбор среднего радиуса r не очень сильно влияет на результаты расчета переноса тепла и пара брызгами даже при вариации r в довольно широких пределах. Это объясняется тем, что при уменьшении r уменьшается, и довольно быстро, функция V, а также перенос тепла отдельной каплей $\overline{H}(\overline{r})$; следовательно, когда, при изменении \overline{r} , в (29) отношение $\frac{\overline{r_2^3}}{\overline{r_1^3}}$ растет, отношение $\frac{\overline{H}(\overline{r_1}) V_1}{\overline{H}(\overline{r_2}) V_2}$ уменьшается и наоборот; оба эффекта частично компенсируют друг друга.

Это обстоятельство, видимо, и объясняет удовлетворительное согласие оценок коэффициентов испарения и теплообмена при шторме, полученных с учетом переноса каплями радиусом $\bar{r} =$ =0,05 см [1, 4], с результатами натурных и лабораторных измерений. Ввиду противоречивости и недостаточности данных о распределении по размерам брызг над морем этот вывод представляется особенно интересным.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бортковский Р. С. О механизме взаимодействия океана и атмосферы при шторме.—«Тр. ГГО», 1972, вып. 282, с. 187—193.
- 2. Бортковский Р. С., Бютнер Э. К. Проверка модели турбулентного теплообмена нал морем по экспериментальным данным.-...«Изв АН СССР», сер.
- физ. атм. и океана, 1970, т. 6, № 1, с. 37—44.
 3. D y er A. J. The turbulent transport of heat and water vapor in unstable atmosphere.— "Quart. Journ. Roy. Met. Soc.", 1967, v. 93, No. 398, p. 537—540.
- 4. Бортковский Р. С. О влиянии ураганов на макромасштабное взаимодей-ствие океана и атмосферы.—«Тр. ГГО», 1973, вып. 297, с. 78—82.
- 5. Мейсон Б. Дж. Физика облаков. Л., Гидрометеоиздат, 1961, с. 294. 6. Шифрин К. С., Золотова Ж. К. Кинетика испарения капли в радиационном поле.—«Изв. АН СССР, сер. физ. атм. и океана», 1966, т. 2, № 12, c. 1311-1315.
- 7. Хргиан А. Х. Физика атмосферы. М., Физматгиз, 1958. с. 476.
- 8. To b a Y. Sea-salt particles: a factor in the air-sea interactions. -... Umi to Sora". 1966, v. 41, No. 3-4.
- 9. Wu J. Spray in the atmospheric surface layer: laboratory study.— ,,Journ. Geo-phys. Res.," 1973, v. 78, No. 3, p. 511—519.

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИЗЕМНОГО СЛОЯ ВОЗДУХА ПРИ НАЛИЧИИ ПЕРЕНОСА ПЕСКА У ПОВЕРХНОСТИ

1. Введение

Ветер, дующий над естественной песчаной поверхностью, например в пустыне или в прибрежной зоне, при достижении достаточно большой скорости вызывает отрыв частиц песка от поверхности и переносит их по направлению воздушного потока. При этом примыкающий к поверхности тонкий слой воздуха заполнен сальтирующими частицами песка, которые оказывают добавочное сопротивление воздушному потоку и изменяют характеристики ветрового поля в приземном слое воздуха. Эту задачу — о расчете характеристик ветра в приземном слое при наличии переноса песка можно решить, используя систему уравнений движения и баланса турбулентной энергии, аналогичную той, которая была предложена в свое время в работах [1, 2] и применялась для расчета свойств пограничного слоя над лесом [3] и над поверхностью океана, покрытой бегущими волнами [4].

В применении к воздушному потоку над поверхностью песка уравнение для изменения величины напряжения Рейнольдса $\tau = \rho v_*^2$ в слое $z \leq h_{\pi}$, где h_{π} — высота подъема песчинок при их движении в воздухе, должно иметь следующий вид:

$$\frac{d\,\tau}{dz} = \rho_a C_3 n d^2 (u - u_s)^2. \tag{1.1}$$

Выражение (1.1) означает, что в слое, заполненном песчинками концентрации n(z), действует объемная сила сопротивления песчинок воздушному потоку, пропорциональная квадрату скорости песчинок относительно воздуха $(u-u_s)^2$ и суммарной площади песчинок, нормальной к вектору относительной скорости в единице объема nd^2 . Коэффициент аэродинамического сопротивления отдельной песчинки C_3 по экспериментальным оценкам [5] равен примерно 0,6. Использование в (1.1) квадратичного закона сопротивления песчинки в воздушном потоке основано на том, что мы будем рассматривать задачу только о ветропесчаном потоке, заполненном сальтирующими песчинками, т. е. частицами достаточно больших размеров $(d>10^{-2} \text{ см})$.

При таких размерах частиц и при скоростях ветра, вызывающих перенос, число Рейнольдса Re_s для песчинок достигает 10², а при таких значениях Re_s с учетом плохообтекаемой формы частиц закон сопротивления должен быть близок к квадратичному. Разумеется, при малых значениях относительной скорости $u-u_s$ возможен переход к линейному закону сопротивления, и на какихто очень небольших участках траектории частиц имеет место линейный закон, но вклад этих участков в полное сопротивление, вероятно, невелик, и в среднем при $z \leq h_{\pi}$ изменение напряжения Рейнольдса происходит по закону (1.1).

Процессы, происходящие у самой поверхности, в результате которых энергия горизонтального движения воздуха переходит в кинетическую энергию $\frac{m_s w_0^2}{2}$ песчинок, направленную вертикально вверх, и возникает отрыв частиц от поверхности, очень сложны по своей физической природе, и мы их детально рассматривать не будем. Поэтому в качестве нижней границы слоя, где $z \leq h_{\pi}$, мы выберем уровень z=d (d — диаметр песчинок) и зададим на нем значение скорости: $u|_{z=d} = 8,5 v_s^s$. Величина v_s^s есть динамическая скорость, соответствующая напряжению Рейнольдса у верхушек песчинок, составляющих поверхность. Она определяется из соотношения

$$\rho_a v_*^2 = \rho_a v_*^{s^2} + \rho_a C_3 d^2 \int_a^{h_{\rm m}} u (u - u_s)^2 dz.$$
 (1.2)

Множитель 8,5 выбран, исходя из предположения о том, что свойства естественной неподвижной песчаной поверхности, в частности гидродинамический параметр шероховатости z_0 , близки к свойствам поверхности, обклеенной плотно упакованными песчинками, исследованной в свое время Никурадзе. Эксперименты [6] показали, что при размере упакованных песчинок, равном среднему диаметру естественного песка, величина z_0 естественного песка близка к d/30, несмотря на наличие небольших естественных неровностей на поверхности. Это означает, что при значениях z, близких к d, величина средней скорости ветра u(z) должна быть близка к $8,5 v_*$, а при наличии слоя ветропесчаного потока динамическая скорость у поверхности есть v_*^s , определяемая из (1.2). Вторым граничным условием для (1.1) является равенство

$$K \frac{du}{dz}\Big|_{z=h_{\mathrm{fl}}} = v_*^2. \tag{1.3}$$

Величина v_* определится по заданному значению скорости на фиксированной высоте $z \gg h_{\pi}$ в приземном слое и по характеристикам ветропесчаного потока в слое $[d, h_{\pi}]$.

Однако, для того чтобы решить задачу о динамике приземного слоя при наличии ветропесчаного потока, нужно прежде всего составить и решить уравнения движения отдельной песчинки во внешнем потоке, а затем в уравнения для переноса количества

движения (1.1) и баланса турбулентной энергии воздуха вводить осредненные по траектории характеристики движения песчинок.

2. Расчет траектории сальтирующих частиц

Уравнение движения для тяжелой песчинки, сальтирующей в воздушном потоке, можно написать, исходя из следующей упрощенной картины ее перемещений.

Причиной отрыва находящихся на поверхности песчинок является либо напряжение Рейнольдса воздушного потока, либо сталкивающиеся с поверхностью ускоренные ветром песчинки. И в том и в другом случае вертикальная скорость отрыва должна быть пропорциональна величине динамической скорости v_* . Считается, что отрыв происходит в вертикальном направлении. После отрыва песчинка разгоняется под действием ветра в горизонтальном направлении до тех пор, пока не упадет на поверхность. После получения на поверхности вертикального импульса $m_s w_0$ при всем дальнейшем движении по траектории на песчинку в вертикальном направлении действуют только сила тяжести и сила трения, пропорциональная квадрату модуля средней относительной скорости.

Флуктуации скорости воздушного потока при расчете траектории песчинки во внимание не принимаются. В этом и заключается смысл понятия «сальтирующая песчинка». При сальтации изменения кинетической энергии вертикального движения песчинки $\frac{m_s}{2} \frac{w_s^2}{2}$ под воздействием турбулентных флуктуаций должны быть малы по сравнению с изменениями $\frac{m_s}{2} \frac{w_s^2}{2}$ под воздействием силы тяжести и средней силы трения. Эксперимент [6] показывает, что сальтация наблюдается для частиц песка диаметром *d*, превышающим 10^{-2} см. Для частиц такого диаметра при скоростях ветра, вызывающих сальтацию, закон сопротивления, как уже упоминалось во введении, можно считать квадратичным, поэтому уравнения движения песчинки аналогичны уравнениям движения водяных капель над поверхностью океана [7] и имеют следующий вид:

$$m_s \frac{du_s}{dt} = \rho_a \, d^2 C_3 \, \sqrt{w_s^2 + (u - u_s)^2} \, (u - u_s), \tag{2.1}$$

$$m_s \frac{dw_s}{dt} = -\rho_a d^2 C_3 \sqrt{w_s^2 + (u - u_s)^2} w_s - m_s g. \qquad (2.2)$$

Граничные условия:

при
$$t = 0$$
 $w_s = w_0$ $u_s = 0.$ (2.3)

Здесь m_s — масса песчинки, равная $C_1 \rho_s d^3$, где константа C_1 по
экспериментальным данным равна 0,8; u_s и w_s — компоненты скорости песчинки; u — скорость воздуха; $C_3 = 0,6$ — коэффициент аэродинамического сопротивления песчинки. Величина скорости воздушного потока в слое $[d, h_{\pi}]$ зависит от количества переносимых частиц. При расчетах траектории отдельной песчинки мы будем считать ее постоянной, равной величине средней скорости воздуха в слое $[d, h_{\pi}]$. Сама величина \bar{u} определится затем в результате решения (1.1).

После нормировки скорости на начальную скорость отрыва и времени — на $\frac{w_0}{g}$ уравнения движения песчинки примут вид:

$$\frac{d\widetilde{u_s}}{d\widetilde{t}} = \Gamma \sqrt{\widetilde{w}_s^2 + (\widetilde{u} - \widetilde{u}_s)^2} (\widetilde{u} - \widetilde{u}_s); \qquad (2.4)$$

$$\frac{d\widetilde{w}_s}{d\widetilde{t}} = -\Gamma \sqrt{\widetilde{w}_s^2 + (\widetilde{u} - \widetilde{u_s})^2} \widetilde{w}_s - 1; \qquad (2.5)$$

$$\widetilde{u}_{s}\Big|_{t=0} = 0; \quad \widetilde{w}_{s}\Big|_{t=0} = 1; \quad (2.6)$$

$$\Gamma = \frac{C_3}{C_1} \frac{\rho_a}{\rho_s} \frac{w_0^2}{gd}; \qquad \widetilde{u} = \frac{\overline{u}}{w_0}.$$
(2.7)

В безразмерной форме все элементы траектории песчинки оказались функцией двух параметров Γ и \overline{u}/w_0 .

Величина w_0 порядка v_* , поэтому слагаемым w_s^2 в выражении для модуля скорости песчинки можно пренебречь на всем протяжении траектории. Тогда система уравнений для нахождения траектории песчинки интегрируется аналитически:

$$\widetilde{\widetilde{u}}_{s}(\widetilde{t}) = \frac{\Gamma \widetilde{t} \widetilde{u^{2}}}{1 + \Gamma \widetilde{u} \widetilde{t}};$$
(2.8)

$$\widetilde{w}_{s}(\widetilde{t}) = \frac{1 - \widetilde{t} - \Gamma \widetilde{u} \frac{t^{2}}{2}}{1 + \Gamma \widetilde{u} \widetilde{t}}; \qquad (2.9)$$

$$\widetilde{x}_{s}(\widetilde{t}) = \widetilde{u}\widetilde{t}\left[1 - \frac{1}{\Gamma\widetilde{u}\widetilde{t}}\ln\left(1 + \Gamma\widetilde{\widetilde{u}\widetilde{t}}\right)\right]; \qquad (2.10)$$

$$\widetilde{z}_{s}(\widetilde{t}) = \left(1 + \frac{1}{2\,\Gamma\,\widetilde{u}}\right) \frac{1}{\Gamma\,\widetilde{u}} \ln\left(1 + \Gamma\,\widetilde{\widetilde{u}\,\widetilde{t}}\right) - \frac{\widetilde{t}}{2\,\Gamma\,\widetilde{u}} - \frac{\widetilde{t}^{2}}{4}.$$
(2.11)

Из условия z_s=0 вычисляется полное время полета, а из

 $\frac{dz_s}{d\tilde{t}}$ — высота подъема песчинки. u — средняя по траектории скорость воздушного потока, которая при вычислении функций (2.5— 2.8) считалась постоянной. Значения времени полета \tilde{t}_{n} , высоты

Рис. 1. Элементы траектории песчинок. *I*— время полета, нормированное на w_0/g ; 2— высота подъема, нормированная на w_0^2/g ; 3— отношение длины прыжка к величине $\tilde{u} = \frac{\tilde{u}}{w_0}$, нормированное на w_0^2/g ; 4— функция $\frac{1}{1+\Gamma \tilde{u} \tilde{t}_{\Pi}}$.

подъема h_{π} и величины скачка по горизонтали x_{π} для широкого диапазона значений параметра Γu приведены на рис. 1.

Судя по экспериментальным оценкам [6], значения Г в естественных условиях для частиц песка размером $d=2,5\cdot10^{-2}$ см лежат в пределах от $3\cdot10^{-3}$ до 10^{-1} . Значения произведения $\Gamma \tilde{u}$ в среднем на порядок больше, т. е. $0,03 \leqslant \Gamma \tilde{u} \leqslant 1,0$. При изменении

аргумента Γu в этих пределах безразмерное время полета t_{π} уменьшается по сравнению со значением \tilde{t}_{π} , которое имеет место при отсутствии трения, но не намного. Максимальная высота подъема \tilde{h}_{π} убывает с ростом Γu несколько быстрее, чем \tilde{t}_{π} . Величина скачка частицы по горизонтали \tilde{x}_{π} сначала возрастает с ростом параметра Γ (при фиксированном \tilde{u}), так как рост силы трения вызывает увеличение \tilde{u}_s частицы, а затем \tilde{x}_{π} падает из-за того, что трение одновременно уменьшает время полета \tilde{t}_{π} . Оптимальное значение \tilde{x}_{π} соответствует величине $\Gamma \tilde{u}$, равной примерно 5.

Нетрудно также вычислить среднее по траектории песчинки значение квадрата относительной скорости песчинки и воздуха $(\tilde{u}-\tilde{u}_s)^2$:

$$\overline{(\widetilde{u}-\widetilde{u}_s)^2} = \frac{1}{\widetilde{t_n}} \int_0^{\widetilde{t_n}} \frac{\widetilde{u^2}d\widetilde{t}}{(1+\widetilde{\Gamma u}\widetilde{t})^2} = \widetilde{u^2} \frac{1}{1+\widetilde{\Gamma u}\widetilde{t_n}}.$$
 (2.12)

Средняя величина куба относительной скорости, которая также понадобится в дальнейшем, равна

$$\overline{(\widetilde{u}-\widetilde{u}_s)^3} = \widetilde{u}^3 \frac{1}{\widetilde{t}_n} \int_{0}^{t_n} \frac{d\widetilde{t}}{(1+\widetilde{u}\widetilde{t})^3} = \widetilde{u}^3 \frac{\widetilde{\Gamma}\widetilde{u}\widetilde{t}_n+2}{2(1+\widetilde{\Gamma}\widetilde{u}\widetilde{t}_n)_2}.$$
 (2.13)

Так как в следующих разделах при решении уравнений движения воздушного потока удобнее вводить другую нормировку скорости — на v_* а ординаты z — на h_{π} , мы приведем здесь основные элементы траектории в размерном виде:

длина скачка

$$x_{n} = \frac{w_{0}^{2}}{g} \widetilde{u}\widetilde{t}_{n} \left[1 - \frac{1}{\Gamma \widetilde{u}\widetilde{t}_{n}} \ln\left(1 + \Gamma \widetilde{u}\widetilde{t}_{n}\right) \right], \qquad (2.14)$$

высота подъема

$$h_{\pi} = \frac{w_0^2}{g} \frac{1}{2 \,\Gamma \,\widetilde{u}} \left\{ \left(1 + \frac{1}{2 \,\Gamma \,\widetilde{u}} \right) \ln(1 + \Gamma \,\widetilde{u} \,\widetilde{t}_{\pi}) \right\}, \tag{2.15}$$

среднее по траектории значение относительной скорости

$$\overline{(u-u_s)^2} = \overline{u^2} \frac{1}{1+\widetilde{ru} t_{\pi}}, \qquad (2.16)$$

скорость, приобретаемая песчинкой к моменту падения,

$$u_{sk} = \overline{u} \frac{\Gamma u t_{\pi}}{1 + \Gamma \widetilde{u} t_{\pi}}, \qquad (2.17)$$

средняя по траектории скорость горизонтального перемещения

$$\overline{u}_{s} = \overline{u} \left\{ 1 - \frac{1}{\Gamma \widetilde{u} \widetilde{t}_{n}} \ln \left(1 + \Gamma \widetilde{u} \widetilde{t}_{n} \right) \right\}.$$
(2.18)

3. Закон сохранения энергии в ветропесчаном потоке

Механизм процесса отрыва песчинок от поверхности и приобретения в момент отрыва начального импульса $m_s w_0$ очень сложен, поэтому мы рассмотрим баланс энергии среднего движения песчинок и окружающей их сплошной среды — воздуха, связанный только с горизонтальными компонентами скоростей как песчинок, так и воздуха. Это можно сделать, так как вертикальные компоненты скоростей в слое, где имеет место перенос песка, малы по сравнению с горизонтальными.

Умножим обе части уравнения (2.1) на u_s и проинтегрируем по времени полета, отбросив малый член w_s^2 по сравнению с $(u-u_s)^2$ в выражении для внешней силы, действующей со стороны воздущного потока. В результате получим

$$\frac{m_s u_{sk}^2}{2} = \rho_a \, d^2 C_3 \int_d^{h_{\rm ff}} (u - u_s)^2 u_s dt. \tag{3.1}$$

Выражение слева — кинетическая энергия, приобретенная частицей к моменту столкновения с поверхностью, справа — работа внешней силы вдоль всей траектории. Окружающая среда — воздух здесь фигурирует лишь как источник внешней силы. Если теперь умножить обе части (1.1) на u(z) и проинтегрировать по слою $[d, h_{\pi}]$, то мы получим энергетическое соотношение для системы внешней среды и частиц

$$\int_{a}^{h_{\rm II}} \frac{d\,\tau}{dz}\,u(z)dz = C_{3}\rho_{a}\,d^{2}\int_{a}^{h_{\rm II}}n(u-u_{s})^{2}u(z)dz.$$
(3.2)

Левая часть этого равенства после интегрирования сводится к разности энергий среднего движения, поступающей сверху через уровень z = h и уходящей вниз через уровень z = d, минус генерация турбулентной энергии в слое $[d, h_{\pi}]$:

$$\int_{d}^{h_{\Pi}} \frac{d\,\tau}{dz}\,u(z)dz = \tau\,u|_{z=h_{\Pi}} - \tau\,u|_{z=d} - \int_{d}^{h_{\Pi}} \tau\,\frac{du}{dz}\,dz;$$
(3.3)

правая часть может быть представлена в виде суммы двух членов

$$\rho_a C_3 d^2 \int_{d}^{h_{\pi}} n(u-u_s)^2 (u \pm u_s) dz = \rho_a C_3 d^2 \int_{d}^{h_{\pi}} n(u-u_s)^3 dz + \rho_a C_3 d^2 \int_{d}^{h_{\pi}} n(u-u_s)^2 u_s dz.$$
(3.4)

Первый интеграл представляет собой величину диссипации энертии среднего движения в тепло при обтекании песчинок воздушным потоком. Аналогичный ему член в уравнениях для обтекания неподвижных [3] и движущихся [4] препятствий дает добавочную генерацию энергии турбулентности.

Однако размеры сальтирующих песчинок лежат в пределах d < 1 мм, т. е. они меньше величины вязкого микромасштаба турбулентных флуктуаций η , равной (ν^3/ϵ)^{1/4}, где ν — молекулярный коэффициент вязкости, ϵ — средняя величина диссипации турбулентной энергии в тепло.

Флуктуации масштаба, меньшего, чем η, в среде практически не возбуждаются, так как сразу же диссипируют в тепло из-за сильного влияния вязкости.

Второй член правой части (3.4) есть величина энергии среднего движения воздуха над каждым квадратным сантиметром подстилающей поверхности, затраченная на разгон песчинок. Здесь — это среднее по высоте h_{π} над фиксированной точкой поверхности в отличие от (3.1), где интеграл от работы внешних сил берется вдоль траектории песчинки. Однако в стационарном состоянии, когда на единицу поверхности в единицу времени падает N частиц, приоб-

ретших к моменту столкновения кинетическую энергию $\frac{m_s u_{sk}^2}{2}$,

последний член в (3.4) должен быть равен $\frac{m_s u_{sk}^2}{2} N$.

С учетом всего вышесказанного закон сохранения энергии среднего движения в слое $[d, h_{\pi}]$ можно записать в форме

$$\tau \, u|_{z=h_{\Pi}} - \tau \, u|_{z=d} - \int_{d}^{h_{\Pi}} \tau \, \frac{du}{dz} \, dz =$$

$$= \rho_a \, C_3 \, d^2 \int_{d}^{h_{\Pi}} n (u - u_s)^3 dz + \frac{m_s N}{2} \, n_{sk}^2. \tag{3.5}$$

Величину концентрации песчинок в единице объема n можно выразить через N и через элементы траектории частиц. Чаще всего определяемая в экспериментах величина — скорость ветропесчаного переноса q, т. е. количество песка, переносимого ветром в горизонтальном направлении в единицу времени через площадку, ориентированную перпендикулярно потоку. Эта величина равна $\int_{a}^{h_{\Pi}} n(z)u_{s}(z)dz$, кроме того ее можно выразить через величину N и длину скачка:

$$q = N x_{\pi} = \int_{d}^{h_{\pi}} n(z) u_{s}(z) dz, \qquad (3.6)$$

где $u_s(z)$ — значение средней скорости всех песчинок на фиксированном уровне z над поверхностью.

Если рассмотреть упрощенную задачу, в которой размеры dи начальные импульсы при отрыве $m_s \omega_0$ всех частиц одинаковыь то каждой фиксированной высоте $z < h_{\pi}$ соответствует два участка траектории частицы — один на подъеме, другой — на спуске. При этом функцию $u_s(z)$ можно вычислить, зная функции $u_s(t)$ и $z_s(t)$ из (2.6) и (2.8). Однако поскольку такой подход является сильной идеализацией естественных условий, то здесь и во всех последующих расчетах, относящихся к динамике приземного слоя мы будем заменять все величины, относящиеся к движению песчинок их средними по слою $[d, h_{\pi}]$ значениями, а эти средние по слою значения считать равными средним, взятым вдоль траектории отдельной песчинки. Поэтому запищем (3.6) в упрощенной форме

$$q = N x_{\rm n} = \overline{n} h_{\rm n} \overline{u}_s, \tag{3.6a}$$

откуда

$$\overline{nh}_{\pi} = \frac{Nx_{\pi}}{\overline{u}_{s}}.$$
(3.7)

Подставив (3.7), а также значения x_{π} , $(\overline{u-u_s})^3$ и u_{sk}^2 из (2.10), (2.11) и (2.14) в уравнение (3.5), получим закон сохранения энергии в слое $[d, h_{\pi}]$ в окончательной форме:

$$\tau u|_{z=h_{\Pi}} - \tau u|_{z=d} - \int_{d}^{h_{\Pi}} \tau \frac{du}{dz} dz = \frac{m_s N}{2} \overline{u}^2 \frac{2 \Gamma \widetilde{u} \widetilde{t}_{\Pi}}{1 + \Gamma \widetilde{u} \widetilde{t}_{\Pi}}.$$
 (3.8)

Здесь u — средняя скорость воздуха в слое $[d, h_{\pi}]$.

При отсутствии песчинок в воздухе (N=0) приток энергии среднего движения воздущного потока в слой $[d, h_{\pi}]$ равен генерации турбулентной энергии в этом слое, при наличии песка разница $\tau u|_{z=h_{\pi}} - \tau u|_{z=d}$ изменяется так, что кроме обычной генерации турбулентной энергии ее еще хватает на разгон N частиц с трением до скорости u_{sh} .

Количество энергии, затрачиваемой на разгон частиц, пропорционально квадрату средней скорости воздуха в слое $[d, h_{\pi}]$, чис-

лу срываемых частиц N и зависит от размеров частиц и величины: начальной вертикальной скорости подскока через функцию от параметра $\Gamma \tilde{u} \tilde{t}_n$.

Расчет свойств воздушного потока, в частности величины \overline{u} , при. фиксированной интенсивности $N \, \text{см}^{-2} \cdot \text{с}^{-1}$ отрыва частиц с поверхности приведен в следующем разделе.

4. Расчет динамических характеристик воздушного потока.

Для расчета динамических характеристик приповерхностного, слоя воздуха при заданной скорости ветра u(z) на фиксированном уровне в приземном слое $z \gg h_{\rm m}$ нужно решить систему уравнений движения и баланса турбулентной энергии как в слое $[d, h_{\rm m}]$, так и в слое $z > h_{\pi}$, где, как известно, (см., например, [4]), эти уравнения имеют обычный для приземного слоя вид, но в граничные условия на нижней для этого последнего слоя границе *z*=*h*_n, вхолит величина диффузионного потока энергии турбулентности через. уровень *z=h* наверх. Величина этого потока связана с дополнительной генерацией турбулентной энергии при *z* < *h*, возникающей при обтекании препятствий. Как уже упоминалось в разделе 2. из-за малого размера песчинок аналогичный член уравнения баланса средней энергии (первый член правой части (3.5) характеризует диссипацию энергии непосредственно в тепло. Поэтому уравнение баланса турбулентной энергии в слое $[d, h_{\pi}]$ не содержит члена с дополнительной генерацией турбулентной энергии и. следовательно, для ветропесчаного потока величина диффузии. Фп через уровень $z = h_{\pi}$ наверх равна нулю. Это означает, что при $z > h_{\rm II}$ величина турбулентной энергии b постоянна и равна $C_2^{-1/2} \times C_2^{-1/2}$ $\times v_*^2$. Константа $C_2 = 0.046$, а влияние переноса песка на величину b сказывается только через v*. Для того чтобы определить величину v_* , а также другие характеристики профиля скорости ветра: u(z), нужно решить уравнение

$$\frac{d}{dz}\left(K\frac{du}{dz}\right) = C_3 n d^2 (u - u_s)^2 \tag{4.1}$$

в слое $d \ll z \ll h_{\pi}$ при граничных условиях

$$k \frac{du}{dz}\Big|_{z=h_{\Pi}} = v_*^2, \quad u|_{z=d} = 8,5 \ v_*^s,$$
 (4.2)

где величина v^s_{*} связана с v_{*} соотношением (1.2).

Поскольку мы хотим с помощью (4.1) получить профиль скорости u(z) в слое $[d, h_{\pi}]$, а затем уже величину \overline{u} , будем считать не зависящим от высоты и равным средней по траектории величине (2.13) только отношение квадрата относительной скорости к скорости ветра на заданном уровне. Иными словами, будем считать, что

$$(u - u_s)^2 = u^2(z) \frac{1}{1 + \Gamma \widetilde{u} \widetilde{t_{\pi}}}.$$
 (4.3)

После нормировки скорости u(z) на v_* , а ординаты z на величину $h_{\rm m}$ выражение (4.1) с учетом (3.7) примет вид:

$$\frac{d}{dz}\left(\widetilde{K}\frac{d\widetilde{u}}{d\widetilde{z}}\right) = C_{3}Nd^{2} \frac{w_{0}}{g} \frac{\widetilde{t}_{\pi}}{1 + \Gamma \widetilde{u}\widetilde{t}_{\pi}} \widetilde{u}^{2}(z).$$
(4.4)

Обозначим, как и в [4], коэффициент пропорциональности при $\tilde{u^2}$ через $\frac{\gamma h}{\lambda}$:

$$\frac{\gamma h}{\lambda} = C_3 N d^2 \frac{w_0}{g} \frac{t_{\pi}}{1 + \Gamma \, \widetilde{u} \, t_{\pi}}.$$
(4.5)

Тогда с учетом граничных условий (4.2) и соотношения (1.2) для v_{z} и v^{s} задача о нахождении профиля скорости u(z) в слое $z \leqslant h_{\Pi}$ становится идентичной задаче о профиле скорости в промежутках между редко расположенными на поверхности препятствиями с той только весьма существенной разницей, что величина -здесь не должна являться внешним параметром задачи. Она сама связана с характеристиками ветропесчаного потока главным образом через N и w₀ и частично через функцию . Осталь- $1+\Gamma u t_{\pi}$ ные отличия, т. е. разница в граничных условиях — выбор в качестве нижней границы уровня z=d, а не $\frac{35}{s}$ и значения скорости $8,5 v_*^s$, а не $13 v_*^s$, как в [4], а также переменная толщина слоя $h_{\rm II}$ принципиально не влияют на ход и результаты решения (4.1). Судя по экспериментальным оценкам, имеющимся в [6], значения N имеют порядок 10³, а w_0 — порядок v_* (рис. 1). Поэтому значения параметра $\frac{\gamma h}{\lambda}$ в ветропесчаном потоке не должны превышать $\sim 5 \cdot 10^{-2}$. На рис. 2 *а* приведены результаты расчета скорости ветра на высоте $h_{\pi} - u_h / v_*$ величины v_*^{s} / v_* и средней скорости ветра в слое $[d, h_{\Pi})$ в этом диапазоне значений параметра $\frac{\gamma h}{\lambda}$. Этот расчет произведен, как и в [4], в предположении, что коэффициент турбулентности K равен $l^2 \frac{du}{dz}$, а характерный масштаб l при $z \leqslant h_{\pi}$ равен $\frac{x}{2}h_{\Pi}$.

По значениям $\tilde{u}_h(\frac{\gamma h}{\lambda})$ можно вычислить величину v_* в зависимости от $\frac{\gamma h}{\lambda}$ при разных скоростях ветра на фиксированном уровне z=2 м. На рис. 2 б приведен набор таких кривых. Однако в равновесном состоянии, когда число взлетающих с единицы поверхности частиц равно числу выпадающих, величина $\frac{\gamma h}{\lambda}$ должна иметь

Рис. 2. Динамические характеристики ветропесчаного потока. *а*) верхняя кривая — безразмерная скорость ветра на уровне вершин траекторий частиц \widetilde{u}_h , нижняя кривая — отношение v_*^S/v_* , средняя кривая — скорость в слое, где

происходит перенос песка $\stackrel{\sim}{u=u}_{v_*}$.

одно определенное значение $\left(\frac{\gamma h}{\lambda}\right)_p$ при каждой скорости ветра, однозначно связанное с интенсивностью q ветропесчаного потока. Для того чтобы найти это значение $\left(\frac{\gamma h}{\lambda}\right)_p$, а также величину q_p , нужно знать, как связаны значения N и w_0 с величиной v_*^s или v_* . Установить эту зависимость из соображений размерности трудно, так как в общем случае в ней должно содержаться два безразмерных аргумента $v_*^s/\sqrt[3]{gd}$ и $v_*^s/\sqrt[3]{gv}$ или $v_*^s/\sqrt[3]{gd}$ и v_*^2/\sqrt{gd} и v_*^2/\sqrt{gd} .

$$\frac{w_0}{v_*^s} = \varphi_1\left(\frac{v_*^s}{\sqrt{gd}}, \frac{v^2}{gd^3}\right); \quad N = \frac{v_*^s}{\sqrt{d^2}}\varphi^2\left(\frac{(v_*^s)^2}{\sqrt{gd}}, \frac{v^2}{gd^3}\right).$$

На основании имеющихся экспериментальных данных об интенсивности переноса можно предположить, что величина произведения Nw_0 пропорциональна $(v_*^s)^3$. Коэффициент пропорциональности A выбирается так, чтобы получились разумные значения q_p при какой-то фиксированной скорости, однако функциональная зависимость $q_p(u)$, а также $v_*(u)$ определяется из решения задачи.

Рис. 3. Равновесные значения $q_p(u)$ и $v_*(u)$.

Результаты такого расчета функции $q_p(u)$, а также соответствующие значения v_* приведены на рис. 3. Расчет проведен для фиксированного значения $d=2,5\cdot10^{-2}$ см и $A=2/_3$. Кривая 1 соответствует предположению $w_0=v_*$, а кривая $2-w_0=v_*^s$. Очевидно, что вторая гипотеза приводит к более медленному возрастанию функции $q_p(u)$ при больших скоростях. Результаты измерений величины q в натурных условиях имеют очень большой разброс, так как на отрыв частиц от поверхности влияет целый ряд не учитываемых теорией факторов, теоретические кривые на рис. 3 лежат ближе всего к данным лабораторных измерений. Соответствующая им зависимость $v_*(u)$ неплохо согласуется со средней зависимостью, полученной экспериментально в натурных условиях [8].

В этой же работе получены значения гидродинамического параметра шероховатости z_0 , который сильно возрастает с ростом скорости ветра при наличии переноса песка. Это естественный результат. так как сопротивление поверхностного слоя воздушному потоку увеличивается из-за наличия сальтации. Если по значениям $v_{*}(u)$ на рис. З вычислить зависимость z_{0} от скорости ветра, то она также примерно соответствует экспериментальной зависимости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лайхтман Д. Л. Физика пограничного слоя атмосферы. Л., Гидрометеоиздат, 1970, с. 118-122.
- 2. Менжулин Г. В. К методике расчета метеорологического режима в растительном сообществе.— «Метеорол. и гидрол.», 1970, № 2, с. 92—99.
- 3. Дубов А. С., Быкова Л. П. Характеристики турбулентного течения в по-граничном слое над лесом.—«Тр. ГГО», 1973, вып. 297, с. 11—31.
- 4. Бютнер Э. К. Модель процесса теплообмена с поверхностью, покрытой движущимися неровностями.—«Тр. ГГО», 1973, вып. 297, с. 29—40.
- 5. Эль Шахави. Автореф. дисс. ЛГМИ, Л., 1972.
- 6. Bagnold P. A. Physics of blown sand and desert dunes. London, 1954, p. 265.
- пыльных бурь и поземков.—«Тр. КазНИГМИ», 1972, вып. 49, с. 3-20.

Э. К. БЮТНЕР, О. К. ЗАХАРОВА

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТУРБУЛЕНТНОГО ПОТОКА В РЕЖИМЕ НЕ ПОЛНОСТЬЮ РАЗВИТОЙ ШЕРОХОВАТОСТИ

Для описания свойств воздушного потока между препятствиями высотой *h*, движущимися по поверхности со скоростью *c* в работе [1] использовалась следующая система уравнений:

$$\frac{d}{dz}\left(K_{u}\frac{du}{dz}\right) = \frac{\gamma}{\lambda} \left(u-c\right) |u-c|, \tag{1}$$

$$K_{u}\left(\frac{du}{dz}\right)^{2} + \frac{\gamma}{\lambda} |u - c|^{3} + \alpha_{b} \frac{d}{dz} \left(K_{u} \frac{db}{dz}\right) - C_{1} \frac{b^{2}}{K_{u}} = 0.$$
 (2)

Здесь K_u — коэффициент турбулентного обмена для количества движения; u(z) — средняя скорость воздушного потока; b(z) средняя энергия турбулентных флуктуаций; γ — коэффициент аэродинамического сопротивления препятствий; λ — расстояние между гребнями; α_b и C_1 — константы, равные 0,73 и 0,046 соответственно. На высотах z, превышающих высоту гребней препятствий (z>h) уравнения переноса импульса и баланса турбулентной энергии имеют свой обычный вид:

$$K_u \frac{du}{dz} = v_*^2, \tag{1'}$$

$$K_{u}\left(\frac{du}{dz}\right)^{2} + \alpha_{b}\frac{d}{dz}\left(K_{u}\frac{db}{dz}\right) - C_{1}\frac{b^{2}}{K_{u}} = 0.$$
^(2')

Но решения u(z) и b(z) при z > h отклоняются от обычных для приземного слоя функций из-за возмущений, вызванных препятствиями и проникающих в этот слой. Наличие возмущений выражается в том, что через уровень z = h наверх поступает поток турбулентной энергии, генерированной при обтекании препятствий в слое z < h. Свойства решений системы (1), (2) и (1'), (2') подробно разбирались в [1] при расчете динамических характеристик обтекания редких препятствий (диапазон значений параметра $\frac{\gamma h}{\lambda}$ в пределах от 10^{-3} до 10^{-2}). В этом случае граничные условия на нижней границе слоя $z_s \div h$, занятого препятствиями, учитывают наличие касательного трения $\rho_a v_*^{S_2}$ о поверхность, и закон сохранения импульса выглядит следующим образом:

$$\rho_a v_*^2 = \rho_a v_*^{S^2} + \frac{\gamma}{\lambda} \int_{z_S}^h (u-c) |u-c| dz.$$
(3)

Высота z_s есть верхняя граница вязкобуферного слоя в промежутках между препятствиями. Считается, что $z_s = Av/v^s$ и что $u|_{z=z_s=Bv_*}^s$, причем константы A и B имеют те же значения, что и для гладкой поверхности, т. е. A=30, B=13,5. Результаты всех расчетов, очевидно, зависят от выбора той или иной гипотезы замыкания в турбулентной области потока.

Если коэффициент турбулентного обмена K_u связан с энергией *b* и характерным масштабом турбулентности *l* обычным соотношением

$$K_u = C_1^{1/4} l \sqrt{b},$$

то гипотеза замыкания сводится к выбору функции *l*. В настоящее время известен целый ряд гипотез, которые связывают величину *l* не только с характеристиками средних полей скорости ветра и температуры в турбулентном потоке, но и с характеристиками его флуктуаций (гипотеза Лайхтмана — Зилитинкевича). Однако вблизи самой поверхности величина характерного масштаба должна быть связана с геометрическими характеристиками препятствий, которые обтекает воздушный поток, и для редко расположенных препятствий, для которых и касательное трение о поверхность

а – результат расчета при l = xz: $l = \frac{h}{y} = 300; 2$ $\frac{hv_*}{y} = 10^3;$ 3) $\frac{hv_*}{y} = 10^5; 6$ – результат расчета при $l = \frac{xh}{2}; 6$ – по данным экспериментов Мотцфельда [3]; c – данные [2]; цифры у экспериментальных точек – значения $\frac{hv_*}{y}$.

и сопротивление формы имеют одинаковый порядок величины, значения l вблизи поверхности, скорее всего, лежат в пределах от κz до κh . В работе [1] все расчеты были проведены в предположении, что $l=\beta h$, для β , равного $\kappa/2$ и κ . Здесь мы приведем результаты расчетов для $l=\kappa z$ (или, что практически то же самое, для $K=\kappa v_* z$), проиллюстрируем, как влияет такая разница выбора l на основные динамические характеристики приповерхностного слоя, т. е. на величину средней скорости у гребней u_h/v_* , на полный коэффициент сопротивления C_u и на соотношение сил касательного трения и сопротивления формы. Кроме того, мы проведем сопоставление полученных результатов с имеющимися экспериментальными и расчетными данными по обтеканию неподвижных препятствий.

На рис. 1 приведены значения безразмерной скорости $u_h = u_h/v_*$ на уровне гребней для неподвижных препятствий (c=0) и для движущихся со скоростью $c/v_* = c = 10$ в зависимости от величины их аэродинамического коэффициента сопротивления, рассчитанные на единицу площади подстилающей поверхности $\frac{\gamma h}{\lambda}$.

На рис. 1 представлены результаты решения системы (1) — (2) в предположении, что $l = \varkappa z$, а $K_u = C_{1^4}^{\prime\prime_4} l \sqrt{b}$ (кривая *a*). Скорость на уровне гребней является функцией двух параметров $\frac{\gamma h}{\lambda}$ и $\frac{hv_*}{\nu}$. Из данных расчета в предположении, что $l = \beta h$ ($\beta = \varkappa/2$), а $K_u = = l^2 \frac{dz}{dz}$ (кривая б) видно, что величина u_h практически не зависит от $\frac{hv_*}{\nu}$. Значения скорости на нижней границе слоя $h \ge z \ge z_s$ при $z = z_s$, где $z_s = 30\nu/v_*^s$ и в том и в другом случае считались равными $13,5v_*^s$.

Сопоставление величины u_h с экспериментом затруднено тем, что эту величину довольно трудно измерить непосредственно. В работе Уэбба, Эккерта и Голдстейна [2], в которой проводились детальные измерения сопротивления и теплообмена в трубах с нарезкой на внутренней поверхности, расположенных пер-

пендикулярно потоку, величина u_h вычислялась по данным эксперимента на основе следующего соотношения:

$$\widetilde{u}_h = \frac{u_{\rm II}}{v^*} - \frac{1}{\kappa} \ln \frac{R}{h},\tag{4}$$

где $u_{\rm H}$ — скорость в центре, R — радиус трубы. Величина для двумерных пластин близка к единице, поэтому в [2] значения параметра $\frac{\gamma h}{\lambda}$ для исследования поверхностей брались в пределах от 0,100 до 0,025. На рис. 1 приведены значения u_h из [2], полученные для $\frac{\gamma h}{\lambda} = 0,025$ и $\frac{\gamma h}{\lambda} = 0,050$ при $\frac{hv_*}{\gamma} = 300$.

Непосредственно оценить величину u_h по измерениям профилей скорости можно по данным известной работы Мотцфельда [3], в которой приведены профили скорости u(z) в различных фазовых точках неподвижных волн различной формы, а также значения коэффициентов полного сопротивления C_u и сопротивления формы C_{ϕ} (табл. 1). Здесь λ — расстояние между гребнями двумерных волн, h—высота, u_{Π} —величина скорости в центре канала (z_{Π} =10 см).

Таблица 1

Мо- дель	ћ см	λ см	h/λ	$Re = \frac{u_y \lambda}{\gamma}$	$C_{\mu} \cdot 10^{s}$	$C_{igodots} \cdot 10^3$	С _{тр} • 10 ³	Форма препятствия
1	1,5	30	0,05	3,3.105	2,32	0,42	1,90	Синусоида
2	3	30	0,10	3,3 • 105	3,10	1,20	1,90	Синусоида
3	1,45	15	0,10	1,65 • 105	-3,15	1,40	1,75	Трохоида с гладким гребнем
4 4	2	15	0,14	0,95 · 105 1,75 · 105	11,15 11,10	9,75 9,70	1,30 1,40	Трохоида с заострен- ным гребнем
4 4				2,09 · 105 2,67 · 105	11,10 12,75	9,70 9,75	1,40 3,00	Угол 120° при верши- не

Все значения коэффициентов сопротивления в табл. 1 вдвое меньше соответствующих величин, полученных Мотцфельдом [3], так как мы приняли $C_u = v_*^2/u_u^2$, а не $C_u = 2v_*^2/u_{\pi}$, как это сделано в [3]. Значения C_{Φ} находились в [3] путем интегрирования распределения давлений по поверхности волны, а сила касательного трения определялась как разность между полной силой сопротивления трубы и суммой сил сопротивления формы и трения о гладкую верхнюю стенку канала.

По приведенным в [3] профилям скорости и значениям можно определить величину параметра $\gamma h/\lambda$:

$$C_{\Phi} = \frac{\gamma}{\lambda} u_{\mu}^2 \int_0^{\hbar} \frac{u^2}{u_{\mu}^2} dz.$$
 (5)

Результаты определения $\gamma h/\lambda$ таким способом приведены в табл. 2. Среднюю скорость на уровне гребней можно определить двумя способами: во-первых, непосредственно по данным о профилях скорости $(u_h/v_*)_1$ в табл. 2, а во-вторых, используя приближенное соотношение:

 $\left(\frac{u_h}{v_*}\right)_2 = \frac{1}{\sqrt{C_u}} - \frac{1}{\kappa} \ln \frac{z_u}{h}.$ (6)

Таблица 2

Модель	$\frac{\gamma h}{\lambda}$	$\left(\frac{uh}{v_*}\right)_1$	$\left(\frac{u_h}{v_*}\right)_2$	\overline{v}_*^s / v_*	z ₀ /h
1	1.10-3	16	16,3	0,90	1,55.10-3
2	6.10-3	15	12,0	0,78	2,46 • 10 - 3
3	4,2.10-3	12,8	14,2	0,74	5,5.10-3
4	0,14 (грубая оценка)	4,8÷4,1	4,3	0,38	0,112

Значения $(u_h/v_*)_1$ и $(u_h/v_*)_2$ неплохо согласуются между собою (рис. 1).

На рис. 2 приведены результаты расчета относительного вклада сопротивления формы в величину полного сопротивления для подвижных ($\tilde{c}=0$) и движущихся ($\tilde{c}=10$) препятствий для $l=\kappa z$ и $l=\beta h$ ($\beta=\kappa/2$).

Экспериментальные данные Мотцфельда [3], а также Северда и Майерса [4], полученные при непосредственном измерении со-

1, $l' - \frac{hv_*}{y} = 300;$ 2, $2' - \frac{hv_*}{y} = 10^3;$ 3, $3' - \frac{hv_*}{y} = 10^6;$ 4— результат расчета при $l = \frac{xh}{2}$ и $C = 0; \delta$ – данные Мотцфельда [3]; δ – дан ные Сэвержа и Майерса [4]. Цифры у точек – значения $\frac{hv_*}{2}$.

Рис. 3. Относительная величина параметра шероховатости z_0/n . *I*— по расчетам Л. П. Быковой [5], 2, 3, 4 — по нашим расчетам (2 — при $\frac{hv_x}{v} = 10^3$, 3— при $\frac{hv_x}{v} = 10^5$, 4— при l = xh); 5— результаты анализа экспериментальных данных [5]; 6— экспериментальные данные [3].

противления формы по распределению давлений на переднем и заднем склонах прямоугольного препятствия ($\gamma \cong 1$) также представлены на рис. 1.

Как видно из рис. 1—2, экспериментальные данные пока не дают возможности решить вопрос о наиболее рациональном выборегипотезы для l. Интересно сопоставить значения гидродинамического параметра шероховатости z_0/h в зависимости от $\gamma h/\lambda$, полученные в результате расчета по разным моделям. Расчет параметра z_0 производился следующим образом: сначала вычислялась величина коэффициента сопротивления $C_u(z)$, в качестве z выбирался любой уровень $z \gg h$, на котором уже практически не сказываются возмущения, вносимые препятствиями

$$[C_{u}(z)]^{-1/2} = \frac{u_{h}}{v_{*}} + \int_{z}^{h} \frac{dz}{C_{1}^{1/4} z \sqrt{b(z)}}.$$
(7)

Функции b(z) и u_h/v_* определялись в результате совместного решения системы (1), (2), (1') и (2') (см. [1]).

Затем по полученным таким образом значениям $C_u(z)$ вычислялась величина z_0

$$\frac{1}{\pi} \ln \frac{z}{z_0} = [C_u(z)]^{-1/2}.$$
(8)

Из (7) и (8) следует, что если уровень z выбран в области, где функция u(z) описывается логарифмическим законом, величина z_0 не зависит от выбора этого уровня.

На рис. 3 приведены значения отношения величины гидродинамического параметра шероховатости z₀ к высоте препятствий в зависимости от $\frac{\gamma h}{2}$ при разных значениях z_0/h . Как и следовало ожидать, завышение величины характерного масштаба турбулентности при z < h приводит к увеличению степени шероховатости поверхности, т. е. коэффициент сопротивления при фиксированном значении h при $l = \varkappa h$ получается завышенным.

Все расчеты в нашей работе проведены для случая редко расположенных препятствий (небольшие значения параметра $\frac{\gamma h}{\lambda}$), для которых и сопротивление формы и касательное трение в промежутках имеют одинаковый порядок величины. Интересно сопоставить результаты расчета величины z_0/h , полученные нами для режима не полностью развитой шероховатости, с результатами работы [5], в которой рассчитаны z_0/h для значений $\gamma h/\lambda$ в пределах от 10⁻² до 1 (параметр C_tSh в работе [5] идентичен нашему параметру $\gamma h/\lambda$).

Из рис. З следует, что модель приповерхностного слоя, описываемая системой уравнений (1) — (1́) и (2) — (2′) дает в общем правильную связь величины z_0/h с аэродинамическими характеристиками препятствий (γh/λ или C_fSh).

Влияние числа Рейнольдса для неровностей hv "/v сказывается на величине z₀ (и на коэффициенте сопротивления) только при малых значениях $\gamma h/\lambda$, не превышающих 10^{-2} . Следовательно, при $\gamma h/\lambda$, большем 10⁻², режим обтекания соответствует режиму развитой шероховатости, при меньших значениях $\gamma h/\lambda$ имеет место переходный режим — не полностью развитой шероховатости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бютнер Э. К. Модель процесса теплообмена с поверхностью, покрытой дви-
- жущимися неровностями.— «Тр. ГГО», 1973, вып. 297, с. 29—40. 2. Weebb R. L., Eckert E. R. G., Goldstein R. J. Heat transfer and friction in tubes with repeated-rib roughness.— "Int. Journ. of Heat and Mass Transfer.," 1971, v. 14, No. 5, p. 601-618.
- .3. Motzfeld H. Turbulente Stromung an welligen Wänden.-...,Z. Angen. Math. and Mech." 1937, v. 17, p. 193-213.
- 4. Savage D. W., Myers, J. E. The Effect of Artificial Surface Rougness on Heat and Momentum Transfer.— "A. I. Ch. E. J". 1963, v. 9, No. 5, p. 694-707.
- 5. Быкова Л. П. Опыт расчета характеристик пограничного слоя атмосферы по заданным параметрам подслоя шероховатости.—«Тр. ГГО», 1973, вып. 297, с. 12—19.

-90

vieto se cita

ГРЕНИЕ И ТЕПЛООБМЕН С ПОВЕРХНОСТЯМИ, ПОКРЫТЫМИ ИСКУССТВЕННЫМИ ПРЕПЯТСТВИЯМИ

Потоки тепла P, влаги E и импульса τ являются, как известно, основными характеристиками взаимодействия атмосферы с подстилающей поверхностью. В приземном слое воздуха они вычисляются по результатам градиентных наблюдений путем измерений профилей скорости u(z), температуры T(z) и влажности e(z). Существует ряд способов расчета этих потоков, например, методика Чаликова — Зилитинкевича [1]. Упомянутые потоки можно также вычислить, непосредственно измеряя пульсации полей скорости, температуры и влажности с последующим осреднением их по времени. Коэффициенты сопротивления C_u , теплообмена C_6 (число Стентона) и влагообмена C_E (число Дальтона) вычисляются по формулам:

$$C_{u}(z_{1}) = \frac{\tau}{c_{p} \rho u^{2}(z_{1})},$$

$$C_{\theta}(z_{1}) = -\frac{P}{c_{p} \rho u(z_{1})(\theta_{w} - \theta(z_{1}))},$$

$$C_{E}(z_{1}) = -\frac{E}{\rho u(z_{1})(e_{w} - e(z_{1}))},$$
(1)

где θ — потенциальная температура, e — удельная влажность, г/кг.

В приводном слое воздуха существует достаточное число измерений обоими методами лищь коэффициента сопротивления Си (для скоростей ветра до 15 м/с). Для измерения потоков Р и Е в морских условиях градиентный метод не пригоден, так как измерения профилей T(z), e(z) при наблюдениях с судов вызывает больщие трудности. Последние объясняются тем, что градиенты этих функций невелики, поэтому корпус и надстройка судна могут сильно исказить результаты. С другой стороны, число опытных данных по определению величин Р и Е пульсационным методом в настоящее время явно не достаточно. Вследствие этого большинство экспериментальных данных для моря содержит лишь результаты измерения средних величин температуры и влажности на одном каком-то уровне над поверхностью и температуры самой поверхности. Поэтому потоки тепла Р и влаги Е над водной поверхностью можно вычислять с помощью коэффициентов C_{θ} и C_{E} по формулам:

$$P = -\rho c_p C_{\theta}(z_1) u(z_1) [\theta_w - \theta(z_1)],$$

$$E = -\rho C_E(z_1) u(z_1) [e_w - e(z_1)].$$
(2)

Значения C_{θ} и C_{E} приходится определять теоретически. Найденные таким образом C_{θ} и C_{E} должны, во-первых, давать правильную зависимость от скорости ветра и состояния морской взволнованной поверхности и, во-вторых, совпадать с данными экспериментальных работ по определению теплообмена с поверхностями, покрытыми неподвижными искусственными выступами.

Настоящая статья содержит обзор результатов исследований, опубликованных за последнее время.

Рассмотрим сначала связь \hat{C}_{θ} и C_E с основными гидродинамическими характеристиками шероховатой поверхности.

Уравнения переноса тепла и влаги в приводном слое имеют вид:

$$P = -\rho c_{p}(K_{\theta} + \chi) \frac{\partial \theta}{\partial z},$$

$$E = -\rho(K_{E} + D) \frac{\partial e}{\partial z}.$$
(3)

Потоки P и E постоянны в приводном слое, высота которого зависит от величин P и E. После интегрирования (3) по z и подстановки в (2) получим выражения для коэффициентов C_{θ} и C_E :

$$C_{\theta}(z_{1}) = \frac{\sqrt{c_{u}}}{v^{*} \int_{0}^{z_{1}} \frac{dz}{\chi + K_{\theta}(z)}} = \frac{\sqrt{C_{u}}}{\widetilde{r}_{\theta}^{0-z_{1}}},$$

$$C_{E}(z_{1}) = \frac{\sqrt{C_{u}}}{v_{*} \int_{0}^{z_{1}} \frac{dz}{D + K_{E}(z)}} = \frac{\sqrt{C_{u}}}{\widetilde{r}_{E}^{0-z_{1}}}.$$
(4)

Здесь z_1 — фиксированный уровень (обычно 10 м), находящийся в пределах приводного слоя; χ , D — молекулярные коэффициенты температуропроводности и диффузии водяного пара; K_{θ} , K_E коэффициенты турбулентной температуропроводности и диффузии; $\tilde{r}_{\theta}^{0-z_1}$, $\tilde{r}_E^{0-z_1}$ — безразмерные диффузионные сопротивления слоя $0-z_1$ потоку тепла и влаги соответственно.

Уравнения типа (3), а следовательно и (4), нельзя записать для потока импульса т, так как величина последнего изменяется с высотой вследствие возникновения дополнительных напряжений Рейнольдса, связанных со взаимодействием потока с поверхностью выступов. Это взаимодействие можно охарактеризовать, например, силой давления потока на элементы. Тогда уравнение переноса импульса для области z < h примет вид

$$\frac{d}{dz}\left(K_{u}\frac{du}{dz}\right) = F,\tag{5}$$

где *F* — сила аэродинамического сопротивления всех выступов, находящихся в единичном объеме.

Что касается процессов переноса тепла и водяноге пара, то их всегда можно описать формулами типа (4), так как обмен теплом и влагой с поверхностью происходит только градиентным путем и наличие силы сопротивления F в уравнении (5) сказывается на теплообмене и влагообмене только косвенно — через изменение значений K_{θ} и K_E при z < h.

Согласно известной аналогии между переносом тепла и массы в области z > h, где $K_u(z) = \varkappa z v_*, \varkappa = 0,4$, можно написать:

$$K_{\theta}(z) = \Pr_{\text{ryp6}} K_{u}(z),$$

$$K_{E}(z) = \operatorname{Sc}_{\text{ryp6}} K_{u}(z),$$
(6)

где Рг_{турб} и Sc_{турб} — турбулентные числа Прандтля и Шмидта. Поэтому безразмерные диффузионные сопротивления слоя 0—*z*₁ можно разбить на две части:

$$\widetilde{r_{\theta}}^{0-z_1} = v_* \int_0^h \frac{dz}{(\chi + K_{\theta}(z))} + v_* \int_h^{z_1} \frac{dz}{K_{\theta}(z)} = \widetilde{r_{\theta}}^{0-h} + \frac{\Pr_{\mathrm{typ6}}}{\pi} \ln \frac{z_1}{h},$$

$$\widetilde{r}_{E}^{0-z_{1}} = v_{*} \int_{0}^{h} \frac{dz}{(D+K_{E}(z))} + v_{*} \int_{0}^{z_{1}} \frac{dz}{K_{E}(z)} = \widetilde{r}_{E}^{0-h} + \frac{\operatorname{Sc}_{\operatorname{typ6}}}{z} \ln \frac{z_{1}}{h}.$$
 (7)

Согласно [2] Pr_{турб}=0,85, Pr_{турб}=Sc_{турб} и не зависит от молекулярного числа Pr.

Выражение для $r \frac{0-z_1}{u}$ имеет вид

$$\widetilde{r}_{u}^{0-z_{1}} = \frac{1}{\sqrt{C_{u}}} = \frac{u(z_{1})}{v_{*}} = \frac{u(h)}{v_{*}} + \frac{1}{x} \ln \frac{z_{1}}{h}.$$
(8)

Величина $\frac{u(h)}{u_*}$ есть безразмерная скорость у вершин выступов, которую необходимо определять из решения уравнения (5). Необходимо подчеркнуть, что выражения (7) и (8) являются приближенными, так как при z > h свойства течения уже считаются не зависящими от характеристик препятствий.

Как видно из формул (7), величины \tilde{r}_{θ}^{0-h} , \tilde{r}_{E}^{0-h} и $\frac{u(h)}{v_{*}}$ являются в данном случае основными характеристиками теплообмена. Поэтому во всех рассматриваемых ниже экспериментальных работах исследовалась зависимость этих величин от основных параметров течения вдоль шероховатой поверхности.

Эксперименты в работе [3] осуществлялись в аэродинамической трубе, в которую помещались листы рифленого стекла, смоченные раствором камфоры. Элементы шероховатости были трехмерными и двумерными. Первые имели форму пирамид, сплошь и беспорядочно покрывающих поверхность (высота h=1 мм). Вторые, расположенные перпендикулярно направлению потока, представляли собой борозды треугольного сечения (h=1 мм). Профиль скорости измерялся до высоты $z_1=1$ см от основания выступов. Число Шмидта Se=3,2. Основные характеристики рассматриваемых экспериментов приведены в табл. 1.

Авторы	Конфигурация шероховатых элементов	Номера точек на рис. 1, 2	2 ₁ СМ	D _в см
Оуэн и Томсон [3]	Пирамиды и борозды в канале		1	
		1	1	
Дипри и Саберский [4]	Плотно упакованные песчинки в	1		0,975
	трубах	2		0,988
		. 3		1,012
Вебб, Эккерт, Голстейн [5]	Прямоугольные ребра в трубах	4		3,68
		5		3,68
		6		3,68
		7		3,68
		8		3,68
Чемберлейн [6]	Цилиндры, перпендикулярные по- току в канале	9 10	5 5	
	Полуцилиндры вплотную	11	5	
	Стеклянные волны	12	5	

Результаты экспериментов с более широким диапазоном значений чисел Прандтля содержатся в работе [4], посвященной исследованию теплообмена в трубах с песочной шероховатостью. Используя среднюю по сечению скорость воды в трубе u_m , авторы [4] измеряли C_{u_m} и C_{θ_m} в зависимости от числа Рейнольдса трубы $\operatorname{Re}_{\mathrm{T}} = D_{\mathrm{B}} \frac{u_m}{v} (D_{\mathrm{B}} -$ внутренний диаметр трубы). Опыты проводились в трех трубах. Размер песчинок в каждой из труб был различный. Меняя температуру и скорость течения воды, а также размер песчинок, авторы [4] получили C_{u_m} и C_{θ_m} в широких пределах числа Рейнольдса для шероховатости $\operatorname{Re}_{\mathrm{m}} = \frac{h_s v_*}{v}$ и чисел $\operatorname{Pr}=1,2; 2,79; 4,38; 5,94$ ($\operatorname{Re}_{\mathrm{T}}=2\cdot10^4 \div 4\cdot10^5$). В результате была получена зависимость коэффициентов C_{θ_m} и C_{u_m} от $\operatorname{Re}_{\mathrm{T}}$, которое изменялось в широких пределах (гладкий, переходный и шероховатый режимы).

В работах [3], [4], однако, достаточно подробно не исследовалось влияние особенностей геометрии элементов шероховатостей на теплообмен. Этот вопрос нашел свое отражение в работе [5]. Эксперименты проводились в пяти трубах с кольцевыми накладками внутри. Высота прямоугольных ребер h и расстояние между ними λ варьировались. Коэффициенты C_{um} и C_{θ_m} измерялись в режиме развитой шероховатости (по средней скорости потока u_m). Число Прандтля имело значения 0,71; 5,1; 21,7 и 37,6. Число $\operatorname{Re}_{r}=6\cdot10^3\div10^5$. Следует заметить, что авторы [5] коэффициент

Т	a	б	Л	И	Ц	а	1.
1	a	υ	41	11	щ	a	۲.

h D _B	hJλ	ћсм	ћ _{\$} см	<i>2</i> 0 см	u(h)/v*	Pr	Sc	ReT	$\frac{u(z_1)}{u_*}$
		0,1	0,69	0,023	0		3,2	218-1567	11,7
		0,1	0,63	0,021	3		3,2		11,7
 0 ,0024		2,3 10-3			8,48	1,2			
0,014		1,37 · 10 - 2			8,48	1,2			
0,049		4,95 · 10 - 2			8,48	1,2	ĺ		
0,01	0,1	0,037	0,626 3		3,21	0,71	ļ	7-10+4	
0,02	0,1	0,074	0,615		3,21	0,71			
0,04	0,1	0,148	1,23		3,21	0,71	{		F 4
0, 0 2	0,05	0,074	0,355		4,66	0,71			
0,02	0,025	0,074	0,155		6,73	0,71			
	0,05 0,166	2,54 0,79	1 0,8	0,6 0,15			0,6 0,6	1003.104	5,3 8,7
	0 ,5	2,54	1	0,3			0,6		7,0
	0,1	2,54	1	0,2			0,6		8,4

сопротивления называют фактором трения (фактор трения равени удвоенному значению C_{um}).

Большое количество результатов экспериментов по измерению массопереноса с поверхности, покрытой выступами различной формы, содержится в работе [6]. Опыты проводились в аэродинамической трубе, определялся поток радиоактивного тория-В (Sc=2,77) или паров воды (Sc=0,62). Профиль скорости воздушного потока измерялся до высоты $z_1 = 5$ см от основания выступов. Толщина вытеснения d находилась из требования линейности профиля в полулогарифмическом масштабе. В работе указана толщина вытеснения d=1 см лишь для волнистой формы двумерных выступов, высотой h=2,54 см. Волнообразные выступы имели трохоидальную форму с углом при вершине, равным примерно 120°. Таким образом, уровень d оказался на 1 см выше ложбин и на 1,5 см ниже гребней трохоид. Нужно иметь в виду, что величина z₀ для неподвижных трохоид вычислена именно при таком значении d. Профиль скорости над широко раздвинутыми препятствиями находился осреднением пяти профилей по длине.

На рис. 1 представлены значения безразмерного диффузионното сопротивления \tilde{r}^{0-h} в зависимости от $\lg \frac{h v_*}{\gamma}$, вычисленного по формуле (7), с учетом данных работ [3—6]. Обозначения точек на графике рис. 1 приведены в табл. 1. Точки 13 есть значения \tilde{r}^{0-h} , указанные в обзорной части работы [3] при числах Прандтля, близких к единице. При расчете \tilde{r}^{0-h} по данным [4, 5] использовались приведенные в этих работах значения C_{um} и C_{θ_m} и пред-

полагалось, что температура на оси трубы равна средней температуре потока. Тогда, как видно из формул (4), величина полного теплового сопротивления слоя 0 - R (где R — радиус трубы) равна отношению $\frac{\sqrt{C_{u_m}}}{2}$, т. е.

$$\frac{V^{C_{\mu}}}{C_{\theta_{m}}} - \frac{0.85}{\pi} \ln \frac{D_{b}}{2h}.$$
(9)

Однако в работах [4] и [5] в качестве характеристики тепло-

обмена в области 0— h рассматривалась функция g, которая вычислялась по формуле

$$g = \frac{\sqrt{C_{u_m}}}{C_{\theta_m}} - \frac{1}{\sqrt{C_{u_m}}} + \frac{u(h)}{v_*} = \frac{\sqrt{C_{u_m}}}{C_{\theta_m}} - \frac{1}{x} \ln \frac{D_b}{2h} + 3,75.$$
(10)

Эта формула получается из (7) в предположении, что расстояния от стенки трубы z_{θ_m} и z_{u_m} , где скорость и температура достигают своих средних значений, равны и число $\Pr_{\text{тур6}}=1$. Очевидно, что g и \tilde{r}^{0-h} связаны следующим соотнощением:

$$\widetilde{r}^{0-h} = g - 3,75 + \frac{0,15}{\pi} \ln \frac{D_b}{2h}.$$
 (11)

Для выявления особенностей теплообмена в области z < h авторы [3] и [6] рассматривали некоторый аналог числа Стентона число B, значение которого определяется по формуле:

$$B = \frac{P}{\rho c_p (T_h - T_w) v_*}.$$
(12)

Согласно (4), $B^{-1} \equiv r^{0-h}$, если под T_h понимать температуру на уровне вершин выступов. Однако в [3] и [6] величина B^{-1} вычислялась как разность

$$B^{-1} = \tilde{r}^{0-z_{1}} - \frac{\Pr_{\text{ryp6}}}{\pi} \ln \frac{z_{1}}{z_{0}} \quad (\Pr_{\text{ryp6}} = 1)$$
(13)

и все результаты и эмпирические связи относятся именно к этой величине. Отсюда, чтобы получить величину \tilde{r}^{0-h} при $\Pr_{\text{тур6}}=1$ ко всем значениям B^{-1} , вычисленным по формуле (13), нужно прибавить величину безразмерной скорости на уровне гребней выступов $\frac{u(h)}{v_*}$, которой авторы пренебрегали. В [6], в отличие от [3], указаны значения \tilde{r}^{0-z_1} , поэтому в данном случае величины, приведенные на рис. 1, вычислялись непосредственно по формуле (7). Как следует из рис. 1, величину \tilde{r}^{0-h} при Рг, близких к единице, можно аппроксимировать одной функцией от аргумента $\frac{h v_*}{v}$ для всех видов подстилающей поверхности. Это означает, что коэффициенты теплообмена шероховатых труб можно грубо получать, пользуясь средней кривой значений \tilde{r}^{0-h} на рис. 1 и данными измерения коэффициента сопротивления C_{u_m} по формулам (4) с учетом (7). Значение r^{0-h} на рис. 1 можно представить зависимостью (штриховая кривая, $\Pr=1,2$)

$$\widetilde{r}^{0-h} = 3.4 \left(\frac{hv_*}{v}\right)^{0.24} \mathrm{Pr}^{0.44}.$$
 (14)

В рассматриваемых работах были установлены эмпирические зависимости g или B^{-1} от числа Прандтля и числа Рейнольдса шероховатости в следующем виде:

$$B^{-1} = \alpha \left(\frac{h_s v_*}{v}\right)^m \operatorname{Pr}^n, \tag{15}$$

$$g = \alpha_1 \left(\frac{h_s v_*}{v}\right)^{m_1} \operatorname{Pr}^{n_1}.$$
 (16)

Численные значения коэффициентов α и показателей степеней mи n по данным работ [3] и [6] соответственно равны: $\alpha = 0.7$; 0.52, m = 0.45; 0.54; n = 0.8; 0.8. В работах [4, 5] приводятся значения $\alpha_1 = 5.2$; 4.5; $m_1 = 0.20$; 0.28; $n_1 = 0.44$; 0.57. В работе [6] авторы в формуле (15) вместо величины h_s использовали параметр шероховатости z_0 . Если значения B^{-1} , представленные в [3], пересчитать на значения \tilde{r}^{0-h} , то получится, что показатель m_1 равен 0.36 для двумерных шероховатостей и 0.27 для трехмерных. Если же учесть замечания авторов [3] о том, что в двумерном случае $\frac{u(h)}{v_{+}} = 3$, то для показателя m_1 получится значение 0.41.

Высота эквивалентной песочной шероховатости *h*_s в работе [5] определялась по формуле, которую легко получить, приравнивая коэффициенты сопротивления труб с песочной и не песочной щероховатостями:

$$\ln \frac{h_s}{k} = \left(8,48 - \frac{u(h)}{v_*} \right) / x \tag{17}$$

 $\left(\frac{u(h)}{v_*}=8,48$ для песочной шероховатости). При этом оказалось, что при малых Рг эмпирическая зависимость (16) мало изменяется при замене h_s на h. В работе [3] высота эквивалентной песочной шероховатости определялась по известной формуле, полученной для труб:

$$h_s = 30 \, z_0. \tag{18}$$

В работе [4] дополнительно была проверена аналогия между переносом тепла и импульса в пограничном слое гладкой трубы ($D_{\rm B}$ =0,96 см). Была получена зависимость

$$\frac{C_{\theta_m}}{C_{u_m}} = \Pr^{-0.587}.$$
 (19)

На рис. 2 изображена зависимость соотношения коэффициенгов C_{θ} и C_u от $\lg \frac{h v_*}{v}$ по данным работ [3—6]. Величину этого сортношения для гладкой поверхности при $\Pr = 0,73$ можно легко вынислить, исходя из формул (4), следующим образом. Коэффициент сопротивления при обтекании гладкой поверхности находится

из известного логарифмического закона, предложенного Никурадзе, и неоднократно проверенного на опыте:

$$\frac{1}{\sqrt{C_u}} = \frac{1}{\kappa} \ln \frac{9z_1 \sqrt{C_u}}{\kappa} u(z_1).$$
(20)

Ход коэффициента K_{θ} (z) в области, где профиль скорости логарифмический, линеен

$$K_{\theta} = \frac{1}{\Pr_{\mathrm{ryp6}}} K_{\mu} = \frac{1}{\Pr_{\mathrm{ryp6}}} \times zv_{*}.$$
⁽²¹⁾

В области $z \leqslant \frac{30}{v_*}$, где профиль скорости уже не логарифмический вследствие возрастания влияния вязкости, предположение

о затухании турбулентных пульсаций позволяет записать коэффи циент K_0 следующим образом: согласно [8],

$$K_{\theta} = \frac{\nu}{\Pr} + \frac{\nu}{\Pr_{\operatorname{ryp6}}} \left(0, 1 \, \frac{z \upsilon_{*}}{\nu} \right)^{2} \, \operatorname{при} \, z \ll \frac{30 \, \nu}{\upsilon_{*}} \qquad (22)$$
$$\left(K_{u} = \nu + \nu \left(0, 1 \, \frac{z \upsilon_{*}}{\nu} \right)^{2} \right),$$

согласно [7],

$$K_{\theta} = \frac{\nu}{\Pr} + \frac{\nu}{\Pr_{r_{yp6}}} \operatorname{sh}^{2}\left(0,069\frac{zv_{*}}{\nu}\right) \quad \text{при } z \leqslant \frac{27,5\,\nu}{v_{*}}.$$
 (23)

Рассчитанное по формулам (4) с использованием (21) и (22) значение отношения $\frac{C_{\theta}}{C_m}$ равно 1,28, в результате расчета с использованием (21) и (23) $\frac{C_{\theta}}{C_m} = 1,2$. Формула (19) для $\Pr = 0,73$ дает величину отношения, равную 1,19.

Если для гладкой поверхности отношение $\frac{C_{\theta}}{C_{m}}$ не зависело от скорости потока, то, как видно из рис. 2, в случае обтекания шероховатой поверхности это отношение всюду меньше единицы и убывает при увеличении скорости потока. Расположение точек на рис. 2 показывает, что величину отношения уже нельзя описать универсальной зависимостью от $\frac{h v_*}{v}$; оно явно связано с аэродинамическими свойствами препятствий и изменяется в очень широких пределах. Однако во всех случаях величина $\frac{C_{\theta}}{C_u}$ убывает с ростом $\frac{h v_*}{v}$, причем это уменьшение тем значительнее, чем больше величина аэродинамического сопротивления в расчете на единицу площади подстилающей поверхности, т. е. плохо обтекаемым препятствиям соответствуют меньшие значения $\frac{C_{\theta}}{C_{\theta}}$.

СПИСОК ЛИТЕРАТУРЫ

- Зилитинкевич С. С. Динамика пограничного слоя атмосферы. Л., 1970, с. 251.
- Kader B. A., Yaglom A. M. Heat and Mass Transfer laws for fully Turbulent wall flows.— "Int. J. of Heat and Mass Transfer". 1972, v. 15, No. 12, p. 2329—2352.
- p. 2329-2352.
 3. Owen P. R., Thomson W. K. Heat Transfer across rough surfaces. , J. of Fluid Mech." 1973, v. 15, p. 321-334.
- 4. Dipprey D. F., Sabersky R. H. Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers.— "Int. J. of Heat and Mass Transfer". 1963, v. 6, No. 5, p. 329—353.

- Webb R. L., Eckert E. R. G., Goldstein R. Y. Heat transfer and friction in types with, repeated roughness.—, Int. J. of Heat and Mass Transfer", 1971, v. 14, No. 4, p. 601—618.
- 6. Chamberlain A. C. Transport of gases to and from surfaces with bluff and wave — like roughness elements.— "Q. J. of the Royal Met. Society". 1968, v. 94, No. 401, p. 318—332.
- Левич В. Г. Физико-химическая гидродинамика. М., Физматгиз, 1959, с. 612.
 Rannie W. D. Heat transfer in turbulent shear flow.— "J. Aero. Sci " 1956. v. 23, p. 485—489.

Н. А. ЛАЗАРЕВА, Л. Р. ОРЛЕНКО, О. Б. ШКЛЯРБВИЧ

ВЛИЯНИЕ МЕЗОНЕОДНОРОДНОСТЕЙ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ НА ПРОФИЛЬ ВЕТРА В ПОГРАНИЧНОМ СЛОЕ АТМОСФЕРЫ

Экспериментальному исследованию строения пограничного слоя атмосферы в однородных (по характеру подстилающей поверхности) условиях уделяется большое внимание. Широко используются для этой цели как данные специальных наблюдений, так и результаты стандартного температурно-ветрового зондирования. Хуже обстоит дело с изучением распределения метеорологических элементов во всем пограничном слое над неоднородной подстилающей поверхностью. Чаще всего исследуется влияние характера подстилающей поверхности (как тепловое, так и динамическое) в приземном слое. В некоторых работах использовались наблюдения на мачтах высотой ~100 м. Характер трансформации воздушной массы на расстоянии порядка сотен метров и нескольких километров исследовался в целом ряде теоретических работ.

В реальных условиях неоднородности различны как по природе, так и по масштабам. В задачах численного моделирования наибольший интерес, по-видимому, будут представлять неоднородности с горизонтальными размерами, сравнимыми с горизонтальным масштабом в численных моделях (~100 км). При решении ряда прикладных задач необходимы сведения о характере влияния неоднородностей меньшего масштаба — с горизонтальными размерами порядка нескольких километров или десятков километров, которые принято называть мезонеоднородностями. Ниже будут приведены некоторые результаты исследований, выполненных с целью оценки влияния неоднородностей подстилающей поверхности на профили метеорологических элементов и определения высоты влияния в зависимости от характера и размеров неоднородностей.

Рассмотрим прежде всего особенности распределения ветра и температуры в условиях города. Город представляет собой довольно протяженную неоднородность — от нескольких километров до нескольких десятков километров — и естественно влияет не только на величину скорости ветра в приземном слое, но и на профили метеорологических элементов во всем пограничном слое.

Для исследования влияния городской застройки использовались данные наблюдений на телевизионной башне в г. Ленинграде и данные температурно-ветрового зондирования на ст. Воейково, находящейся в 14 км от Ленинграда. Методика обработки исходного материала состояла в следуюцем. Данные радиозондирования группировались в зависимости эт определяющих параметров — скорости геострофического ветра, пероховатости подстилающей поверхности, характера стратификации и адвекции, а также с учетом положения границ инверсии (приземной и приподнятой). Для выделенных таким образом групп по данным параллельных наблюдений на телебашне и станции рациозондирования получены средние профили ветра и температуры

Рис. 1. Профили скорости ветра V и температуры T по одновременным наблюдениям на ст. Воейково (1) и телевизионной башне в Ленинграде (2). *а* — нейтральная стратификация, *б* — инверсия.

[6, 8], используемые в дальнейшем для изучения особенностей вертикального распределения ветра и температуры над городом.

В качестве иллюстрации на рис. 1 даны средние профили скорости ветра и температуры для указанных пунктов наблюдений для холодного периода. Приведенные данные относятся к стационарным условиям при отсутствии горизонтального температурного градиента. Аналогичные данные получены и для других условий.

Как следует из приведенных данных, город существенно влияет как на тепловой, так и на ветровой режим. Полученные данные иллюстрируют хорошо известное уменьшение скорости ветра и повышение температуры над городом, т. е. эти данные не содержат качественно новой информации. Однако такого рода анализ может дать очень интересный количественный материал, в частности коэффициенты ослабления ветра (по сравнению с окрестностью) в зависимости от метеорологических условий и характера застройки города.

Количественные оценки указанного ослабления ветра даются в ряде работ. Согласно [9], городские строения ослабляют скорость ветра в среднем на 20—25% по сравнению со скоростью на подступах к городу. Согласно [2], такое ослабление имеет место на окраинах города, в центре же города на z=10 м скорость ветра уменьшается приблизительно в два раза. В [7] для определения коэффициентов ослабления используется решение уравнений движения при стационарных условиях и при заданном параметре шероховатости.

В табл. 1 приводятся результаты расчетов для Ленинграда. Скорость ветра на z=10 м в городе получена путем экстраполяции профиля ветра по логарифмическому закону. Из приведенных дан-

Отношение скорости ветра над открытой местностью V_z к скорости ветра в условиях города V'_z для разных уровней

	Ней	тральные ус	ловия	При	Приподня- тая инверсия		
Z	Холодні	ый период	Теплый период	Xo	лодный пери	юд	Теплый период
	слабые ветры	сильные ветры	сильные ветры	h _u ≈300 м	ћ _и ≈650 м	ћ _и ≈1100 м	h ₁ ==0,31 м, h ₂ ==0,50 м
10	1,55	1,60	1,73	1,76	1,91	1,80	2,0
25	1,47	1,43	1,58	1,83	2,10	1,83 -	1,53
50	1,45	1,34	1,57	1,92	2,31	1,94	1,39
100	1,43	1,30	1,46	1,84	2,13	1,80	1,23
200	1,27	1,27	1,35	1,42	1,62	1,36	1,22
	l						

Примечание. h_u — высота приземной инверсии, h_1 и h_2 — высоты нижней и верхней границ приподнятой инверсии соответственно (по данным ст. Воейково).

ных следует, что коэффициенты ослабления ветра V_z/V_z слабо зависят от скорости ветра и увеличиваются с ростом устойчивости. Влияние города на ветер остается большим во всем 200-метровом слое, причем при равновесных условиях наибольшие изменения ветра отмечаются на уровне z=10 м, при устойчивой стратификации (когда скорости в окрестностях города невелики)—на $z\sim50$ м. Полученные данные довольно хорошо согласуются с теоретическими оценками коэффициентов ослабления, приведенными в [7]. (По данным наблюдений на телебашне, параметр шероховатости $z_0\sim0.5$ м, на ст. Воейково для теплого периода $z_0\sim2$ см, для холодного — $z_0\sim0.07$ см.)

Анализ параллельных наблюдений в г. Ленинграде и на ст. Воейково показал, что в условиях города пограничный слой стратифицирован более неустойчиво, чем в сельской местности в течение всего года. Таким образом, в противоположность динамическо-

Таблица 1

му влиянию, тепловое влияние города приводит к усилению скорости ветра над городом по сравнению с окрестностями. Это означает, что при теоретических исследованиях процессов, происходящих при натекании воздушной массы на город, необходимо моделировать не только динамическое, но и тепловое влияние города.

Следует также заметить, что при устойчивой стратификации: тепловое влияние города приводит к формированию задерживающих слоев (приподнятой инверсии или слоев с малыми вертикальными градиентами температуры), в связи с чем повторяемость их в условиях города должна возрастать. Наиболее сильно этот эффект проявляется в начале весны, когда приток коротковолновой радиации к подстилающей поверхности становится существенным и приводит к возникновению в приземном слое сверхадиабатических градиентов.

Таблица 2

z	ť°	$V_z - V_z'$	$d_z - d_z'$	V_{z}/V_{z}'
10	31,0	1,3	10	1,33
100	29,8	1,2	8	1,23
200	28,4	0,9	6	1,16
300	27,4	0,9	4	1,16
500	25,4	0,8	3	1,14
800	22,4	0,7	1	1,12
1000	20,5	0,5	0	1,09
1200	18,6	0,2	0	1,03
1400	16,8	0,0	1	1,0
1600	15,2	0,0	—2	1,0
2000	11,4	-0,1	-2	1,0

Характеристики динамического влияния городской застройки на профиль ветра при неустойчивой стратификации

Значительный интерес представляют данные о высоте влияния мезонеоднородностей. За высоту влияния принимался уровень, выше которого различия в температуре, скорости и направлении ветра (по наблюдениям в двух пунктах) либо отсутствовали, либо становились не зависящими от высоты.

Получены данные о высоте теплового влияния города (так называемой «тепловой шапки») при различных метеорологических условиях. В среднем «тепловая шапка» захватывает слой ~200 м (при инверсии ~160 м, при нейтральных условиях ~230 м).

Динамическое влияние города сказывается в довольно большом слое. Чтобы проследить высоту, до которой проявляется динамическое влияние города, были обработаны данные параллельных шаропилотных и радиопилотных наблюдений в экспедиции КЭНЭКС-71 [5]. Для дневных часов получены осредненные по 13 зондированиям профили ветра и температуры для Уральска (пункт радиозондирования расположен на окраине города) и для условий открытой степи в 80 км от Уральска (по шаропилотным наблюдениям и данным аэростатного и вертолетного зондирования).

В табл. 2 представлены разности между скоростью $(V_z - V'_z)$ и направлением $(d_z - d)$ ветра в степных условиях и в условиях города. Там же даны коэффициенты ослабления ветра при изменении характера подстилающей поверхности, а также вертикальный профиль температуры воздуха. Как видно из приведенных данных, высота влияния города (в данном случае только динамического, так как различия в температуре практически отсутствуют) составляет 1,5—2,0 км, а угол поворота ветра в пограничном слое увеличивается над городом на 10°.

Для исследования влияния мезонеоднородностей подстилающей поверхности привлекались также материалы наблюдений Пахта-Аральской экспедиции, где проводились одновременные наблюдения над хлопковыми полями (Пахта-Арал) и в полупустыне (Голодная степь). Подстилающая поверхность в пунктах наблюдений отличалась не только характером растительности, но и условиями увлажнения, так как хлопковые поля периодически орошались [1, 3]. Это обусловливало существование над хлопковым полем инверсионного распределения температуры в течение суток. В полупустыне в дневные часы пограничный слой был стратифицирован неустойчиво. Протяженность оазиса по длине ~27 км, по ширине 4—5 км, расстояние между пунктами наблюдений составляло 25 км. Анализ материалов шаропилотных наблюдений проводился отдельно для дневных и ночных сроков, что позволило оценить высоту влияния неоднородностей при различном характере стратификации.

Осредненные по 39 случаям профили скорости и направления ветра приводятся на рис. 2. В дневные часы так же, как и в Уральске, влияние мезонеоднородностей прослеживается до высоты ~2 км, в ночные (при устойчиво стратифицированном пограничном слое) — до высоты 1—1,2 км.

Особенности вертикального распределения ветра над хлопком и в полупустыне анализировались в [4]. Значительные расхождения в скорости и направлении ветра в указанных пунктах, как уже отмечалось выше, обусловлены не только характером подстилающей поверхности, но и различной стратификацией воздуха в пограничном слое. В связи с этим не удалось проследить по материалам Пахта-Аральской экспедиции влияние характера подстилающей поверхности на угол поворота ветра в пограничном слое.

Таким образом, имеющиеся данные свидетельствуют, что высота влияния мезонеоднородностей с горизонтальными размерами порядка нескольких десятков километров составляет 1—2 км, т. е. практически их влияние проявляется в пределах всего пограничного слоя.

Рис. 2. Средние профили скорости V и направления d ветра по одновременным наблюдениям в полупустыне (1) и над хлопком (2). $a - дневные часы, \delta - ночные.$

В заключение следует отметить, что результаты исследований такого рода могут быть использованы не только для оценки влияния микро- и мезонеоднородностей на характеристики ветра, но и для отработки методики наблюдений и исследований в условиях неоднородной подстилающей поверхности, в частности при определении структуры мезометеорологического полигона в районе большого города [10].

СПИСОК ЛИТЕРАТУРЫ

- Айзенштат Б. А., Огнева Т. А., Борушко И. С. Влияние орошения на распределение метеорологических элементов в приземном слое.—«Тр. ГГО», 1953, вып. 39(101), с. 61—90.
- 2. Барштейн М. Ф. Современное состояние вопроса о воздействии ветра на высотные сооружения.— «Тр. ИЭМ», 1972, вып. 27, с. 3—11.
- Воронцов П. А. Микроаэрологические исследования термического режима в нижнем 400-метровом слое.—«Тр. ГГО», 1953, вып. 39(101), с. 104—132.

- 4. Воронцов П. А., Казаков Л. А. Особенности ветрового режима над хлопковым оазисом и полупустыней.—«Тр. ГГО», 1953, вып. 39(101), с. 133-142.
- 5. Лазарева Н. А. и др. Профили метеорологических элементов по материалам наблюдений. — «Тр. ГГО», 1973, вып. 296, с. 22—30. 6. Курпакова Т. А., Орленко Л. Р. Профиль ветра в пограничном слое
- атмосферы по экспериментальным данным.— «Тр. ГГО», 1970, вып. 257. c. 64—73.
- 7. Orlenko L. R. Wind and its technical aspects.- "WMO Technical Note", 1970, No. 109, p. 38-56.
- 8. Орленко Л. Р., Шкляревич О. Б. Некоторые особенности в распределении ветра и температуры в пограничном слое в холодный период.-«Тр.
- гГО», 1973, вып. 297, с. 184—197.
 9. Семашко К. И. Движение турбулентных потоков в застройке с учетом их скоростей.—«Тр. ИЭМ», 1972, вып. 27, с. 143—150.
 10. Скляров В. М. О проекте развития мезометеорологических наблюдений
- в Москве и Подмосковье.—«Метеорол. и гидрол.», 1973, № 6, с. 93—96.
О.Б.ШКЛЯРЕВИЧ

О ПРОФИЛЯХ СИЛЬНЫХ ВЕТРОВ В ПОГРАНИЧНОМ СЛОЕ АТМОСФЕРЫ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

Для решения ряда прикладных задач, в частности для расчета ветровых нагрузок на строительные сооружения, требуется знание вертикального распределения сильных ветров в нижнем километровом слое над различными районами. Для получения расчетных скоростей на высотах используются закономерности изменения скорости ветра с высотой в нижнем слое атмосферы [2, 3, 16], а также метод статистической экстраполяции [7]. Однако профили расчетных скоростей, полученных статистической экстраполяцией, не характеризуют мгновенные профили сильных ветров. В связи с этим представляет интерес исследование вертикального распределения сильных ветров в пограничном слое по экспериментальным данным.

Измерение скоростей ветра на высотных мачтах немногочисленны, особенно мало данных при больших скоростях ветра, а экспелиционные материалы носят эпизодический характер. В связи с этим целесообразно к исследованию закономерностей изменения сильных ветров с высотой в пограничном слое атмосферы в различных физико-географических условиях привлекать данные температурно-ветрового зондирования на сети аэрологических станций [3, 7]. Некоторые результаты анализа профилей сильных ветров с использованием данных аэрологических наблюдений приводятся ниже.

Методика обработки и группировки исходного материала

В работах [11, 13] разработана методика обобщения данных радиозондирования атмосферы при стационарных и горизонтально однородных условиях в зависимости от определяющих параметров.

Как известно, на распределение ветра в пограничном слое существенно сказывается наличие адвекции температуры. Для адвективных условий скорость ветра в пограничном слое можно рассматривать как функцию следующих безразмерных параметров:

$$\frac{lz}{V_{g_0}}; \frac{g}{\overline{T}l} \frac{T_0 - T_H - \gamma_H H}{V_{g_0}}; \frac{z_0 l}{V_{g_0}}; \frac{a_x}{l} H \frac{a_y}{l} [11, 17],$$

где V_{g0} — скорость наземного геострофического ветра; z0 — пара-

метр шероховатости; $l=2\omega \sin\varphi$ — параметр Кориолиса; ω — угловая скорость вращения земли, φ — широта; \overline{T} , $T_{\rm H}$ и T_0 — средняя температура слоя, температура воздуха на верхней границе пограничного слоя и у подстилающей поверхности соответственно; H высота пограничного слоя, $\gamma_{\rm H}$ — градиент температуры в свободной атмосфере; $\alpha_x = -\frac{g}{l\overline{T}} \frac{\partial \overline{T}}{\partial y}$; $\alpha_y = \frac{g}{l\overline{T}} \frac{\partial \overline{T}}{\partial x}$; $\frac{\partial \overline{T}}{\partial y}$ — составляющие среднего в пограничном слое горизонтального температурного градиента по осям X и Y соответственно.

Сильные ветры в пограничном слое атмосферы чаще всего обусловлены циклонической деятельностью и связаны с фронтальными разделами. При прохождении фронтов стационарность в пограничном слое нарушается. Фронтальные разделы обычно характеризуются большими значениями горизонтальных градиентов температуры, что приводит к особенностям изменения с высотой распределения ветра и температуры.

Необходимость учета влияния горизонтального градиента температуры (в ряде случаев существенно зависящего от высоты) на строение пограничного слоя требует разработки методики группировки исходных данных при наличии адвекции.

Для исследования профилей сильных ветров использовался материал температурно-ветрового зондирования на ст. Воейково и данные градиентных наблюдений на ст. Колтуши. Дополнительно привлекались данные еще трех аэрологических станций (Безенчук, Великие Луки, Каунас) лесостепной зоны ЕТС.

К сильным ветрам относились случаи, когда на одном из уровней в нижнем 1—1,5-км слое скорость ветра превышала 15 м/с. Подбор случаев сильных ветров производился по всем четырем срокам радиозондирования. Полагалось, что из-за наличия сильных ветров нестационарностью, обусловленной суточным ходом коротковолновой радиации, можно пренебречь.

Группировка исходных данных осуществлялась в зависимости от определяющих параметров и характера синоптической обстановки отдельно для теплого и холодного периодов. В течение каждого из этих периодов параметр шероховатости z_0 изменялся незначительно. Для теплого периода он был равен 1,7 см, для холодного 0,07 см (устойчивый снежный покров высотой более 10 см). Были выделены случаи с антициклоническим характером погоды и случаи, характеризующиеся прохождением циклонов и атмосферных фронтов. В пределах указанных групп данные наблюдений группировались в зависимости от характера адвекции.

Как известно, в свободной атмосфере основную роль в изменении ветра с высотой играет изменение градиента давления под влиянием горизонтального градиента температуры. В зависимости от величины барического градиента $\frac{\partial p}{\partial n}$ на исходном уровне и температурного градиента $\frac{\partial T}{\partial n}$, а также угла между ними, наблюдается различный характер изменения скорости и направления геостро-

фического ветра с высотой [6, 9]. Это позволяет по изменению скорости и направления геострофического ветра в слое Δz судить о характере адвекции в этом слое.

При механизированной обработке материалов температурно-ветрового зондирования оценку характера адвекции целесообразно проводить по профилю реального ветра. В связи с этим проведено сопоставление реального и геострофического ветра на уровне 850 мб (~1,5 км) и 700 мб (~3 км). В среднем реальный и геострофический ветер практически совпадают (коэффициент корреляции 0,98). Это означает, что профиль реального ветра с достаточной точностью может использоваться для оценки горизонтальных градиентов температуры на основе геострофических соотношений.

Как отмечалось в работе [11], изменение геострофического ветра в слое 0-1,5 км в ряде случаев довольно хорошо коррелирует (как по знаку, так и по величине) с изменениями геострофического ветра в слое 1,5-3,0 км. Это позволяет при анализе данных судить о наличии горизонтального градиента температуры в пограничном слое по изменению скорости и направления реального ветра в свободной атмосфере. Однако такой подход возможен не всегда. Как показали оценки, при наличии фронтов в пограничном слое корреляция горизонтальных градиентов температуры в свободной атмосфере и пограничном слое может отсутствовать. При постоянных по высоте значениях скорости и направления ветра в свободной атмосфере в пограничном слое часто наблюдается либо адвекция тепла, либо адвекция холода. Это и обусловило необходимость учета синоптической обстановки при группировке материалов наблюдений. Для характеристики адвекции в пограничном слое дополнительно привлекаются данные о скорости $V_{g_{\alpha}}$ и направлении d_е наземного геострофического ветра.

Таким образом, в зависимости от изменения скорости ΔV_g и направления Δd_g ветра в свободной атмосфере и синоптической обстановки были выделены группы, характеризуемые:

- постоянством скорости и направления геострофического ветра в свободной атмосфере;
- ростом или уменьшением V_g при постоянном направлении ветра в свободной атмосфере;
- ростом или убыванием V_g при правом повороте ветра в свободной атмосфере;
- возрастанием или убыванием V_g при левом повороте ветра в свободной атмосфере;
- постоянством, ростом или уменьшением скорости геострофического ветра с высотой при d_g = const в свободной атмосфере и левым поворотом ветра вблизи поверхности земли.

В каждой из выделенных по характеру адвекции групп исходный материал был разбит с учетом стратификации и положения задерживающих слоев. В результате проведенной классификации были выделены группы, объединяющие случаи с распределением температуры с высотой, близким к линейному, группы с приземной инверсией, а также с приподнятой инверсией.

При линейном распределении температуры с высотой в холодный период состояние пограничного слоя близко к нейтральному (средний градиент температуры близок к 0,6°/100 м), в теплое полугодие часто наблюдается вблизи поверхности земли слабо неустойчивая стратификация. При группировке случаев с приземной инверсией и при наличии задерживающих слоев учитывалась высота верхней и нижней (при приподнятой инверсии) границ инверсии.

Для выделенных групп получены средние профили ветра и температуры. Число случаев, используемых при осреднении в большинстве групп составляло ~15÷20. Средние профили ветра и температуры при равновесных условиях и при наличии приземной инверсии по ст. Воейково для холодного периода представлены в табл. 1 и 2, где также приводятся данные о скорости и направлении наземного геострофического ветра. В таблицах приняты следующие обозначения:

I — циклонический характер погоды, пограничный слой стратифицирован нейтрально;

II — циклонический характер погоды, приземная инверсия;

III — антициклонический характер погоды, приземная инверсия; 1. $\Delta V_g = 0$, $\Delta d_g = 0$ (квазистационарные условия);

2. $\Delta V_g > 0$, $\Delta d_g = 0$;

3. $\Delta V_g < 0, \Delta d_g = 0;$

4. $\Delta V_g > 0$, $\Delta d_g > 0$; 5. $\Delta V_g < 0$, $\Delta d_g < 0$;

6. $\Delta V_{g} > 0$, $\Delta d_{g} = 0$, левый поворот вблизи поверхности земли.

О величинах ΔV_{g} и Δd_{g} в слое 0—1,5 км можно судить непосредственно по данным табл. 1 и 2.

Общая характеристика выделенных групп

При антициклоническом типе погоды усиление ветра обусловлено большими барическими градиентами в переходной зоне от области повышенного к области пониженного давления, где отмечается малая антициклоническая кривизна изобар и изогипс.

В том случае, когда над пунктом наблюдения располагался гребень высокого давления, наблюдалась, как правило, безоблачная погода, характеризуемая слабой адвекцией (в табл. 2 группа III₁). Перенос воздушных масс, сопровождаемый ростом или уменьшением скорости геострофического ветра с высотой, наблюдался, когда пункт наблюдения находился на периферии антициклона. При этом отмечалось натекание облачности верхнего яруса (в табл. 2 группы III₂, III₃). Направление геострофического ветра в свободной атмосфере dg в этом случае не изменяется.

Для антициклонического барического поля характерно наличие приземной инверсии, связанной с выхолаживанием у поверх-

Таблица 1

	·	I,]		I ₂	[I e	
2 М	n=14; V d_g	$g_0 = 16.2$ $g_0 = 226^\circ$	м/с;	n=20; V	$g_0 = 16,8$ $g_0 = 237^{\circ}$	м/с;	n=14; V d	″g₀=16,8 g₀=249°	м/с;
	ť°	V м/с	d°.	t°	V м/с	d°	t°	V м/с	d°
0	-2,3			—1,7			-2,6		
0,25		4,9			4,6			5,5	
0,5	—1,8	5,4		0,0	5,4		—1,4	6,0	
1,0		5,9			6,0			6,6	
2,0	1,6	6,5		0,2	6,7		-1,2	7,3	
4,0		7,0			7,3			7,9	
8,6		7,8			8,2			9 ,0	
10,0		7,9	229		8,3	244		9,0	246
Флюгер		6,3	2 25		6,8	239		6,0	239
100		10,6	235	-	12,1	247		12,0	236
130	—2,1	11,5	236	—1,1	13,4	248	—1,3	12,9	234
200		13,1	238		15,1	250		14,0	232
430	3,9	16,6	252	—2,9	17,4	261	—3,4	17,1	238
500		17,1	25 5		18,0	264		17,4	238
93 0	7,1	17,5	267	—5,9	18,7	276	—7,0	18,8	244
1430	—9,9	17,8	268	8,1	19,1	276	—10,1	18,3	245
1930	—12,8	18,1	266	—11,4	19,8	276	—12,6	18,9	248
2 930	—19,1	17,9	267	—16,6	23,1	276	—19,1	22,9	248
3930	-26,2	18,5	269	—23,3	28,0	274	24,6	27,0	248
4930	33,7	18,4	268		31,0	273		29,0	246
5930	—40,5	18,7	266	—36,0	37,2	273	36,3	31,3	246
	1		1	1	1	1	1	1	1

Средние профили сильных ветров и температуры при равновесных условиях в холодный период. Ст. Воейково

ности земли. Возможны случаи, когда при антициклоническом типе погоды существуют приподнятые инверсии, которые, по всей видимости, являются остаточными инверсиями.

Согласно работе [11], при больших скоростях ветра ($V_g \ge 18 \text{ м/c}$) при стационарных безадвективных условиях стратификация в пограничном слое является практически нейтральной. Приземные инверсии при таких скоростях разрушаются. Сохранение приземной инверсии при антициклоническом характере погоды можно объяснить тем, что при такой группировке оказались включительными случаи со слабыми ветрами в приземном слое. Большие скорости

1/ 8 624

Средние	профили	силеных	ветров	И	температуры	В	холодный

			II ₁		1	112			II4			II ₅		
2 M		n=9; V $d_{cr}=20$	g ₀ =16,2	м/с -90	n=8; V	$g_0 = 17,8$	м/с —82	n=18; 1	$g_{0} = 13,1$	∟м/с 230	n=9; V	g = 15,5	M/C	ľ
	•	h	д=540 м		go h	520 м		^{-g} ₀ h	и <mark>, —95</mark> 0 м	200	n ago-1	и=700 м	210	
<u> </u>		ť°	V м/с	d°	ť	V м/с	d°	ť°	<i>V</i> м/с	d°	t°	V м/с	d° ∣	2
0		-7,2			-6.1			-6.1			_71			ŀ
0,25			4,0			4.2		- ,-	32			45		
0,5		7,5	4,5		-4,9	4,7		-6,9	3.7		-9.2	5.1		
1,0			4,9			5,2			4,1		-,	5.5		
2,0		-7,3	5,5		4,9	5,7		-6,7	4,6		-9,1	6,0	i i	
4,0			6,0			6,3			5,1	ŀ		6,6		
8,6			6,7			7,1			5,7			7,2		
10,0			6,9	244		7,3	230		5,8	196		7,4	157	
Флюгер			5,8	230	1	5,2	222		5,4	195		7,8	147	ĺ
100			10,7	236		11,8	236	1 N	10,6	208		12,8	157	
130	1	-6,6	11,7	236	—5,2	13,2	243	—6,1	11,2	211	—9,0	15,0	160	
2 0 0			13,0	237		16,2	245	е — <u>с</u>	13,0	218		16,2 [.]	170	
430	÷., .	—5,8	18,9	276	— 4,3	18,5	262	-5,2	16,4	238	—7,3	19,8	190	
490													· .	
500	•		18,8	278		19,5	264		16,3	241		20,1	193	
520		· .			3,7	18,0	264	-			•			
540		5,4	18,4	277		-		-						
590					н а									
630														
70 0											—5,2	21,6	200	
930		7,7	17,7	284	-7,1	17,0	268	-4,4	16,7	294	—6,0	21,8	202	
950					: ••			-3,7	17,2	246				ĺ
1000														
1430		-10,4	17,5	287	—9,5	18,0	271	-6,3	14,9	251	-7,7	18,5	202	
1930		—13,9	17,1	287	-12,5	19,0	270	-8,8	14,4	259	—10,0	18,5	207	
2930		-19,8	16,5	284	—18,0	24,8	269	-12,9	14,5	274	—15,0	11,8	218	
3930		-26,4	17,3	284	-24,0	29,4	266	-18,5	17,7	283	—20,9	11,4	235	į
4930		-34,2	16,8	282	-29,5	32,0	268	-25,0	18,4	291	-27,6	11,4	248	ĺ
5930		-39,8	17,3	298	-34,8	38,0	264	-31,6	21,6	311	—35,0	10,9	263	ł
			l i	L			1.	1	1.0	1				ļ

Таблица 2

период при наличии приземной инверсии. Ст. Воейково

$- \frac{II_2}{\substack{n=10; V_{g_0}=9,6 \text{ M/c}}} \frac{II_2}{g_0=269^\circ; \mu=-274}}{\substack{h_u=1000 \text{ M}}} \frac{h_u=1000 \text{ M}}{h_u=1000 \text{ M}}$				III1			III2		III ₃			
	n=10 $d_{g_0}=$; $V_{g_0} = 9$ =269°; $\mu = h_{\mu} = 1000$,6 м/с ≃—274)м	n=21; $d_{g_0}=$	$V_{g_0} = 14,$ =217°; $\mu = h_{\mu} = 590$,7 м/с — 720 м	n=11; $d_{g_0}=$	$V_{g_0} = 11$ =239°; $\mu = h_{\mu} = 490$,6 м/с =-270 м	$\begin{array}{c} n=20;\\ d_{g_0}=\end{array}$	$V_{g_0} = 16, $ = 187°; $\mu = $ $h_{\mu} = 630$	9 м/с =-270 м
-	ť°	и V м/с	d°	ť°	и V м/с	d°	ť°	и V м/с	d°	t°	<i>и</i> V м/с	d°
	_45			_137			12.3			126		
	1,0	38		-10,1	28		-12,0	3.2		-12,0	20	
	-4.9	4.2		-13.3	3.2		-112	3.6		-13.1	3.3	
	,	4,7		,-	3,6		,-	4.0		,.	3.6	
	4,7	5,2		-12,9	4,0		—10.6	4,4		—12,6	4,0	
		5,7			4,5			5,0			4,5	
		6,4			5,1			5,8			5,5	
		6,6	221		5,2	176		5,9	252		5,7	181
		6,7	221		4,9	162		5,4	246		5,7	191
		11,0	233	1	10,9	175		11,6	257		12,7	199
	3,8	12,3	238	—10,7	12,1	178	—10,1	12,6	261	—10,2	14,0	203
		13,9	240		13,9	186		14,1	267		17,0	212
	3,1	15,4	257	—6,8	17,2	198	_7,7	16,2	279	—5,3	19,3	225
							-7,2	16,4	277			
		15,6	260		17,3	201		16,8	280		19,2	226
												-
				5,1	17,9	199						
										10	10.6	226
										-4,5	15,0	,220
	-2.3	17.8	276	-6.6	17.1	201	-9.7	17.4	281	-5.5	18.7	227^{-1}
				· · ·	- ,-		-,-	,-		- ,-		
	-2,3	18,0	280									
	-4,0	17,1	284	-7,7	16,2	202	-12,0	17,7	282	-6,9	18,5	228
	-6,4	16,9	290	—9,7	16,3	202	—14,8	18,4	280	-9,6	18, 3	228
	—1 2,3	19,7	2 90	-14,0	10,7	206	—19,6	21 ,1	278	—14,2	14,6	228 ⁻
	—17,4	23,0	29 0	—19,7	10,4	208	-26,4	25,3	28 2	—19,8	11,9	230
	—23,6	27,0	29 0	-25,2	10,1	210	-32,1	27,3	280	-26,2	10,1	228
	— 3 0 ,4	30,6	289	-31,4	1 0 ,6	208	38,6	31,6	281	-33,0	10,1	229 [,]
				1			1		1	i		

ветра при отсутствии фронтальных разделов связаны с наличием струйных течений у верхней границы инверсии [13], где скорость реального ветра может существенно превосходить скорость геострофического ветра.

Наиболее часто сильные ветры наблюдались при циклонической деятельности, при этом отмечалось изменение как скорости, так и направления геострофического ветра с высотой. Имеет место либо адвекция тепла, либо адвекция холода. Отмечались также случаи левого поворота ветра вблизи поверхности земли при постоянном направлении в свободной атмосфере. Такие случаи имеют место при прохождении вторичных холодных фронтов или фронтов окклюзии по типу холодного. При этом отмечается как линейное изменение температуры с высотой (в табл. 1 группа I₆), так и приподнятая инверсия, которая сохраняется после прохождения основной системы холодного фронта.

Отсутствие адвекции в свободной атмосфере ($\Delta V_g = 0$, $\Delta d_g = 0$) при циклонической деятельности отмечается в тех случаях, когда пункт наблюдения расположен на далекой периферии области пониженного давления. При этом либо фронты отсутствуют (в табл. 1 группа I₁), либо возможно прохождение слабо выраженных теплых фронтов и фронтов окклюзии (в табл. 2 группа II₁).

В зависимости от расположения фронтов по отношению к пункту наблюдения отмечается приземная инверсия (пункт в зоне фронта) и приподнятая инверсия (фронтальная поверхность на некоторой высоте над подстилающей поверхностью). Приземные инверсии при сильных ветрах имеют место при наличии теплых фронтов. При прохождении холодных фронтов приземные инверсии отсутствуют. Приземная инверсия может наблюдаться также и при отсутствии фронта при затоке теплого воздуха по периферии циклонической области (в табл. 2 группы II₄ и II₅).

Приподнятую инверсию чаще всего связывают с адвекцией тепла в передней части циклона при приближении теплого фронта или же с инверсией оседания в антициклоне [5, 20]. Анализ полученных данных с учетом синоптической ситуации показал, что приподнятые инверсии имеют место при прохождении не только теплых, но и холодных фронтов. Толщина слоя приподнятой инверсии составила в теплый период 300—500 м. В холодный период толщина слоя инверсии зависит от ее высоты над поверхностью земли. При высоте верхней границы инверсии h_{u_2} в пределах нижнего километрового слоя толщина слоя инверсии составила 300—700 м, при h_{u_2} выше z=1 км толщина инверсии для различных групп колеблется в пределах от 500 до 1000 м.

Часто температурный контраст на фронтальной поверхности бывает незначителен, в результате этого прохождение фронта в ходе температур не прослеживается. В таких случаях наблюдается изменение температуры с высотой, близкое к линейному (в табл. 1 группа I_2). В настоящей работе прежде всего ставилась задача получения количественных характеристик профилей сильных ветров при различных условиях. Полученный материал использовался при анализе влияния различных факторов на распределение сильных ветров в пограничном слое. Некоторые результаты такого анализа приводятся ниже.

При анализе профилей ветра в безразмерной форме скорость ветра на высоте z нормируется на скорость геострофического ветра. Для практических целей наибольший интерес представляет соотношение скорости ветра на высотах к скорости ветра у поверхности земли. Анализ влияния стратификации при стационарных безадвективных условиях [8, 13] показал, что при прочих равных условиях увеличение устойчивости приводит к уменьшению скорости ветра у поверхности земли и увеличению коэффициентов нарастания скорости ветра $\frac{V_z}{V_{10}}$ с высотой.

Как указывалось выше, при больших скоростях ветра происходит разрушение инверсии. При прохождении фронтальных разделов инверсия (как приземная, так и приподнятая) сохраняется и при сильных ветрах.

В работе [13] указывалось на усиление ветра вблизи верхней границы приземной инверсии при стационарных и горизонтально однородных условиях, причем интенсивность струи увеличивается с ростом устойчивости и скорости геострофического ветра.

Указанная особенность в изменении ветра с высотой при наличии инверсии имеет место и в нестационарном пограничном слое. Существование струйных течений в пограничном слое при алвекции температуры отмечается в ряде работ [4, 14, 15, 19], в которых чаще всего указывается на наличие максимума скорости ветра вблизи верхней границы инверсии. Такие же выводы получены и при анализе профилей сильных ветров по имеющимся данным. Однако высота максимума скорости ветра в струе не всегда совпадает с верхней границей приземной инверсии. В холодное полугодие, когда наблюдается мощная приземная инверсия с высотой верхней границы около 1000 м высота струи zm может быть существенно меньше верхней границы инверсии h_u . Случаи, когда высота z_m значительно выше границы приземной инверсии, редки. Они встречаются при низких инверсиях при небольшой устойчивости в пограничном слое. Отсутствие максимума скорости ветра в слое инверсии характерно для инверсий выхолаживания при антициклональном характере погоды при больших значениях скорости нагеострофического ветра. В свободной земного атмосфере в этом случае часто наблюдается рост скорости ветра с высотой.

Интенсивность струи $\frac{V_{z_m} - V_{g_0}}{V_{g_0}}$ определяется устойчивостью

8 624

нижнего слоя воздуха. С ростом устойчивости величина

возрастает.

Наличие приземной инверсии оказывает влияние на распределение сильных ветров в нижнем слое атмосферы. Независимо от характера адвекции увеличение устойчивости в пограничном слое атмосферы приводит к увеличению скорости нарастания ветра с высотой. Наибольшие изменения скорости ветра с высотой имеют место вблизи границы инверсии, если наблюдается струя. При

 $\frac{V_{z_m} - V_{g_0}}{V}$

сильной устойчивости влияние стратификации на величину V_z/V_{10} часто существенно больше, чем влияние адвекции.

Полученный материал позволил также оценить влияние приподнятой инверсии на распределение ветра. При наличии задерживающих слоев, так же как и при приземной инверсии имеют место струйные течения. В работах [10, 20] указывается наличие максимума скорости ветра у нижней границы приподнятой инверсии. В работе [1] положение струи связывается с характером адвекции, причем при адвекции тепла максимум скорости ветра в струе отмечается в слое инверсии, при адвекции холода на нижней границе инверсии или в подынверсионном слое.

Как показал анализ, независимо от характера адвекции z_m может совпадать как с нижней, так и с верхней границей инверсии, а также располагаться внутри слоя инверсии. Установить закономерности расположения струи по отношению к задерживающим слоям очень трудно из-за многообразия факторов, влияющих на высоту z_m : величины и мощности инверсии, стратификации подинверсионного слоя, скорости наземного геострофического ветра, горизонтального градиента температуры. Удалось лишь проследить влияние скорости геострофического ветра. При $V_{g_0} \leq 17$ м/с чаще всего максимум скорости ветра в струе располагается вблизи нижней границы инверсии, при значениях V_{g_0} выше указанной величины — вблизи верхней границы инверсии.

Указанные выше факторы определяют и характер изменения скорости ветра с высотой при наличии приподнятой инверсии. На рис. 1 составлены профили V_z/V_{10} при стационарных и квазистационарных условиях при различном положении задерживающих

слоев. Наличие приподнятой инверсии приводит к увеличению V_z/V_{10} в подынверсионном слое, но вблизи поверхности земли это увеличение небольшое, причем V_z/V_{10} больше, если максимум скорости ветра в струе располагается у нижней границы инверсии. Увеличение неустойчивости в подынверсионном слое (при прочих равных условиях) приводит к уменьшению отношения V_z/V_{10} .

В настоящее время известно очень мало работ, посвященных изучению закономерностей распределения ветра в пограничном слое атмосферы при существенной неоднородности поля температуры. К числу последних относится работа [17], в которой на основе обработки фактического материала анализируется влияние горизонтальных градиентов температуры на распределение ветра в пограничном слое.

Для целей прогноза представляет интерес рассмотреть отношение скорости ветра у поверхности земли к скорости геострофического ветра. Теоретические оценки [18] показали, что влияние адвекции на скорость ветра у поверхности земли существенно лишь при больших значениях горизонтального градиента температуры. На рис. 2 представлена зависимость V_{10}/V_{g_0} от V_{g_0} по осредненным данным при стационарных и адвективных условиях. Из рисунка видно, что экспериментальные данные подтверждают теоретические оценки. При наиболее часто наблюдаемых значениях $\frac{\partial \overline{T}}{\partial x}$ и $\frac{\partial \overline{T}}{\partial y}$ влияние адвекции невелико. Методика учета влияния адвекции рассмотрена в работе [12].

Полученный материал позволил выполнить анализ влияния ΔV_g и Δd_g на изменение сильных ветров с высотой. Как и следовало ожидать, рост V_g и правый поворот ветра с высотой приводит

Рис. 3. Профили V_z/V₁₀ при различном характере адвекции. Ст. Воейково, холодный период.

 $\begin{array}{l} I - \text{стационарные условия [12]; } 2 - \Delta V_g < 0, \ \Delta d_g = 0, \ \text{приподнятая инверсия; } 3 - \Delta V_g > 0, \\ \Delta d_g = 0, \ \text{равновесные условия; } 4 - \Delta V_g < 0, \ \Delta d_g < 0, \ \text{приподнятая инверсия; } 5 - \Delta V_g < 0, \\ \Delta d_g = 0, \ \text{приподнятая инверсия; } 6 - \Delta V_g > 0, \ \Delta d_g = 0, \ \text{прилоднятая инверсия; } 7 - \Delta V_g < 0, \\ \Delta d_g > 0, \ \text{приземная инверсия; } - - - \ \text{границы инверсия.} \end{array}$

к увеличению коэффициентов нарастания скорости ветра с высотой, а убывание V_g и левый поворот — к их уменьшению. В качестве иллюстрации на рис. З приводятся профили V_z/V_{10} при различном характере изменения скорости и направления геострофического ветра с высотой. В зависимости от характера адвекции V_{500}/V_{10} меняется в широких пределах: от 2,0 до 2,75 (при стационарных условиях $V_{500}/V_{10}=2,12$). Это указывает на необходимость учета горизонтального градиента температуры при расчетах вертикальных профилей сильных ветров.

- 1. Абрамович К. Г. Некоторые особенности переноса в нижних слоях атмосферы и их роль в формировании стратификации при нижней облачности.— «Тр. ГМЦ», 1967, вып. 7, с. 50-63.
- 2. Борисенко М. М. Об особенностях вертикального профиля сильных ветров по данным измерений ветра на высотных мачтах.— «Тр. ГГО», 1969, вып. 241, c. 108-115.
- 3. Борисенко М. М. Расчет вертикальных профилей ветра при больших скоростях. Информационное письмо № 7. М., Гидрометеоиздат, 1969, с. 3-8.
- 4. Воронцов П. А. Струйные течения пограничного слоя атмосферы. «Тр. ГГО», 1967, вып. 205, с. 77—92.
- 5. Глазунов В. Г. Вертикальные сдвиги при различной стратификации температуры в нижнем 300-метровом слое атмосферы.—«Тр. ГМЦ», 1972, вып. 60, c. 3—12.
- 6 Гандин Л. С., Лайхтман Д. Л., Матвеев Л. Т., Юдин М. И. Осно-вы динамической метеорологии. Л., Гидрометеоиздат, 1955, с. 191—201.
- 7. Заварина М. В. Расчетные скорости ветра. Л., Гидрометеоиздат, 1971. 163 c.
- 8. Курпакова Т. А., Орленко Л. Р. Профиль ветра в пограничном слое атмосферы по экспериментальным данным.—«Тр. ГГО», 1970, вып. 257, c. 64-73.
- 9. Матвеев Л. Т. Основы общей метеорологии. Физика атмосферы. Л., Гидрометеоиздат, 1955, с. 331-336.
- 10. Машкова Г. Б. О структуре инверсионных слоев.—«Тр. ИПГ», 1967, вып. 10, с. 44—51.
- 11. Орленко Л. Р. К методике обработки данных температурно-ветрового зондирования в пограничном слое атмосферы.—«Тр. ГГО», 1970, вып. 257, c. 58—63.
- 12. Орленко Л. Р. К учету адвекции и агеострофических отклонений при расчете ветра и касательного напряжения над водной поверхностью.— «Ме-теорол. и гидрол.», 1971, № 7, с. 44—50.
- 13. Орленко Л. Р., Шкляревич О. Б. Некоторые особенности в распределении ветра и температуры в пограничном слое в холодный период. «Тр. ГГО», 1973, вып. 297, с. 184—198.
- 14. Снитковский А. И., Королева Т. А. Штормовые и ураганные ветры на ЕТС 17—19 IV, 1967.— «Тр. ГМЦ», 1968, вып. 32, с. 63—69. 15. Снитковский А. И., Кошелькова Г. А. Мезоструи над Москвой.—
- «Тр. ГМЦ», 1969, вып. 56, с. 3-14.
- 16. Строительные нормы и правила. Ч. 11, раздел А, гл. 11, М., Госстройиздат, 1962.
- 17. Утина З. М. О влиянии горизонтальной неоднородности температуры на строение пограничного слоя атмосферы.—«Тр. ГГО», 1962, вып. 127, с. 134— 144.
- 18. Утина З. М. О распределении ветра в пограничном слое. -- «Тр. ГГО», 1966, вып. 187, с. 146—148.
- 19. Цверава В. Г. Струйные течения в пограничном слое атмосферы.—«Метеорол. и гидрол.», 1967, вып. 10, с. 71-75.
- 20. Цверава В. Г. Некоторые особенности строения нижних слоев атмосферы при больших скоростях ветра.-«Метеорол. и гидрол.», 1968, № 12, с. 70-73.

О. Б. ШКЛЯРЕВИЧ

КОЭФФИЦИЕНТЫ НАРАСТАНИЯ СКОРОСТИ ВЕТРА С ВЫСОТОЙ В ПОГРАНИЧНОМ СЛОЕ АТМОСФЕРЫ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

Быстрое развитие высотного строительства, авиации, ракетной техники требует знания изменения скорости ветра с высотой в нижнем слое атмосферы.

Изучение профилей ветра и коэффициентов нарастания скорости ветра с высотой в пограничном слое атмосферы ведется как на основе теоретических схем [7, 13, 16], так и по экспериментальным данным [1—3, 5, 11, 14 и др.].

В частности, в работах [5, 11, 14] анализируются изменения ветра с высотой в нижнем слое в зависимости от определяющих параметров: скорости геострофического ветра V_g , высоты z, шероховатости подстилающей поверхности, параметра Кориолиса $l=2 \omega \sin \omega$ и характера стратификации.

Для характеристики стратификации использовался параметр µ [10]

$$\mu = \frac{g}{\overline{T}} \frac{T_0 - T_H - \gamma_p H}{V_g l} \tag{1}$$

(при равновесных условиях $\mu \sim 0$, при неустойчивой стратификации $\mu > 0$, при устойчивой — $\mu < 0$).

Здесь \overline{T} , T_H и T_0 — средняя температура слоя, температура воздуха на верхней границе пограничного слоя и на уровне подстилающей поверхности соответственно, H — высота пограничного слоя (при вычислении μ вместо высоты пограничного слоя может использоваться высота поверхности 850 мб [10]), γ_p — равновесный градиент температуры, g — ускорение силы тяжести, ω — угловая скорость вращения земли, φ — широта, T_0 — T_H — $\gamma_p H$ — перепад температуры в пограничном слое, выраженный отклонением от некоторого равновесного состояния.

При адвективных условиях в качестве определяющего параметра используются составляющие среднего в слое горизонтального температурного градиента $\partial T/\partial x$ и $\partial T/\partial y$ по осям x и y соответственно [13].

Как было показано в работах [5, 11, 16], где рассматриваются стационарные и горизонтально однородные условия, коэффициенты нарастания скорости ветра с высотой в пограничном слое

V_z/V₁₀ существенно зависят от определяющих параметров. Основные выводы указанных исследований сводятся к следующему.

Коэффициенты нарастания скорости ветра возрастают с увеличением шероховатости подстилающей поверхности и уменьшением скорости геострофического ветра (в пределах нижнего 200-метрового слоя).

С ростом устойчивости (при прочих равных условиях) V_z/V_{10} возрастает. Причем эта зависимость существенна при малых положительных и отрицательных значениях параметра стратификации μ . При сильной устойчивости значение V_z/V_{10} меняется незначительно. Такой характер зависимости сохраняется при всех скоростях ветра.

Точный учет определяющих параметров возможен лишь в рамках теоретической схемы.

В связи с тем что существующие схемы строения пограничного слоя атмосферы не получили достаточной проверки на экспериментальном материале, сделана попытка разработать упрощенную методику расчета коэффициентов нарастания скорости ветра V_z/V_{10} , с достаточной точностью учитывающую влияние всех рассмотренных факторов. При этом ставилась задача определения V_z/V_{10} по данным о скорости геострофического ветра или скорости ветра V_{10} на уровне z = 10 м.

Как показывают теоретические оценки [12, 16], по сравнению с параметрами V_g , z_0 , μ влияние параметра Кориолиса на V_z/V_g , а следовательно, на V_z/V_{10} для диапазона широт 30—80° менее существенно. Это позволяет считать в стратифицированном пограничном слое безразмерное отношение V_z/V_{10} функцией только параметров z, V_g , z_0 и μ .

Для расчета номограммы использовались прежде всего данные температурно-ветрового зондирования на ст. Воейково (для стационарных и горизонтально однородных условий), обобщенные с учетом определяющих параметров (частично эти данные приведены в работах [5, 11]). Чтобы исключить влияние мезонеоднородностей подстилающей поверхности на профиль ветра дополнительно использовались данные радиозондирования еще трех аэрологических станций (Безенчук, Великие Луки, Каунас), которые, как и ст. Воейково, находятся в одинаковых условиях по характеру подстилающей поверхности. (Согласно районированию, выполненному в работе [8], указанные станции расположены в лесостепной зоне ЕТС.) Анализ материала наблюдений проводился отдельно для теплого (май — октябрь) и холодного (характеризуемого наличием устойчивого снежного покрова) периодов. В результате было отобрано для теплого периода 469 случаев, для холодного — 447.

В приземном слое дополнительно использовались данные градиентных наблюдений на ст. Колтуши. Параметр щероховатости z_0 определялся по осредненным профилям ветра в приземном слое и составил для теплого и холодного периодов 1,7 и 0,07 см соответственно. Если рассматривать стационарный и горизонтально-однородный пограничный слой при нейтральной стратификации, то из определяющих параметров исключается параметр стратификации µ.

При равновесных условиях ($\mu = 0$) при получении зависимости V_z/V_{10} от высоты при разных V_g использовались осредненные про-

Рис. 1. Номограмма для определения коэффициентов нарастания скорости ветра с высотой в стратифицированном пограничном слое для теплого и холодного периодов.

!

Рис. 2. Зависимость функции $F(z, \mu) = \frac{(V_z/V_{10})_{\mu}}{(V_z/V_{10})_{\mu=0}}$ от стратификации.

1) z = 2 м, 2) z = 200 м. Цифры указывают число случаев, используемых при осреднении.

фили составляющих скорости ветра в безразмерных координатах: $(u/V_g \ u \ v/V_g)$ в зависимости от безразмерной высоты zl/V_g [6], построенные по данным указанных выще станций.

Полученные данные использовались при построении номограммы (правая часть рис. 1).

Как показал анализ экспериментального материала, в стратифицированном пограничном слое отношение $(V_z/V_{10})_{\mu} \ltimes (V_z/V_{10})_{\mu=0}$ с достаточной точностью можно считать функцией двух параметров

$$\frac{(V_z/V_{10})_{\mu}}{(V_z/V_{10})_{\mu=0}} \simeq F(z, \ \mu).$$
(2)

В качестве иллюстрации на рис. 2 приведена функция $F(z, \mu)$, построенная по материалам указанных выше станций для z=2 и z=200 м. Для высоты z=200 м даны также среднеквадратические отклонения.

Функция $F(z, \mu)$ использовалась при построении номограммы для определения коэффициентов нарастания ветра с высотой в стратифицированном пограничном слое при известных значениях V_g и μ на основании соотношения (2). Номограмма дана на рис. 1. Согласно [16], безразмерное отношение V_z/V_{10} при изменении параметра шероховатости z_0 меняется значительно меньше, чем абсолютная величина скорости. Поэтому полученная для теплого периода номограмма может быть использована для определения V_z/V_{10} для значения $z_0 \sim 1-3$ см.

Оценка погрешностей определения V_z/V_{10} с помощью номограммы по данным отдельных измерений показала, что абсолютная погрешность в среднем близка к нулю. Среднеквадратическое отклонение $\sigma_{V_z/V_{10}}$ при неустойчивом состоянии и равновесных условиях для высот z=100-200 м составило $\sim 0,3 \div 0,4$ при абсолютных значениях $V_z/V_{10} \sim 1,5$. При устойчивой стратификации $\sigma_{V_z/V_{10}}$ несколько больше и составило $0,6 \div 1,0$ при $V_z/V_{10} \sim 3,0$. Большие значения среднеквадратического отклонения при устойчивом состоянии в значительной мере обусловлены ошибками наблюдений за скоростью ветра как в приземном слое, так и по данным радиозондирования.

Таблица 1

		<i>z</i> ₀==0,07 см			z ₀ =1,7 см	
г м	по номограмме (V _g ==20 м/с)	по данным [16]	по данным [7]	по номограмме (Vg=20 м/с)	по данным [16]	по данным [7]
10	1,0	1,0	1,0	1,0	1,0	1,0
20	1,11	1,06	1,13	1,13	1,1	1,17
30	1,16	1,10	1,21	1,24	1,17	1,31
50	1,26	1,16	1,32	1,35	1,25	1,46
7 0	1,38	1,19	1,40	1,47	1,30	1,56
100	1,45	1,22	1,47	1,58	1,36	1,65
200	1,68	1,32		1,81	1,54	
300	1,83	1,39		1,97	1,69	

Отношение V_z/V_{10} для разных z и z_0 при равновесных условиях

Сопоставление значений V_z/V_{10} , полученных с помощью номограммы, с данными теоретических расчетов приводится в табл. 1.

В оперативной практике в качестве исходной информации часто используется скорость ветра на высоте z=10 м. Для определения V_z/V_{10} с помощью указанной выше номограммы необходимо обеспечить переход от скорости ветра на стандартном уровне к скорости геострофического ветра. Для этой цели анализировалась зависимость отношения V_{10}/V_g от V_g при различной стратификации, что позволило построить номограмму для определения V_g по известным μ и V_{10} (рис. 3).

Если измерения скорости ветра проводятся не на стандартном уровне, а на уровне z < 10 м, возникает необходимость перехода от значения скорости ветра на высоте измерений к скорости на z = 10 м. Как известно, для этой цели в нижнем 10-метровом слое

Рис. 3. Номограмма для определения скорости геострофического ветра по известному значению скорости ветра на высоте z=10 м и известной стратификации.

а) теплый период, б) холодный период.

при равновесных условиях может использоваться логарифмический закон изменения скорости ветра с высотой

$$V_z = V_{10} \frac{\ln z/z_0}{\ln 10/z_0}.$$
 (3)

При состоянии нижнего слоя воздуха, отличном от равновесного, необходимо учитывать зависимость V_z/V_{10} от стратификации. Исследованию закономерностей изменения ветра в стратифицированном приземном слое посвящено большое число работ. Чаще всего эти исследования проводятся в рамках теории подобия [4] Полученные соотношения могут быть использованы для расчет V_z/V_{10} , если известен безразмерный параметр стратификации z/Монина — Обухова [9]. Методика определения z/L по данным гра диентных наблюдений еще недостаточно отработана. Кроме того при построении номограммы в настоящей работе использовалс параметр стратификации, связь которого с параметром z/L не ис следовалась.

Таблица

			$(V_z/V_{10})_{y_z}$								
Функция	F(z,	μ) =	$\frac{(V_z/V_{10})_{\mu=0}}{(V_z/V_{10})_{\mu=0}}$	В	приземном	слое	при	различных	z	И	μ

7 M					μ			
2 M	-500	300	-2 0 0	-100	0)	100	200	300
0,25	0,80	0,81	0,83	0,90	1,0	1,06	1,08	1,08
0,5	0,83	0,83	0,85	0,92	1,0	1,06	1,08	1,08
1,0	0,85	0,86	0,87	0,94	1,0	1,05	1,07	1,08
2,0	0,86	0,88	0,91	0,96	1,0	1,03	1,04	1,05
4,0	0,92	0,93	0,94	0,98	1,0	1,02	1,03	1,03
8,6	0,98	0,98	0,99	0,99	1,0	1,01	1,02	1,02

В связи с этим потребовалось разработать методику определе ния V_z/V_{10} в стратифицированном приземном слое при известном значении параметра μ и z_0 . Для этой цели для различных высот в нижнем 10-метровом слое была получена также безразмерная

функция $F(z, \mu)$. Значения функции $F(z, \mu) = \frac{1}{(V_z/V_{10})_{\mu=0}}$ при

личных μ и z приведены в табл. 2. Как показали оценки, с достаточной точностью эту функцию можно считать независящей от числа Россби (в рассматриваемом диапазоне параметра шероховатости z_0). При значении параметра стратификации —500> μ >300 $F(z, \mu)$ практически остается постоянной. Используя соотношение (3) и данные табл. 1, можно построить номограмму для определения V_z/V_{10} в стратифицированном приземном слое при различных z_0 .

Как уже отмечалось выше, изложенная методика определения V_z/V_{10} справедлива для стационарных и горизонтально-однородных условий. Влияние различного характера адвекции на величину V_z/V_{10} рассматривается в работах [14, 15]. Учет влияния адвекции на изменение ветра с высотой требует дополнительных разработок.

СПИСОК ЛИТЕРАТУРЫ

- Борисенко М. М. Зависимость вертикальных профилей скорости ветра от температурной стратификации.— «Тр. ГГО», 1967, вып. 210, с. 21—29.
- Борисенко М. М., Заварина М. В. Вертикальные профили скоростей ветра по измерениям на высотных мачтах.— «Тр. ГГО», вып. 210, 1967, с. 11—21.
- Борисенко М. М., Заварина М. В., Цверава В. Г. Вертикальные профили скорости ветра по наблюдениям на метеорологической мачте в Обнинске.— «Тр. ГГО», 1969, вып. 246, с. 56—62 Зилитинкевич С. С., Чаликов Д. В. Определение универсальных про-
- Зилитинкевич С. С., Чаликов Д. В. Определение универсальных профилей скорости ветра и температуры в приземном слое атмосферы.—«Изв. АН СССР, сер. физ. атм. и океана», 1968, т. 4, № 7, с. 294—302.
- Курпакова Т. А., Орленко Л. Р. Профиль ветра в пограничном слое атмосферы по экспериментальным данным.— «Тр. ГГО», 1970, вып. 257, с. 64—75.
- Курпакова Т. А., Орленко Л. Р. О закономерностях распределения температуры и ветра в пограничном слое.—«Тр. ГГО», 1967, вып. 205, с. 13—24.
- Ключникова Л. А., Честная И. И. Расчет профиля больших скоростей ветра в нижнем 100-метровом слое атмосферы по наземным данным.— «Тр. ГГО», 1968, вып. 226, с. 98—106.
- Лазарева Н. А., Орленко Л. Р. Некоторые приложения физико-статистических исследований пограничного слоя атмосферы.— В кн.: Применение статистических методов в метеорологии. Л., Гидрометеоиздат, 1971, с. 138— 153.
- Монин А. С., Обухов А. М. Безразмерные характеристики турбулентности в приземном слое атмосферы.—«ДАН СССР», 1953, т. 93, № 2, с. 223— 226.
-). Орленко Л. Р. К методике обработки данных температурно-ветрового зондирования в пограничном слое атмосферы.—«Тр. ГГО», 1970, вып. 257, с. 53—63.
- I. Орленко Л. Р., Шкляревич О. Б. Некоторые особенности в распределении ветра и температуры в пограничном слое в холодный период.—«Тр. ГГО», 1973, вып. 297, с. 184—197.
- 2. Соркина А. И. Построение карт ветровых полей для морей и океанов.— «Тр. ГОИН», 1958, вып. 44, с. 28—36.
- 3. У тина З. М. О влиянии горизонтальной неоднородности температуры на строение пограничного слоя атмосферы.—«Тр. ГГО», 1962, вып. 127, с. 133—144.
- 4. Утина З. М. О распределении ветра в пограничном слое.—«Тр. ГГО», 1966, вып. 187, с. 146—148.
- 5. Шкляревич О. Б. О профилях сильных ветров в пограничном слое атмосферы по экспериментальным данным. См. наст. сб.
- 5. Orlenko L. R. Wind and it's technical aspects.— "WMO Tech. Notes", 1970, No. 109, p. 38—56.

Н. И. НОВОЖИЛО

ПРИРОДА ФЁНА1

Для горных территорий характерно большое разнообразие л кальных и мезомасштабных систем атмосферных движений. На более характерными мезосистемами, возникающими в процесс перетекания воздушных потоков через горы, являются фёны.

Особые кинематические и динамические свойства фёна, проя ляющиеся в наличии подветренной волны большой амплитуды и ве ровой струи, в литературе освещены недостаточно. Совсем не за тронуты пока причины, вызывающие большую амплитуду волни Эти вопросы рассматриваются в данной статье.

Фён — сухой и теплый, иногда горячий ветер, дующий с гор. В многих случаях он почти мгновенно достигает скорости штормовог ветра, напоминая прорыв воздуха сквозь препятствие. Температ ра при фёне повышается за несколько часов иногда на 10—15 а относительная влажность снижается до 10% и менее. Под влия нием фёна зимой происходит бурное таяние снега, а летом деревь нередко сбрасывают листву. Продолжается фён обычно не боле суток, а иногда наблюдается несколько суток подряд.

До 60-х годов прошлого столетия фён рассматривался как п ток воздуха, поступающий из горячих пустынь. В 1866 г. Ган впервые предложил физическое объяснение высокой температур и большой сухости фёна, а спустя 20 лет, в 1886 г., он дал полну теорию этого явления. Согласно теории Ганна, образование фён происходит в результате такого переваливания воздуха через гор при котором на наветренной стороне наблюдается выпадение оса ков, т. е. имеет место высушивание воздуха и некоторая темпер турная компенсация за счет выделения теплоты конденсации, а н подветренной стороне опускающийся воздух нагревается по сухо адиабате. Эта теория вскоре стала общепринятой, а в учебной ли тературе она и сейчас излагается в качестве единственной.

Однако уже в конце прошлого столетия было известно, что фё часто возникает также и в результате опускания воздуха над гор ным хребтом из свободной атмосферы, причем в этих случаях с наблюдается одновременно по обе стороны горы. В дальнейше было установлено, что при фёнах не всегда имеет место выпад ние осадков на наветренной стороне хребта, а при наличии пер валивания воздуха не всегда наблюдается фён. Аэрологические и следования подтверждают [6], то воздух, опускающийся на пол

¹ Доклад на конференции по горной метеорологии в октябре 1971 г. в Ерване.

етренной стороне горы, до этого находился выше горной вершиы. По данным П. А. Воронцова [2], при ярко выраженных фёах опускание происходит с высот, достигающих 1,5—2 км над орой. Весьма характерно, что опускание остается упорядоченным (аже днем и притом над достаточно большой территорией, распоюженной, однако, не у подножья хребта, а на удалении от него на иесколько километров. На этом расстоянии образуется фёновый остров, вытянутый вдоль хребта.

Более удивительным и еще не объясненным в литературе являтся тот факт, что опускающийся воздух уже над горой имеет бонее высокую температуру, чем окружающий воздух. Стремительное опускание более теплового воздуха, по мнению Локвуда [9], составляет центральную проблему фёна.

Механизм переваливания потока через гору оказался также дачеко не простым. Непосредственно по горному хребту воздух при рёнах не стекает, более того, вдоль наветренного и подветренного клонов в этих случаях наблюдаются противоположно направленчые потоки [10]. Кроме того, по данным Скорера и Клифорса [9], оры высотой около 900 м при наличии инверсии уже блокируют движение нижних слоев воздуха на наветренной стороне.

Все эти данные показывают, что фён является результатом какого-то более сложного механизма движения воздуха, чем про-

Для выявления возможного механизма движения воздуха при рёне важнейшее значение, по нашему мнению, имеет наличие з фёновом потоке воздушной струи (мезоструи).

По-видимому, раньше других обратил внимание на мезострую («текущий слой») как индикатор характера движения потока чешский исследователь Ферктготт [4]. В настоящее время известно, это мезоструя при фёне наблюдается не только на подветренной стороне горы [1—3], но и над вершиной горы [1, 7].

Имеется достаточно оснований считать, что мезоструя является результатом волнового движения потока [5]. Возможность волнового движения подтверждается также наличием над горой при рёнах устойчивой температурной стратификации, а чаще потоки имеют даже инверсионную стратификацию [1—3, 7, 8, 11, 12]. С инверсиями связано, по-видимому, преобладание фёна в ночные часы [3] и в холодную половину года.

Волновой характер потока на подветренной стороне горы наглядно иллюстрируется и изменением высоты мезоструи: вблизи горы мезоструя опускается в нижние слои, а с удалением от горы она поднимается в более высокие слои, т. е. имеется отчетливая подветренная волна.

Идея о том, что фён представляет собой нисходящий поток, соответствующий подветренной волне, была сформулирована автором настоящей статьи в 1959 г. В том же году, в работе [3] были приведены данные, подтверждавшие волнообразный характер подветренного потока. В более поздних работах [8, 9, 12] эта идея нашла полное подтверждение. Подветренная волна большой амплитуды рассматривается теперькак основной механизм опускания теплового воздуха с уровня хребта и с более высоких уровней:

Обратимся к конкретному случаю подветренной волны и мезоструи.

На рис. 1 представлена схема подветренной волны, наблюдавшейся в Западной Грузии во время фёна в 12 ч 8 мая 1959 г. Схема составлена по данным шаропилотных наблюдений в Кутаиси и Цхакая по принципу расположения траекторий в соответствии с волновым характером мезоструи В Кутаиси фён в это время

Рис. 1. Подветренная волна во время фёна в районе Кутаиси в 12 ч 8 V 1959 г. АА' — ось мезоструи.

имел скорость 20 м/с, а мезоструя над Кутаиси находилась на высоте около 600 м, имея скорость 30 м/с. В Цхакая в этот срок у земли наблюдался слабый западный ветер, но уже с высоты 360 м был восточный фёновый поток. Мезоструя находилась здесь на высоте около 1080 м, имея скорость около 18 м/с. Мезоструя отчетливо показывает наличие подветренной волны.

По данным [1], развитие фёна сопровождается опусканием и усилением мезоструи, а затухание его, наоборот, связано с подъемом и ослаблением мезоструи. Понятно, что такая эволюция мезоструи означает по существу эволюцию подветренной волны, ее

амплитуды и длины, что и определяет активность фёна.

Рис. 2. Погода в районе Кутаиси в 13 ч 8 V 1959 г. АА'-граница фёна.

Подъем воздуха над Цхакая после опускания его в районе Куаиси подтверждается также и характером облачности. Рисунок 2 показывает, что в 13 ч над территорией, занятой опускающимся рёновым потоком, всюду преобладала облачность выше 1500 м, гогда как в западных пунктах, где имел место подъем воздуха, зысота облаков была 300—400 м.

Подъем воздуха над западными пунктами подтверждается также и тем, что фёновый фронт продвинулся за 6 ч (с 10 до 16 ч)

Рис. 3. Возможная деформация волнообразного потока, перетекающего через гору, в результате резонансного возмущения.

1, 2 — линии тока; 3 — мезоструя в слое волновых движений при отсутствии резонанса, 4 — нулевая линия тока; 5 — мезоструя при наличии резонанса; НН' — уровень блокирования воздуха горой.

к западу всего лишь на 30 км несмотря на то, что скорость ветра достигала 85 км/ч. Подветренная волна была достаточно стационарной.

Обычно подветренные волны, возникающие в результате переливания потока через гору, находятся на уровне хребта. Но каков же механизм образования подветренных волн при фёне, если они достигают поверхности земли, а в фёновый поток вовлекается воздух с высот до 2 км над горой? Насколько нам известно, в литературе эти вопросы еще не получили объяснения.

Понятно, что в подобных случаях имеет место волна огромной амплитуды. Нулевая линия тока такой волны (линия 4 на рис. 3) на наветренной стороне горы должна находиться на уровне блокирования воздуха горой, над вершиной горы она должна подниматься до больших высот, а на подветренной стороне она опускается до земли. Наиболее вероятным процессом, приводящим к образованию подветренной волны такой амплитуды, является резонанс колебаний потока, наступающий в результате близости поперечного размера препятствия к размерам естественной длины волны, обусловленной распределением метеорологических элементов в потоке [4]. При резонансном возмущении потока происходит также увеличение длины волны, что и обусловливает появление фёновог острова вдали от подножия хребта.

На рис. 3 показаны линии тока и мезоструя как при отсутстви резонанса, так и при наличии его. Мезоструя, по-видимому, играе весьма активную роль в снижении ложбины волны, увлекая д земли воздух на подветренной стороне за счет огромной инерци скорости. Рисунок показывает, что опускание воздуха в этом слу чае происходит с большей высоты, чем при обычном перетекания в форме Ганна (если оно вообще возможно). При таком значи тельном опускании устойчиво стратифицированного воздуха по вышение температуры его оказывается достаточно большим и при отсутствии конденсации на наветренном склоне. Фёновый вал об лаков, образующийся на гребне хребта, является результатом подъема некоторого слоя на наветренной стороне горы.

Модель фёна, представленная на рис. 3, объясняет также и раз личную продолжительность фёна. Так, если резонанс достаточно устойчив, то и подветренная волна большой амплитуды, а с ней и фён, могут наблюдаться долго. Но при нарушении резонанса, что может быть связано с изменением свойств потока, амплитуда волны резко уменьшится и фёновый поток не будет достигать земли Следовательно, продолжительность фёна определяется не только степенью устойчивости переноса воздуха, но также и степенью его свойств.

Таким образом, как фактические данные о фёне, полученные за последние десятилетия, так и результаты теоретического и экспериментального изучения волновых движений, возникающих вблизи вершины горы, показывают, что подветренная волна большой амплитуды, в пределах которой и находится фёновый поток, может возникнуть только в процессе резонансного возмущения потока, перетекающего через гору. При отсутствии резонанса колебаний потока, по-видимому, невозможно образование такой подветренной волны и появление фёна.

В заключение остановимся кратко на характеристике той группы мезомасштабных движений, к которой может быть отнесен и фён.

Наиболее известными аналогами горного фёна (чинука и других горных ветров) являются фёны свободной атмосферы, а также суховеи, пыльные бури юго-востока Европейской территории СССР и вообще сильные ветры равнин, связанные с опусканием мезоструи. Однако аэрологически они изучены значительно меньше, чем фён.

Фёновый характер движений наблюдается также и в свободной атмосфере, о чем постоянно свидетельствует вид облачного покрова.

Наиболее известными облаками, возникающими при наличии волнообразной мезоструи, являются чечевицеобразные облака. В зоне пассатов возникают так называемые облачные улицы, представленные мезомасштабными грядами кучевых облаков. Они также связаны с инверсией температуры и с мезоструей. Под влияни-

и мезомасштабных движений, имеющих большую вертикальную ставляющую, происходит формирование мезосистем облаков разделение на мезосистемы общирных макромасштабных облачых полей. Эти движения также связаны с наличием мезоструй. езкие взбросы и опускания воздушных потоков дают основание редполагать, что и в свободной атмосфере могут наблюдаться реэнансные возмушения колебаний.

Мезомасштабные волновые движения наблюдаются также и в лое серебристых облаков на высоте около 82 км.

Таким образом, фён может быть отнесен к группе мезомасштабых волновых движений, неизбежно связанных с мезоструей. Эти вижения характерны не только для пограничного слоя атмосфеы. Однако благодаря горам фён оказывается единственным в свом роде движением.

СПИСОК ЛИТЕРАТУРЫ

Бурман Э. А. Местные ветры. Л., Гидрометеоиздат, 1969.

- Воронцов П. А. Аэрологические исследования пограничного слоя атмосферы. Л., Гидрометеоиздат, 1960.
- Машкова Г. Б. Фёны Батуми.— «Тр. Морского гидрофиз. ин-та», 1959, т. 16, с. 74-88.
- . Мусаелян Ш. А. Волны препятствий в атмосфере. Л., Гидрометеоиздат, 1962.
- . Новожилов Н. И. Тропосферные мезоструи. «Изв. АН СССР, сер. гео-

- Новожилов Н. И. Тропосферные мезоструи.— «Изв. АН СССР, сер. геофиз.», 1961, № 2, с. 334—336.
 Таймаков Т. Об условии образования фёна над Северным Кавказом.— «Тр. ГМНИИЦ СССР», 1967, вып. 6, с. 120—127.
 Хргиан А. Х. Вертикальные движения атмосферы и ветер над горной страной.— «Тр. ЦАО», 1958, вып. 24, с. 12—15.
 Вегап D. W. Large amplitude lee waves and chinook winds.— "J. of Appl. Meteorol.," 1967, v. 6, No. 5, p. 865—877.
 Lockwood J. G. Occurence of föhn winds in the British Isles. "Meteorol. Mag.", 1962, v. 91. No. 1076, p. 57—65.
 M vers V. A. Airflow on the windword side of a large ridge.— "J. Geophys.
- Mag., 1962, v. 91. No. 1076, p. 37-63.
 Myers V. A. Airflow on the windword side of a large ridge.— "J. Geophys. Res., 1962, v. 67, No. 11, p. 4267-4291.
 R addock G. F. Mountain lee waves in the Vale of Jork.— Meteorol. Mag.," 1970, v. 99, No. 1181, p. 368-369.
 W urtele M. G. Meteorological conditions surrounding the Paradise Airline crash of 1 March 1964.— "J. of Appl. Meteorol.," 1970, v. 9, No. 5, p. 787-795.

Г. В. ГИРДЮК, И. И. ИВАНОВ Т. В. КИРИЛЛОВ

О ВЛИЯНИИ ОБЛАЧНОСТИ НА АЛЬБЕДО ОКЕАНА

Обобщение наблюдений за отраженной радиацией по пяти рег сам научно-исследовательских судов опубликовано в [4].

В настоящей работе для анализа зависимости альбедо от по годных условий и получения средних широтных значений привле чен дополнительный материал наблюдений по акватории Северно Атлантики. Характерные значения альбедо при малооблачной по годе и альбедо при пасмурной погоде в зависимости от высот Солнца получены на основании данных срочных наблюдений, про водившихся в Северной Атлантике на судах Мурманского УГМ в 1958—1970 гг. В результате объединения с данными, использо

Таблица

Альбедо поверхности океана для суммарной радиации в зависимости от высоты Солнца h_{\odot}° и балла общей облачности n

<u>n</u>					ĥ		,		
·	10	20	30	40	50	60	70	- 80	90
0-2	20	14	10	7	5	4	4	4	4
3—7	19	13	10	8	6	6	5	5	5
8-10	17	12	10	8	7	7	6	6	6
Число случаев	1248	1554	1551	1420	877	1477	428	55	28

ванными в статье [4], получены значения альбедо водной поверх ности для суммарной радиации в зависимости от высоты Солнца и разных условий облачности (табл. 1). Градации облачности да ны по баллам общей облачности. Общее число наблюдений, на основании которых рассчитаны значения альбедо, составляет бо лее 8600.

Для расчета суточных сумм отраженной радиации на основании данных табл. 1 можно получить средние дневные (и средние месячные) значения альбедо океана для указанных трех градаций облачности. При этих расчетах дневная сумма отраженной радиации находится по часовым суммам. При определении последних находятся высоты Солнца на середину часа светлого времени су

ж и соответствующие этим высотам значения альбедо. Значения имарной радиации определяются в соответствии с высотами олнца [2, 3] при средних условиях прозрачности атмосферы.

Таким образом, для широт, кратных десяти, для северного поушария на 15-е число каждого месяца были рассчитаны средние чевные значения альбедо. Затем они были сопоставлены с полу-

сенными высотами Солнца. Результаты такого сопоставления даны на рис. 1, где три кривые соответствуют различным состояниям облачного неба. Снятые с этих кривых средние дневные значения ильбедо водной поверхности в зависимости от полуденной высоты Солнца даны в табл. 2.

Все данные табл. 1 и 2 относятся к условиям волнения, харакерным для поверхности океана, а не к гладкой водной поверхюсти.

Оценка показывает, что дисперсия средних за день значений альбедо значительно меньше, чем дисперсия значений альбедо,

Таблица

Альбедо поверхности океана для суммарной радиации в зависимости от полуденной высоты Солнца h_{\odot}° и балла общей облачности *n*

	1			1	ⁱ O				÷.,
. n	10	20	30	40	50	60	70	80	9 0
02	21	16	12	10	8	7	6	6	6
37	20	15	12	10	8	8	7	7	7
8—10	18	14	12	10	9	8	8	7	7
	1	1	L	-		1	l	1	l

соответствующих фиксированным высотам Солнца, мало меняетс с изменением полуденной высоты Солнца [4] и составляет 1-2

По данным табл. 1 и 2 можно судить о влиянии облачност на величины альбедо. Выделяются интервалы высот около 30° (п

Таблица

Средние месячные значения альбедо поверхности океана (%)

φ	I	11	ш	IV	v	VI	VII	VIII	IX	x	XI	XII
70		21	16	12	10	9	10	11	14	19	24	
60	20	16	13	10	8	8	8	9	11	15	19	21
50	16	13	10	8	8	8	8	8	9	12	15	16
40	13	11	9	8	7	7	7	7	8	10	12	13
30	10	9	8	7	7	7	7	7	7	8	10	11
20	8	7	7	7	7	7	7	7	7	7	8	8
10	7	7	7	7	7	7	7	7	7	7	7	7
0	7	7	7	7	8	8	- 8	7	7	7	7	7
10ю.	7	7	7	8	8	9	8	8	7	7	7	7
20	7	7	8	8	10	11	10	9	8	7	7	7
30	7	-7	8	8	10	11	10	9	8	7	7	7
40	7	8	8	10	12	13	13	11	9	8	7	7
50	8	8	10	12	15	17	16	14	11	9	8	7
60	8	9	12	15	19	21	20	17	13	10	9	8

табл. 1) и 30—40° (по табл. 2), где альбедо при ясном небе и при пасмурном одинаковы. При высотах, выше указанных, везде альбедо при ясном небе ниже, чем при пасмурном небе, а при малых высотах Солнца соотношение обратное.

Большая часть данных табл. 1. на которых основаны дальнейие расчеты, относится не к регистрации, а к срочным наблюденим. Кроме того что последние дают возможность фиксировать изестную высоту Солнца, они имеют более высокую точность аблюдений. При регистрации отраженной радиации обычно ордиаты записи малы, нулевая линия определяется не точно и отноительные ошибки при определении альбедо значительно больше. ем ошибки в определении суммарной радиации. Возрастают ошибки в определении отраженной радиации за счет влияния орпуса судна. Кроме того, как известно, наблюдения за облачнотью произволятся один раз в три часа и такие наблюдения лишь риближенно характеризуют условия облачности за день. Указаные обстоятельства заставляют с осторожностью подходить к анаизу сумм отраженной радиации по записи лент регистратора. этом плане преимущества имеют единичные наблюдения альбео с одновременными наблюдениями облачности.

Ланные табл. 2 позволяют перейти к средним месячным значеиям альбело через полуденные высоты Солнца. Результаты таких асчетов для обоих полушарий представлены в табл. З, при облачости 3—7 баллов.

Полученные в табл. З средние месячные значения альбедо на сех широтах примерно на 1% выше принимаемых ранее [1], что ожно объяснить учетом волнения и более детальным учетом усовий облачности. Наши данные по альбедо (табл. 3) хорошо соласуются с данными В. С. Самойленко [5], в которых также учтео влияние волнения.

СПИСОК ЛИТЕРАТУРЫ

Атлас теплового баланса земного шара. Под ред. М. И. Будыко. Л., Гидрометеоиздат, 1963, с. 1-3.

метеоиздат, 1965, с. 1—5. Влияние облачности на суммарную радиацию, поступающую на поверхность океана.—«Тр. ГГО», 1973, вып. 297. с. 109—116. Авт.: Г. В. Гирдюк, Б. Н. Егоров, Т. В. Кириллова, Л. В. Несина. Егоров Б. Н., Кириллова, Т. В. Суммарная радиация над океаном в ус-

ловиях безоблачного неба.— «Тр. ГГО», 1973, вып. 297, с. 95—98.

. Кириллова Т. В. Альбедо океана.— «Тр. ГГО», вып. 282, с. 215—218.

Метеорологические условия над Тихим океаном.— В кн.: Тихий океан. Под ред. В. С. Самойленко. М., «Наука», 1966, с. 261—262.

Б. Н. ЕГОРОЕ

РАССЕЯИНАЯ РАДИАЦИЯ НАД ОКЕАНОМ В УСЛОВИЯХ СПЛОШНОЙ ОБЛАЧНОСТИ

В последнее время все больше внимания уделяется вопросу учета влияния облаков на суммарную радиацию над океаном. Для оценки влияния облаков обычно используется отношение $Q/Q_0 = = f(N)$, где Q и Q_0 — соответственно суммарная радиация при облачном и безоблачном небе, а N— балл облачности.

Как было показано в работе [1], это отношение в условиях океана существенно больше, чем над континентом. В работе [2] указывалось, что в условиях безоблачного неба при одной и той же прозрачности атмосферы нет значительных различий в величинах суммарной радиации Q_0 над океаном и континентом. Следовательно, превышение величин Q/Q0 над океаном над аналогичным отношением над континентом свидетельствует о том, что в условиях океана облачность меньше ослабляет суммарную радиацию, чем в условиях континента. Однако использование отношения Q/Q_0 для оценки особенностей влияния облачности на суммарную радиацию не является лучшим методом, поскольку Q0 соответствует средним условиям прозрачности атмосферы, а величины Q измеряются при иных условиях прозрачности. Более правильным является путь обобщения материалов наблюдений за суммарной радиацией облачного неба при различных формах облаков в зависимости от высоты Солнца. При этом обязательным является наличие сплошного облачного покрова, когда можно исключить зависимость от количества (балла) облаков и рассматривать лишь рассеянную радиацию сплошным облачным покровом при отсутствии прямой радиации. В ряде работ [3, 4] эта задача решена для условий континента. При этом для учета вертикальной мощности и водности облаков рассеянная радиация при сплошном облачном покрове (10/10) исследована в зависимости от температуры и относительной влажности приземного слоя воздуха [4].

В данной работе на основании актинометрических наблюдений, производившихся на судах ААНИИ «Профессор Зубов» и «Профессор Визе» и в ряде других экспедиций, сделана попытка оценить закономерности коротковолновой радиации над океаном при сплошном покрове (10/10) низких облаков Sc, St, Ns, Cb и тумана и сопоставить полученные результаты с аналогичными данными в условиях континента. Наблюдения, использованные в работе, охватывают практически всю акваторию Северной Атлантики за период времени с 1958 по 1971 г. Для учета вертикальной мощности и водности облаков рассеянная радиация в условиях сплошной облачности, как и в [4], исследована в зависимости от температуры воздуха в приводном слое. Как показали Г. В. Гирдюк и С. П. Малевский-Малевич [5], над океаном в приводном слое воздуха существует тесная корреляционная связь между упругостью водяного пара и температурой воздуха. Отсюда и относительная влажность, являющаяся функцией упругости водяного пара и упругости насыщения, над океаном должна характеризоваться высокой корреляционной связью с температурой воздуха у поверхности океана. В связи с этим исследовать рассеянную радиацию при сплощном облачном покрове в зависимости и от относительной влажности нет необходимости.

Обработка данных судовых наблюдений, послуживших основанием для настоящей работы, велась графически. В результате были построены графики зависимости рассеянной радиации при облаках (10/10 П) Sc, St и Ns от высоты Солнца при различных градациях температуры воздуха. Снятые с графиков средние значения рассеянной радиации для отмеченных выше форм облаков через 5° высоты Солнца при различных градациях температуры воздуха представлены в табл. 1. Здесь же для сравнения приведены аналогичные величины, полученные для условий континента в работе [4]. При этом для сопоставления выбраны максимальные для данной градации температуры величины рассеянной радиации над континентом, которые соответствуют либо низким значениям относительной влажности, либо получены по данным прибрежных. станций Дальнего Востока. В трех последних графах таблицы представлены соответственно количество наблюдений, использованных для получения зависимости $D = f(h_{\odot})$; среднее для рассматриваемого интервала высот Солнца относительное отклонениерассеянной радиации $\frac{\sigma}{\overline{D}_{0\kappa}}$, характеризующее изменчивость потока рассеянной радиации, и отношение средних для данного интервала высот Солнца значений рассеянной радиации над океаном и континентом $\frac{\overline{D}_{o\kappa}}{D_{\kappa}}$, характеризующее различие в величинах рассеянной радиации при данной форме облачности над океаном и континентом.

Как следует из табл. 1, относительные отклонения радиации над океаном для всех форм облаков достигают значительных величин, изменяясь от 0,32 до 0,50. Это свидетельствует о большой изменчивости потока рассеянной радиации при сплошной облачности и об условности полученных средних. Наибольшей изменчивостью характеризуется поток рассеянной радиации при Sc. При St и Ns колебания величин рассеянной радиации несколько меньше. Увеличение значений относительных отклонений при Sc характерно и для континента.

Что касается самих средних величин рассеянной радиации, то они при одних и тех же высотах Солнца наибольшие при Sc и наименьшие при Ns. Если рассматривать зависимость рассеянной

ца I		$\overline{D_{0K}}$	Dĸ	76 1	, ,	191		1.14		1.07	- -	-		ł		
аблиг		ъ	Dor		00,0		0 .1 3	0.46		0.47		0 48	DF (0)	0,48		
÷	(II)		z			1010		757	 103	- - 	5	л Х	3	102		
	eHTOM		70	· 1	1	i	!				1			1	l	
	КОНТНН		65	1	1 :	[l	I.	1	0,53	I	0,59	J	ł	.	
	(I) MO		60		1	. 1	J	ł	I	0,48	1	0,54	1	I	l	
	океан		55	1	1	1	l]		0,43	l	0,4 9	1	1	J	l
	О над		50		1	I	ł	0,38		0,38	1	0,43	l	[
	тн 10/1		45]	1	0,37	ľ	0,34	0,29	0,34	ŀ	0,39	ļ	[I	
	дачнос	°. h	40			0,32	0,26	0,30	0,26	0,29	0,27	0,34	1	l	1	
	iph oč		35	0.25	1	0,26	0,23	0,26	0,24	0,24	0,23	0,29	1	0,26	1	
	ини)) п		30	0,20	1	0,22	0,19	0,22	0,20	0,20	0,20	0,24	I	0,20	1	
r.	/(cm² ⋅ 1		25	0,16	0,13	0,17	0,14	0,17	0,16	0,1ô	0,14	0,20	1	0,15	. 1	
	ія (кал		20	0,12	0,10	0,13	0,10	0,13	0,12	0,12	0,11	0,15	1	0,11	ĺ	
	циаці		15	60'0	0,07	0,09	0,08	0,09	0,08	0,08	0,08	0,10	ŀ	0 ,0 8	1	
	я рај		10	0,06	0,04	0,06	0,04	0,06	0,05	0,05	0,04	0,06	1	0,05	I	
	янна		<u>ى</u>	0,03	0,03	0,03	0,02	0,03	0,02	0,03	1	0,03	l	0,02	ł	
	a čce	H	oñsq		Ë	Π	II	I	Ш	1	II	1	*11	-	Ш	
د.	d	0 <i>1</i>				5.1-10		10.115		15.1-20		20		05		
		6M 802	1904 16130	ູ້	ا ا			÷		·			<u> </u>	St		

761	1,24	5 5 5	71,1		ł	l			1,32	1,62			2,06	
0 30	70' 0	010	0,42	0 30	70'0	0,43	-	-	0,42	0,43		(0,42	
66	3	031	107	6.0 F.0	20	101			86	105		1	18/	
1	1	1	I	1	[ł	[[I	0,36	I	
 	I	l	1	I	I	1	l	1	l	[[0,33	[
1		[1	0,46	l	I	1	.]	[0,30	0,19	0,31		
•	l	0,40	ι	0,42	1	l	I	I	1	0,28	0,18	0,28	0,15	
1	1	0,35	I	0,38	I	ł	1		I	0,25	0,16	0,26	0,13	
0,32	0,24	0,30		0,34	I	1	I	0,23	0,17	0,23	0,14	0,23	0,11	
0,27	0,22	0,26	0,23	0,30	1		I	0,20	0,15	0,20	0,12	0,21	0,10	
0,22	0,19	0,22	0,19	0,25	l	0,25	l	0,17	0,13	0,17	0,11	0,18	0,08	
0,18	0,16	0,17	0,16	0,21	1	0,19	, [·	0,14	0,11	0,15	0,09	0,16	0,07	
0,14	0,12	0,13	0,12	0,16	[0,15	1	0,11	0,09	0,12	0,07	0,13	0,05	
0,11	0'09	0,10	60'0	0,12	I	0,10	l	0,08	0,07	0,10	0,06	0,10	0,04	
0,08	0,06	0,07	0,07	0,08	I.	0,07	ł	0,06	0,04	0,07	0,04	0,08	0,03	
0,05	0,03	0,04	0,03	0,05	1	0,04	l	0,04	0,02	0,04	0,02	0,05	0,02	
0,02	1	0,02	١	0,02		0,02	1	0,02	1	0,02	0,01	0,02	0,01	
H	Π.		. 11	1	II*	1	II	I	II	н	II	щ	I	
5,1-10		10,1-15		15,120		05		5,1-10		10,1-15		15,1-20		
		;				Ns								

* Данные над континентом отсутствуют.

радиации от температуры при одной и той же форме облаков, то получить однозначные связи изменения рассеянной радиации с изменением температуры не удается. При St и Ns отмечается незначительное уменьшение величин рассеянной радиации при одних и тех же высотах Солнца от крайних градаций температуры к средним. При Sc величины рассеянной радиации при неизменных высотах Солнца мало меняются с изменением градаций температур от 0—5 до 15—20° и только для градации температуры >20° отмечается незначительное увеличение рассеянной радиации.

Район								h _☉	
	5	10	15	20	25	30	35	40	
			• .					Cb)
Океан	0,02	0,05	0,08	0,11	0,14	0,17	0,20	0,24	ł
Континент	0,02	0,04	0,08	0,11	0,14	0,16	0,18	0,20	
	1	ı	I	,	•	•	•	' Ty	, [
Океан	0,03	0,07	0,11	0,15	0,19	0,23	0,27	0,31	
Континент	0,03	0,05	0,08	0,11	0,14	0,16	0,18	-	
		•		· .	1	· · ·	•	•	•

Рассеянная радиация (кал/(см²·мин)) при облачности

Отсутствие однозначной связи потока рассеянной радиации с приводной температурой свидетельствует о том, что в первом приближении использование данных о потоках суммарной радиации при наличии облачности, полученных осреднением актинометрических наблюдений по всей акватории океана, во все сезоны (как это было сделано, например, в работе [1]) правомерно.

Решение задачи детализации учета влияния облачности на суммарную и рассеянную радиацию надо искать не в связях Q при наличии облачности с метеоэлементами в приводном слое воздуха по всей акватории океана, а в связях суммарной радиации в условиях облачности с метеоэлементами отдельно для различных климатических зон океана.

Что касается сопоставления величин рассеянной радиации над океаном и континентом, то, как следует из табл. 1, для всех форм облаков рассеянная радиация над океаном при одних и тех же высотах Солнца больше, чем над континентом. Различия в величинах рассеянной радиации над океаном и континентом растут с увеличением высоты Солнца. В среднем рассеянная радиация над океаном больше, чем над континентом при Sc и St 10—25%, при Ns на 30—100%. Несколько неожиданным является то, что наибольшие различия отмечаются при Ns, т. е. при фронтальном типе облаков. С увеличением температуры различия в величинах рассеянной радиации над океаном и континентом возрастают. Следует от-
метить, что как указывалось выше, для сопоставления отбирались максимальные величины рассеянной радиации при данном интервале температур над континентом. Если для сравнения использовать средние для данного интервала температур величины рассеянной радиации над континентом, то различия в значениях рассеянной радиации над океаном и континентом будут еще большими.

Имеющиеся в нашем распоряжении материалы судовых актинометрических наблюдений позволили получить зависимость рассеянной радиации от высоты Солнца над океаном и для 10/10 П.

Таблица 2

-	45	50	55	60	65	70	75	n		$\frac{\overline{D}_{0K}}{\overline{D}_{K}}$
	0,27 0,22	0,30 0,25	0,33 0,27	0,36	0,38	0,41 —	0,43	204	0,65	1,14
]	ман 0,34 —	0,38	0,42				-	189	0,53	1,41

10/10 П, Св и тумане над океаном и континентом

Сb и тумана. Получить эти зависимости по градациям температур не удалось из-за отсутствия достаточного количества данных. Судя по результатам, полученным для облаков Sc, St и Ns, в этом и нет необходимости, тем более, что аналогичных проработок по континентальным данным в литературе не имеется.

В табл. 2 представлены величины рассеянной радиации через 5° высоты Солнца при Сb и тумане, полученные для океана. В таблице для сравнения приведены аналогичные зависимости для континента, взятые для Cb из работы [3], а для тумана из статьи [7]. Как следует из табл. 2, при наличии тумана отмечаются наибольшие, в сравнении с другими формами облаков над океаном, колебания величин рассеянной радиации, характеризующиеся значениями относительных отклонений соответственно 0,65 и 0,55. По сравнению с аналогичными данными над океаном, приведенными в табл. 1, рассеянная радиация при одних и тех же высотах Солнца при Cb наименьшая. При тумане отмечаются высокие значения рассеянной радиации, соизмеримые с аналогичными значениями при Sc. Что касается сопоставления рассеянной радиации при Cb и тумане над океаном и континентом, то она над океаном больше соответственно на 14 и 41%.

Несомненным является вывод о том, что над океаном сплошная облачность нижнего яруса и туман оказываются значительно прозрачнее для суммарной радиации, чем над континентом.

- 1. Влияние облачности на суммарную радиацию, поступающую на поверхность океана.— «Тр. ГГО», 1973, вып. 297, с. 109—117. Авт.: Г. В. Гирдюк, Б. Н. Егоров, Т. В. Кириллова, Л. В. Несина.
- 2. Егоров Б. Н., Кириллова Т. В. Суммарная радиация над океаном в условиях безоблачного неба.— «Тр. ГГО», 1973, вып. 297, с. 87—109.
- Гальперин Б. М., Серякова Л. П. Основные закономерности коротковолновой радиации и дневного радиационного баланса при различной облачности.— «Тр. ЛГМИ», 1964, вып. 22, с. 11—34.
 Серякова Л. П., Борисова Т. Н. Влияние температуры и влажности
- Серякова Л. П., Борисова Т. Н. Влияние температуры и влажности воздуха на коротковолновую радиацию в теплое время года.— «Тр. ЛГМИ», 1971, вып. 38, с. 164—176.
- 5. Гирдюк Г. В., Малевский Малевич С. П. Методика расчета эффективного излучения поверхности океана.— «Тр. ГГО», 1973, вып. 297, с. 124— 132.
- Серякова Л. П., Гурина В. Ф., Горькова Р. И. Колебания коротковолновой радиации при разных облаках.— «Тр. ЛГМИ», 1971, вып. 38, с. 176—185.
- 7. Гальперин Б. М., Серякова Л. П. Рассеянная и суммарная солнечная радиация при различных облаках.— «Тр. ГГО», 1964, вып. 152, с. 96—110.

Т. В. КИРИЛЛОВА, Р. Г. ТИМАНОВСКАЯ

ОЦЕНКА ПОГРЕШНОСТЕЙ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК РАДИАЦИОННЫХ ПОТОКОВ ПО ЭМПИРИЧЕСКИМ ЗАВИСИМОСТЯМ

В работе [1] подробно представлена статистическая структура относительных потоков прямой S^* и суммарной Q^* радиации при наличии кучевых облаков ($2 \le n \le 9$). В частности, приводятся эмпирические связи средних величин этих потоков \overline{S}^* и Q^* , их дисперсий $\sigma_{S^*}^2$, $\sigma_{Q^*}^2$, коэффициентов изменчивости V_{S^*} , V_{Q^*} и функций распределения $P(S^*)$ и $P(Q^*)$ с количеством кучевых облаков n в баллах и с продолжительностью солнечного сияния S_{\odot} . Это дает возможность по баллу облаков или по продолжительности солнечного сияния судить не только о средних величинах потоков, но и об их статистических характеристиках. При этом следует заметить, что связи получены для продолжительности солнечного сияния, измеренной по актинометру. Продолжительность солнечного

				•		Т	абли	ппы I
n	2	3	4	5	6	7	8	9
V_{Q^*}	0,07	0,07	0,0 8	0,09	0,10	0,10	0,12	0,13
\overline{V}_{Q^*}	0,05	0,07	0,07	0,08	0,10	0,10	0,12	0,14
V'_{S^*}	0,12	0,14	0,16	0,19	0,23	0,30	0,40	0,70
\overline{V}_{S^*}	0,04	0,08	0,10	0,13	0,16	0,17	0,16	0,18

сияния, измеренная по гелиографу, в условиях кучевой облачности не дает устойчивой связи и более того, не может служить надежной характеристикой продолжительности солнечного сияния в этих условиях. В табл. 1 работы [1] представлены средние величины статистических характеристик, а также изменчивости этих характеристик в пределах фиксированных значений n и S_{\odot} , т. е. величины $\overline{V}_x = \frac{\sqrt{\sigma x^2}}{\overline{x}}$, где под x подразумевается любая из приведенных в таблице характеристик. В [1] приведены также эмпирические зависимости между пото ками радиации и параметрами n и S_{\odot} :

$$Q^* = 1,00 - 0,06n, \tag{1}$$

$$S^* = 1.04 - 0.10n, \tag{2}$$

$$Q^* = 0.34 + 0.62 S_{\odot}, \tag{3}$$

$$S^* = 0.02 + 0.92S_{\odot}. \tag{4}$$

Поскольку приведенные связи и данные табл. 1 получены по од ному и тому же объему выборки, то представленные в этой таблице величины \overline{V}_x характеризуют погрешности расчета средних величин и по представленным формулам (1) — (4). Под погрешностями расчета в данном случае мы понимаем ошибки за счет случайных отклонений значений искомой величины от среднего значения, обусловленных самой структурой радиационного поля при кучевых облаках. Погрешности не являются постоянными, а, как и сами статистические характеристики, зависят от параметров nи S_{\odot} , т. е.

$$\overline{V}_x = f(n, S_{\odot}). \tag{5}$$

Рассмотрим поведение величин $\overline{V_x}$ отдельно для средних величин потоков S^* и Q^* , их дисперсий $\sigma_{S^*}^2$ и $\sigma_{Q^*}^2$ и функций распределения $P(S^*)$ и $P(Q^*)$. На рис. 1 представлены зависимости

Рис. 1. Зависимость величин \overline{V}_{S^*} (1) и \overline{V}_{Q^*} (2) от *n* и V'_{S^*} и V'_{Q^*} от *n* (3) и аппроксимация для \overline{V}_{S^*} и \overline{V}_{Q^*} (4).

величин \overline{V}_{S^*} и \overline{V}_{Q^*} от n. Видно, что для потока S^* за висимость от n близка к линейной и может быть представлена уравнением линейной регрессии вида

$$\overline{V}_{S*} \simeq 0,022 \ n.$$
 (6)

Соответствующая зависимость для потока Q^* оказалась нелинейной; в первом приближении она может быть аппроксимирована выражением

$$\overline{V}_{Q*} \simeq 0,03 n^{0,69}. \qquad (7$$

В формулах (6), (7) *п* выражено в баллах.

Из табл. 1 и соотношений (6), (7) следует, что погрешности засчета средних потоков Q^* по выражению (1) не превышают 6%, а погрешность расчета S^* по выражению (2) — 18% для условий, когда параметр *n* меняется от 2 до 9 баллов. То же можю сказать и о погрешностях Q^* и S^* при расчетах по выражениим (3) и (4).

При оценке погрешностей расчета потоков S^* и Q^* мы фиксиовали параметры n и S_{\odot} , т. е. считали, что они задаются точно. 3 практике, как известно, они определяются также с определенной югрешностью. В связи с этим представляет интерес оценить порешности расчета средних величин S^* и Q^* при заданной точноти параметров n и S_{\odot} .

^{*}Рассмотрим величины V'_x , определяемые выражением

$$\frac{\Delta x}{\Delta I} \left[\overline{x}(Y) \right]^{-1} = V'_{x}, \tag{8}$$

з котором *х* — любая из статистических характеристик радиационных потоков.

Ограничимся учетом балла облаков, поскольку измерения процолжительности солнечного сияния по актинометру имеют ограниченное распространение.

Положим $\Delta Y = \Delta n = 1$. В случае потоков S* и Q* величины x и производные $\frac{\Delta x}{\Delta n}$ определяются по выражениям (1), (2). Рассчитанные по этим данным величины $\overline{V'_x}$ для разных значений n представлены в табл. 1. Для сравнения в этой таблице представлены величины $\overline{V_x}$, характеризующие погрешности расчета величин S* и Q* по эмпирическим зависимостям (1), (2). Из данных табл. 1 видно, что при задании параметра n с точностью до 1 средние потоки Q*, могут быть определены по выражениям (1), (2) с погрешностью, не превышающей величины $\overline{V_{Q*}}$, а потоки S* по соответствующим выражениям (3), (4) могут быть определены с погрешностью близкой к $2\overline{V_{S*}}$.

На рис. 1, рассчитанные нами значения V'_{S^*} и V'_{Q^*} представлены пунктиром.

На рис. 2 представлены зависимости величины $\overline{V_{\sigma}}_{S*}^2$ и $\overline{V_{\sigma}}_{Q*}^2$ от *п*. Из рис. 2 следует, что при расчете ошибок расчета дисперсий потоков S* и Q* максимальные погрешности наблюдаются как при малых, так и при больших значениях параметра *n*; при $n \simeq 4 \div 8$ баллам погрешности расчета составляют величины порядка 18— 20% от рассчитываемых значений. Оценим погрешности расчета величин $V_{\sigma}_{S*}^2$ и $V_{\sigma}_{Q*}^2$ по эмпирическим соотношениям, полученным в работе [1] с учетом выражения (8) при точности задания параметра *n*, равной единице, т. е. рассчитаем величины V'_x при $x = \sigma_{S*}^2$ и σ_{Q*}^2 . Результаты расчета представлены в табл. 2, в

1/2 10 624

которой для сравнения приведены также величины $\overline{V}_{\sigma_{S^*}^2}$ и $\overline{V}_{\sigma_{Q^*}^2}$ заимствованные из работы [1]. Из данных табл. 2 видно, что при задании параметра *n* с точностью до единицы оценки дисперсий потоков S* и Q* по эмпирическим соотношениям могут быть сделаны с погрешностями, близкими к \overline{V}_x только для $n \simeq 5 \div 6$ к

(2) от *n* и аппроксимация для $V_{\sigma_{2*}^2}$ (3) и для $V_{\sigma_{2*}^2}$ (4).

 $S_{\odot} \simeq 0,4 \div 0,6$. Для расчета дисперсий для других значений *n* точность задания последних должна быть существенно большей, чем рассмотренная выше. Что касается функций распределения $P(S^*)$ и P(Q*), то из-за сложности аппроксимации бимодальных распределений какими являются функции распределения $P(S^*)$ и $P(\dot{Q^*})$ в условиях кучевой облачности оценка погрешностей расчета функций $P(S^*)$ и $P(Q^*)$ затруднена. Однако, имея для каждой градации потоков S^* и Q^* величины \overline{V}_x при $x = P_i$ — повторяемости *i*-той градации на распределениях $P(S^*)$ и $P(Q^*)$ [1], можно сказать о том, что большие погрешности (соответственно большие значе $ar{V}_{P_i}$) характерны для повторяемостей минимальных и максиния мальных потоков S* и Q* и для повторяемостей потоков *S** и Q^{*}_i, расположенных около вторых мод распределений P(S^{*}) и $P(Q^*)$. Наиболее стабильны величины V_{P_i} для тех потоков S_{i}^{*} и Q_{i}^{*} , которые располагаются около первых мод распределений, т. е. дают вклад в средние потоки прямой и суммарной радиации в условиях экранирования диска Солнца кучевыми облаками. Погрещности расчета основных параметров распределений $P(S^*)$ и $P(Q^*)$ не превышают 50%.

Таким образом, оценки погрешностей расчета статистических

Таблица 2

	U U					n			
: A	x x	2	3	4	5	6	7	8	9
σ <mark>2</mark> *	V'_x	6, 0	1,90	0,88	0,34	0,02	0,70	1,44	3,74
	$\overline{V_x}$	0,29	0 ,25	0,22	0,21	0,17	0,25	0,20	0,20
$\sigma_{Q^*}^2$	V'_x	3,0	1,41	0,73	0,33	0,0	0,33	0,73	1,41
	$\overline{V_x}$	0,25	0,25	0,26	0,15	0,15	0,20	0,25	0,22

характеристик по представленным эмпирическим соотношениям показали, что средние потоки S^* и Q^* могут быть рассчитаны с максимальной погрешностью равной 18 и 16%. Средние погрешности расчета дисперсий потоков не превышают 20% от рассчитываемых величин. Погрешности расчета основных параметров функций распределения не превышают 50%.

Задание параметров n с точностью, равной единице, позволяет рассчитывать потоки S^* и Q^* по выражениям (1), (2) с погрешностями, близкими к $2\overline{V}_{S^*}$ и \overline{V}_{Q^*} Дисперсии потоков при этом могут быть определены с погрешностью, близкой к величинам \overline{V}_{σ^2} только для значений $n \approx 5 \div 6$.

СПИСОК ЛИТЕРАТУРЫ

 Тимановская Р. Г. Статистическая структура потоков прямой и суммарной радиации при кучевой облачности.— «Тр. ГГО», 1973, вып. 297, с. 142— 156.

Р. Г. ТИМАНОВСКАЯ

ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ СТРУКТУРА ПОТОКОВ КОРОТКОВОЛНОВОЙ РАДИАЦИИ ПРИ КУЧЕВЫХ ОБЛАКАХ

Описанный в [1] комплекс измерений (непрерывная регистрация потоков прямой и суммарной радиации с большим разрешением по времени, фотографирование облачного неба) позволил получить подробную информацию о статистической структуре полей радиации при кучевых облаках за короткие промежутки времени. В работе [2] проведена параметризация ряда статистических характеристик радиационных потоков по баллу облаков n и по продолжительности солнечного сияния s_{\odot} . В результате такого обобщения получен ряд эмпирических соотношений, позволяющий по величинам n или s_{\odot} рассчитывать за короткие промежутки времени следующие характеристики потоков прямой и суммарной радиации: средние значения этих потоков и их дисперсии, коэффициенты изменчивости и одномерные функции распределения.

Данная статья является продолжением работы [2], так как в ней проводится анализ, обобщение и параметризация корреляционных функций потоков прямой и суммарной радиации, рассчитанных по тем же реализациям и для того же объема материала наблюдений, как и перечисленные выше статистические характеристики. Цель такого обобщения — описание пространственновременной изменчивости потоков прямой и суммарной радиации при кучевых облаках.

В настоящей статье рассматриваются нормированные автокорреляционные функции относительных (нормированных на радиацию безоблачного неба) потоков прямой S^* и суммарной Q^* радиации, т. е. $r_{S^*}(\tau)$ и $r_{Q^*}(\tau)$.

С учетом методических проработок, выполненных автором [3], временные автокорреляционные функции для потоков S^* и Q^* рассчитывались по отдельным временным реализациям длительностью $T=1,5\div2$ ч по формуле

$$r(\tau) = \frac{\frac{1}{N-\tau} \sum_{i=1}^{N-\tau} (X_i - \overline{X})(X_{i+\tau} - \overline{X})}{\sigma_X^2}$$
(1)

при X, равном S^* или Q^* .

В формуле (1) N — количество дискретных отсчетов для дан-

ной реализации (в нашем случае всегда N=1000), σ_X^2 — дисперсия величины X.

Пространственные автокорреляционные функции r (l) рассчитывались по формуле

$$r(l) \simeq V r(\tau), \tag{2}$$

где V — скорость ветра на уровне облаков.

Как показано в монографии [4], соотношение (2) справедливо для стационарных случайных процессов. Согласно выводам рабо-

Рис. 1. Временные автокорреляционные функции относительных потоков суммарной радиации, осредненные по реализациям и сгруппированные по количеству облачности.

Здесь и на рис. 2-4 цифры у кривых означают балл облачности.

ты [3], временну́ю изменчивость радиационных потоков в условиях кучевой облачности в определенном приближении можно рассматривать как стационарные случайные процессы. Следовательно, для расчета функций r(l) мы также может использовать соотношение (2).

Рассчитанные по отдельным реализациям все корреляционные функции были сгруппированы по баллу облаков и осреднены в пределах каждого балла. Всего было рассмотрено 190 случаев. На рис. 1—4 для каждого балла кучевых облаков представлены

осредненные временные автокорреляционные функции для потоков S^* и Q^* .

Согласно работе [5], во временном интервале $0 < \tau \le 0, 1T$ можно ожидать, что погрешность определения функций $r(\tau)$ не превышает 20%. В связи с этим все функции $r(\tau)$ и r(l) рассчитывались для интервала времени $\Delta T = 0, 1T$.

Рис. 2. Временные автокорреляционные функции относительных потоков суммарной радиации, осредненные по реализациям и сгруппированные по количеству облачности.

Анализ функций $r(\tau)$ и r(l) для потоков S^* и Q^* показал следующее.

1. Автокорреляционные функции относительных потоков прямой и суммарной радиации близки между собой для условий, когда балл кучевых облаков *n*≪8, т. е.

$$r_{S*}(\tau) \simeq r_{Q*}(\tau). \tag{3}$$

Это свидетельствует о том, что при $n \leq 8$ баллов флуктуации суммарной радиации в основном определяются флуктуациями прямой радиации.

2. В интервале времени $\tau_2 \leq \tau \leq 0,1T$ осредненные автокорреляционные функции $r(\tau)$ и r(l), как правило, монотонные (здесь под τ_2 понимается радиус корреляции, определяемый из условий: $r(\tau_2) \simeq 0,1$). Однако для отдельных реализаций наблюдается и периодическая структура функций $r(\tau)$ и r(l). Она характерна для быстро проходящих облаков, т. е. для условий либо достаточно малых размеров облачных неоднородностей, либо при достаточно больщих скоростях ветра.

3. В условиях кучевой облачности изменчивость радиационных потоков за промежутки времени $T \simeq 1,5 - 2$ ч в основном обусловлены изменчивостью поля облачности. Поэтому временные радиусы корреляции τ_2 , по-видимому, отражают характерные временные размеры облачных неоднородностей. Применительно к кучевым облакам под облачными неоднородностями следует понимать как сами облака, так и просветы между ними l_n . В реальных условиях временная и пространственная изменчивость параметров l и скорости ветра на уровне облаков V довольно велика, в результате чего наблюдается большая изменчивость функций $r(\tau)$ при одних и тех же состояниях облачного неба (при одних и тех же значениях n).

При увеличении количества облаков на небосводе (с ростом n) общая тенденция в поведении временных и пространственных коэффициентов корреляции такова, что параметры $\frac{dr_{Q^*}(\tau)}{d\tau} | \tau \approx 0$ и $\frac{dr_{Q^*}(l)}{dl} | l \approx 0$ убывают. Таким образом, при увеличении количества кучевых облаков на небосводе надежность связи между потоками, разделенными интервалами $\tau_i < \tau_2$ или $l_i < l_2$ увеличивается. Это относится как к S*, так и к Q*.

Несмотря на указанную общую тенденцию в поведении функций $r(\tau)$ и r(l), из рис. 1—4 отчетливо видно, что при изменении параметра n от 4 до 7 баллов как временные, так и пространственные автокорреляционные функции потоков прямой и суммарной радиации близки между собой. Другими словами можно сказать, что размеры облачных неоднородностей, определяющие структуру потоков S^* и Q^* при $4 \le n \le 7$ баллов близки друг другу.

При количестве облаков $n \simeq 8$ баллам функции $r(\tau)$ и r(l) существенно отличны от соответствующих функций для других n. Одна из причин наблюдаемого явления, возможно, проявляется в данных табл. 1, в которой для каждого балла облаков представ-

		T	Саблица 1
<i>n</i>	2	3 4 5 6	7 8 9
Число реализаций	9 2	27 30 32 35	12 2 0 23
τ ₂ С	96 32	20 350 360 380	380 735 450
l ₂ км	1,1 2	,8 4,2 4,3 4,5	5,0 15,5 8,5
<i>V</i> м/с	11	9 12 12 12	1 3 21 19

лены средние величины τ_2 и l_2 , определенные графически по рис. 1—4 с учетом соотношения (2), и средние скорости ветра на уровне облаков.

Из данных табл. 1 видно, что при *n*~8 баллам всегда наблюдаются большие скорости ветра. По-видимому, такие скорости ветра способствуют слиянию отдельных облачных неоднородностей, что приводит к укрупнению облаков или к образованию их комплексов, характеризующихся большими временными и линейными размерами (см., например [6]).

Возможна и другая причина. Близость автокорреляционных функций при $4 \le n \le 7$ и значительное возрастание коэффициентов автокорреляции при $n \simeq 8$ в сочетании с большими скоростями ветра дает основание полагать, что в первом случае чаще наблюдаются кучевые облака хорошей погоды, а во втором — кучево-дожде-

Таблица 🛛

	<u> </u>	Основнь					
n	минимум	максимум	мода	вероятность моды	медиана		
			τ_2 C				
2—3	57	660	180-240	0,25	240-300		
4—6	90	780	240300	0,22	300360		
7 - 9	60	1000	300-480	0,34	480660		
	1		l ₂ км				
2—3	0,65	8,0	2-3	0,35	3-4		
4—6	0,90	12,5	3—4	0,26	4—5		
7—9	0,90	28,0	4—7	4—7 0,33			

вые облака, которые в большинстве случаев сопровождаются большими скоростями ветра [7].

Что же касается условий, когда $n \simeq 9$ баллам, то в этих случаях величины τ_2 и l_2 , по-видимому, уже нельзя отождествлять с характерными временными или линейными размерами самих кучевых облаков. В этих условиях из-за почти полного отсутствия просветов между облаками возмущения потоков радиации будут, вероятно, создаваться флуктуациями оптических толщин облачного слоя.

Для оценки изменчивости величин τ_2 и l_2 в пределах каждого балла были построены гистограммы распределения этих величин для трех градаций *n*: 2—3, 4—6, 7—9 баллов, основные параметры которых представлены в табл. 2. Целесообразность выделения таких градаций вытекает из данных рис. 1—4.

Данные табл. 2 показывают, что размеры облачных неоднородностей, определяющие структуру радиационных потоков, в пределах каждой градации балла облаков колеблются в больших пределах, хотя общая тенденция в их поведении та же, что и отмечалось ранее — с увеличением n как минимальные, так и средние и максимальные величины τ_2 и l_2 увеличиваются.

Рис. 3. Пространственные автокорреляционные функции относительных потоков прямой радиации, осредненные по реализациям и сгруппированные по количеству облачности.

Рис. 4. Пространственные автокорреляционные функции относительных потоков суммарной радиации, осредненные по реализациям и сгруппированные по количеству облачности.

Когда облаков мало ($n \leq 3$), характерные временные размеры облачных неоднородностей, определяющие структуру потоков S^* и Q^* , составляют величины порядка 180—240 с, что эквивалентно линейным размерам l_2 от 650 до 8000 м при модальном значении около 2—3 км.

С увеличением покрытия неба кучевыми облаками расширяется диапазой наблюдаемых величин τ_2 и l_2 с одновременным смещением модальных значений в сторону больших величин.

Так, при $3 < n \le 6$ величины τ_2 и l_2 наблюдаются в пределах 90—780 с и 700—12 500 м, а при n > 6 — уже в пределах 60—1000 с и более и 900—28 000 м и более. Наиболее вероятные временные размеры τ_2 при $n \le 6$ — около 240—300 с, а l_2 — около 3—4 км.

Значения а. 10°											
	n										
Поток	2	3	4-7	8	9						
<i>S</i> *	2,15	0,80	0,64	0,37	0 ,55						
Q*	2,15	0,80	0,64	0,33	0,47						

Таблица З

(4)

При значительной облачности (при n > 6) наиболее вероятные значения τ_2 от 300 до 480 с, а l_2 — от 4 до 7 км. Следует отметить, что при n > 6 баллов наблюдаются временные размеры облачных неоднородностей более 1000 с, а линейные — от 13 до 28 км, которые не отмечаются в первых двух группах. Общая повторяемость таких размеров составляет 25% общего числа случаев, приходящихся на данную градацию величин n. Это, по-видимому, еще раз подтверждает высказанную мысль о том, что при больших n чаще наблюдаются кучево-дождевые облака. К сожалению, при проведении наблюдений разновидность кучевых облаков не фиксировалась, что не дает возможности окончательно подтвердить эти предположения.

Осредненные функции $r(\tau)$, представленные на рис. 1, 2, были аппроксимированы функциями вида

$$r(\tau) \simeq e^{-\alpha(n)\tau}$$

где величины τ выражены в секундах, а n — в баллах. Величины α для фиксированных значений n представлены в табл. 3.

Рассчитанные по выражению (4) и данным табл. З временные τ_2 и пространственные l_2 радиусы корреляции для конкретных значений *n* оказались близкими к определенным графически (табл. 4).

Возможную изменчивость показателя α в выражении (4) можно оценить, рассматривая величины $V_{\tau_i} = V_{\sigma_{r(\tau_i)}^2} [r(\tau_i)]^{-1}$, числовые значения которых представлены в [2] (в табл. 1, 2). По этим данным для каждого балла были рассчитаны функции $r(\tau)_{\min}$ и $r(\tau)_{\max}$, которые, как и средние функции $r(\tau)$, были аппроксимированы функциями вида $e^{-\alpha(n)\tau}$. Были рассчитаны величины α_{\min} и α_{\max} . Числовые значения этих параметров приведены в табл. 5. Очевидно, что величины α_{\min} и α_{\max} характеризуют возможный разброс функций $r(\tau)$, рассчитанных по выражению (4) и данным табл. 3.

							1	Габл	ица 4
n				•	2	3	4—7	8	.9
τ _{2расч} с.	•	•	•		108	29 0	360	690	490
τ _{2гр} с	•	•	•	•	96	320	360	735	450
l _{2расч} км .	•	•			1,2	2,6	4,4	14,5	9,3
l _{2гр} км .	•	•			1,1	2,8	4,5	15,5	8,5
т2расч/т2гр			•	•	1,12	0,91	1,00	0,94	1,10
l _{2pacy} /l _{2rp}		•	•	•	1,10	0,93	0,98	0,94	1,10

														Габл	ица	ł
n.			•	•	•		•	2	3	4	5	6	7	8	9	
a _{min} .	10	2	•	ŀ		•		1,4	0,43	0,2 9	0,67	0,80	0,27	0,20	0,25	
a _{max} .	10	2	•	•		•	•	3,5	1,4	1,4	1,0	1,0	1,4	0,58	0,50	

]	Габл	ица	6
n	•	•	•	•	•	•	2	3	4	5	6	7	8	. 9	
τ <u>2</u> C		•		•			102	36 0	380	350	385	385	700	450	
Δτc				•			64	170	220	140	190	200	320	100	
\overline{V}_{τ} .	•						0,63	0,47	0, 58	0,40	0,52	0,52	0,46	0,22	

Рассмотрим величину $\frac{\Delta \tau}{\Delta n} \tau_2^{-1} = \overline{V}_{\tau}$, характеризующую погрешность расчета величин τ_2 , числовые значения которых для разных *n* представлены в табл. 6. Здесь $\Delta \tau = \tau_{\min} - \overline{\tau_2}$ или $\Delta \tau = \tau_{\max} - \overline{\tau_2}$ при τ_{\min} и τ_{\max} , взятых из табл. 2 работы [2], $\Delta n = 1$.

Таблица 6 показывает, что при любых n погрешность расчета величин τ_2 по выражению (4) и данным табл. 1, 3 составляет в среднем 50% от τ₂; при *п* ≈ 9 баллам соответствующие погрешности составляют около 20%.

Заметим, что все эти результаты получены по данным одного пункта наблюдений — Звенигорода Московской области. Представляет определенный интерес сравнить полученные результаты с соответствующими результатами, полученными по данным наблюдений в других пунктах.

Для сравнения использовались результаты, полученные В. К. Пылдмаа, по данным регистраций потоков суммарной радиации в Тыравере ЭССР [8]. Результаты сравнения показали, что близость автокорреляционных функций потоков прямой и суммарной радиации при $n \leq 8$ баллам является общим правилом для Звенигорода и Тыравере. Подобными оказались и формы функций $r(\tau)$ и r(l), полученные в условиях кучевой облачности при

Рис. 5. Пространственные автокорреляционные функции относительных потоков суммарной радиации, осредненные по реализациям и сгруппированные по количеству облачности, по данным наблюдений в Тыравере ЭССР.

наземных и самолетных радиационизмерениях (см. f81). ных потоков Что же касается зависимостей функций r(τ) или r(l) от балла облаков, то результаты. полученные автором по данным наблюдений в Звенигороде и Пылдмаа по данным наблюдений в Тыравере, несколько расходятся друг с другом. Эти расхождения в основном относятся к условиям незначительного количества кучевых облаков на небосводе. Так, по данным автора общая тенденция в поведе- ϕ ункций $r(\tau)$ нии или r(l) такова, что с увеличением п надежность свяпотоков S* или Q*. ЗИ интерваларазделенных увеличивается, а ΜИ τi. $dr(\tau)$ убывеличина $d\tau$ τ==0 вает. Соответственно

увеличиваются временные и линейные радиусы корреляции (см. рис. 1—4, табл. 3). По данным Пылдмаа, самый крутой спад (наибольшая величина $\frac{dr(\tau)}{d\tau}\Big|_{\tau=0}$) у функций $r(\tau)$ наблюдается при $n \simeq 3 \div 4$ баллам. При увеличении или уменьшении n относительно 3—4 баллов автокорреляционные функции становятся более пологими (рис. 5).

По-видимому, указанные расхождения объясняются статистической необеспеченностью данных по Тыравере — обобщение по Гыравере проведено по меньшему числу случаев, чем в данной работе.

Выше отмечалось, что расчеты функций $r(\tau)$ и r(l) проводились по данным регистраций потоков прямой и суммарной радиации. Как следует из работы [9], корреляционные функции, полученные по регистрациям инерционных приемников, не являются истинными, а искажены влиянием инерции системы приемник регистратор. Оценку такого искажения можно выполнить по формуле, заимствованной из работы [9]:

$$R'_{X}(\tau)_{\alpha T_{0}=1} = \frac{R_{X}(\tau)}{1 - (\alpha T_{0})^{2}}.$$
(5)

Эта формула применима для тех случаев, когда корреляционная функция задается выражением, подобным (8), т. е.

$$R'_X(\tau) = \sigma_X^2 e^{-\alpha(n)\tau}.$$
 (6)

В формулах (5), (6) R'_X — истинная корреляционная функция; X — измеряемая величина, применительно к нашему случаю $X = S^*$ или Q^* ; σ_X^2 — дисперсия величины X; T_0 — постоянная времени системы приемник — регистратор.

В нашем случае постоянная времени T_0 системы приемник — регистратор составляла 3 с (в качестве приемников радиации использовались актинометр и пиранометр Ю. Д. Янишевского, а регистраторами являлись автоматические потенциометры ЭПП-09).

Подставляя в выражение (6) величины α из табл. 3, а вместо T_0 , его значение, равное 3 с, получим, что функции $r(\tau)$ и соответственно r(l), рассчитанные по эмпирическим данным, отличаются от своих истинных значений не более чем на 10% при $n \leq 2$ баллам. В остальных случаях эти различия существенно меньше.

С использованием формулы (4) и данных табл. 2 были вычислены спектральные плотности для потоков S^* и Q^* по соотношению

$$S(w) = \frac{1}{\pi} \int_{0}^{\pi} R(\tau) \cos(w\tau) d\tau.$$
 (7)

Оказалось, что максимальные величины спектральных плотностей для $2 \leq n \leq 9$ баллам наблюдаются соответственно на частотах $1 \cdot 10^{-2} - 0.5 \cdot 10^{-2}$ с⁻¹, минимальные значения ограничены частотой $f=1 \cdot 10^{-1}$ с⁻¹ соответствующей системы приемник — регистратор. В диапазоне частот $1 \cdot 10^{-1} - 0.5 \cdot 10^{-3}$ с⁻¹ спектральные плотности имеют линейный участок, который можно аппроксимировать формулой $S(f) \sim f^{-k}$ при k, близком к 2, что хорошо согласуется с данными работы [10], где спектральные плотности получены для флуктуаций поля яркости кучевых облаков на основе обработки аэроснимков облачного неба.

Приведенные в данной работе сведения о корреляционных функциях потоков прямой и суммарной радиации в условиях кучевой облачности являются существенным дополнением к описанию статистической структуры полей радиации при кучевых облаках, обсуждаемой в работе [2]. Кроме того, как показано в работе [11], сведения о пространственно-временной изменчивости радиационных потоков по данным наземных актинометрических измерений позволяют в какой-то мере описать пространственно-временную изменчивость полей облачности с поверхности земли. Такое описание является дополнительной информацией об облачности к соответствующей информации, получаемой со спутников и самолетов на основе анализа пространственно-временной структуры полей излучения, так как представляется возможность сопоставления всех этих данных между собой при характеристике одних и тех же облачных систем. А это в свою очередь дает возможность получать более подробную информацию об облачности по сравнению с тем, что могут дать только самолеты или только спутники.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пылдмаа В. К., Тимановская Р. Г. Некоторые статистические характеристики суммарной радиации в облачных условиях.— «Изв. АН СССР». Физика атм. и океана, 1969, т. 5, № 5, с. 457—463. 2. Тимановская Р. Г. Статистическая структура потоков прямой и суммар-
- ной радиации у поверхности земли при кучевых облаках.— «Тр. ГГО», 1973, вып. 297, с. 142—156.
- З. Тимановская Р. Г., Фейгельсон Е. М. К методике изучения статистической структуры наземных потоков солнечной радиации в облачных условиях. В кн.: Теплообмен в атмосфере, М., «Наука», 1972, с. 97—101. 4. Матвеев Л. Т. Основы общей метеорологии. Физика атмосферы. Л., Гидро-
- метеоиздат, 1965. 456 с. 5. Ариель Н. З., Бютнер Э. К. Искажения и погрешности, возникающие при расчетах статистических характеристик по экспериментальным данным.— «Тр. ГГО», 1966, вып. 187, с. 189—207.
- 6. Plank V. G. The size distribution of cumulus in representative Florida popu-lation.-., I. Appl. Meteorol.", 1969, v. 8, No. 1, c. 47-67.
- 7. Хргиан Х. А. Физика облаков. Л., Гидрометеоиздат, 1961, с.
- 8. Мулламаа Ю.-А. Р. и др. Стохастическая структура полей облачности и радиации. Тарту, 1972, с. 42—45.
 9. Каган Р. Л. Об учете инерции прибора при метеорологических изменениях.—
- «Тр. ГГО», 1965, вып. 174, с. 31-33.
- 10. Истомина Л. Г. Определение статистических характеристик пространственной структуры облачных полей по аэрофотографиям. «Изв. АН СССР». физика атм. и океана, 1966, т. 2, № 3, с. 263—271. 11. Касаткина О. И. и др. К вопросу об объективном анализе характери-
- стик облачности.— «Метеорол. и гидрол.», 1972, № 8, с. 23—29.

Л. В. НЕСИНА

О СООТНОШЕНИИ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ВОДОЕМА И ТЕМПЕРАТУРЫ ВОЗДУХА НАД ОКРУЖАЮЩЕЙ СУШЕЙ

Физические свойства верхнего, деятельного слоя водоема значительно отличаются от свойств поверхностных слоев суши. Это приводит к формированию над водоемами метеорологического режима, отличающегося от режима окружающей водоем суши. При непрерывном взаимодействии водоема и суши неизбежно взаимное влияние их друг на друга. Степень этого влияния прежде всего зависит от морфометрических характеристик водоема. С другой стороны, при формировании термического режима водоема и в процессах взаимодействия его с атмосферой немаловажную роль играют климатические условия окружающей суши. Количественным показателем термического взаимодействия водоема и окружающей сущи является разность между значениями температур поверхности водоема и воздуха над сушей. Определение этой разосложняется отсутствием систематических наблюлений ности в центральных частях водоемов. Поэтому возникает необходимость косвенного определения ее.

Развитие теории трансформации воздушного потока при переходе с суши на водоем открыло путь к определению метеорологических характеристик над водоемом по наблюдениям гидрометеорологических станций на суше. Таким образом появилась возможность для использования метода теплового баланса при изучении процессов взаимодействия сопредельных слоев атмосферы и гидросферы. Метод теплового баланса позволяет наиболее полно учитывать весь комплекс факторов, определяющих тепло- и влагообмен водной поверхности с прилегающими слоями воздуха.

В данной работе использован теплобалансовый метод расчета температуры водной поверхности, предложенный М. П. Тимофеевым [1]. Значение температуры водной поверхности, согласно принятой методике, рассчитывается по формуле

$$t_{\rm H} = \alpha \, t_{\rm H} + (1 - \alpha)(t + M), \tag{1}$$

где

$$a = \frac{1 - e^{-D}}{D};$$
 $D = \frac{c_p a_x u + 4 \circ t'^3}{c \circ \mu H};$

$$M = \frac{Q'(1-A) - E_{9\Phi}^{(0)'} - 0.622 LP_a^{-1}a_x ad}{c_p' a_x u + 4 \sigma t'^3};$$

$$c'_p = c_p + 0.622 P_a^{-1} Ln'; \quad n' = \frac{24 \cdot 10^3}{(235 + t')^2} e^{\frac{17.1 t'}{235 + t'}}.$$

Для расчета температуры поверхности водоема по формуле (1) необходимо знать величины суммарной радиации Q', эффективного излучения $E_{s\phi}^{(0)'}$ температуры t' и дефицита влажности d на суше,

										t t	, "
	10	11	12	13	14	15	16	17	18	19	T
V	-3,3		3,2	-3,1	—3,0	—3,0	—3,0	-2,9	—2,8	2,8	
VI	3,5	2,6	1,8	—1,4	—0,9	0,4	0,0	0,2	0,2	0,2	
VII	0,5	0,6	0,8	1,0	1,0	1,4	1,8	2,2	2,4	2,4	
VIII	4,3	4,3	4,3	4,4	4,4	4,4	4,3	4,0	3,8	3,4	
IX	5,5	5,4	5,0	4,6	4,2	3,8	3,5	3,2	2,8	2,6	
х	4,4	4,3	4,2	4,0	3,8	3,7	3,6	3,4			
	l								l		Ţ

Средние месячные разности температуры поверхности водоема

атмосферного давления P_a , альбедо водной поверхности A и скорости ветра u над ней, коэффициента, учитывающего характеристики обмена водной поверхности с атмосферой a_x , параметра термической стратификации воды μ , значения температуры водной поверхности в начале расчетного периода $t_{\rm H}$, глубины H и размера водоема X. Под размером водоема подразумевается половина средней величины пробега воздушного потока над водоемом, вычисляемая по выражению (2)

$$X = \frac{1}{2} \frac{S}{l},\tag{2}$$

где S — площадь водоема (или его части, если расчет ведется по участкам); l — наибольшая ширина водоема (участка) на направлении, перпендикулярном направлению ветра.

По формуле (1) были рассчитаны средние месячные значения температуры водной поверхности для условного водоема с заданным размером и глубиной (H=10 м, X=10 км) по материалам наблюдений 152 гидрометеорологических станций равнинной территории СССР. Предварительно рассматривалась репрезентативность данных наблюдений для места расположения условного водоема.

Результаты расчета температуры водной поверхности показали изменение ее в зависимости от физико-географических условий.

Однако наметить границы районов с характерными значениями температуры поверхности оказалось сложным из-за ограниченного количества данных и неравномерного распределения их по территории. Поэтому мы воспользовались известным методом детализации пространственного распределения искомой величины с помощью наиболее изученной характеристики при наличии физической зависимости между ними, предложенным Б. Д. Зайковым [2] и И. А. Гольцберг [3]. Температура воздуха и ее изменения в пространстве и во времени являются наиболее изученными в метеорологии. В то же время она играет основную роль в формировании

Таблица 1

1	20	21	22	23	24	25	26	27	28	29	30
Ī	-2.8	2,8	7	-2,6						[
1	0,0	0,1	0,4	0,8	-1,0	1,4	-1,7	-2,0	-2,4		
-	2,4	2,1	1,7	1,3	1,0	0,6	0,3	0,1	0,4	-0,8	1,1
	3,0	2,6	2,2	1,8	1,3	0,8	0,4	0,0	-0,4	0,9	1,4
	2,2	2,0	1,6	1,3	1,0	0,7					
Ì											

и температуры воздуха $\Delta t^{\circ} = t_{\rm fl} - t'$

температуры водной поверхности. Эти обстоятельства послужили основанием для построения корреляционных связей между температурой поверхности воды и температурой воздуха и использова-

Таблица 2

Сезонный ход разности ($t_{\rm ff}$ —t') по измерениям на Рыбинском водохранилище и оз. Балхаш и рассчитанный для условного водоема (H=10 м, X=10 км)

Водоем	v	VI	VII	VIII	IX	x
Рыбинское водохранилище	-1,2	0,9	2,2	2,9	3,1	2,2
Водоем в районе Рыбинского водохранилища (H=10 м, X=10 км)	3,3	0,0	2,2	4,3	5,5	4,4
Озеро Балхаш	1,0	0,5	0,0	0,4	1,5	3,2
Водоем в районе оз. Балхаш (H=10 м, X=10 км)	3,0	-0,2	1,1	2,2	4,0	4,4

ния их для характеристики термического взаимодействия поверхности водоема и окружающей суши. Весной и осенью, когда происходит интенсивная аккумуляция (или отдача) тепла водоемами, а интенсивность других процессов на поверхности мала, зависимость получается линейной или близкой к ней. Именно в это время связь между коррелируемыми величинами более тесная. Отклонение зависимости от линейной в летние месяцы обусловлено сдвигом по фазе термического цикла водоемов в зависимости от широты мес-

Рис. 1. Районы значений t_{π} —t' на равнинной и слабовсхолмленной территории в июне. 1-от 3,5 до 0°; 11-0°; 111-от 0 до -2,5°.

та. По графикам связи была составлена таблица средних месячных значений разности (t_{π} —t') за отдельные месяцы безледоставного периода (V—X) для температуры воздуха на суше через 1° (табл. 1). Эта таблица положена в основу дальнейшего районирования. С ее помощью по климатическим картам температуры воз-

духа на суше получено изменение разности $(t_{\rm m}-t')$ для всех месяцев безледоставного периода.

Представляет интерес сравнение рассчитанных и измеренных значений разности $(t_{\pi}-t')$. В табл. 2 приведен сезонный ход разности $(t_{\pi}-t')$ по данным фактических наблюдений на Рыбинском

Рис. 2. Районы значений $t_{n}-t'$ на равнинной и слабовсхолмленной территории в июле.

I-от 0,5 до 2,4°; *II*-2,4°; *III*-от 2,4 до 0°; *IV*-от 0 до-1,2°.

водохранилище и оз. Балхащ и рассчитанный цля условного водоема в этих районах. Измеренные разности по тенденции изменения не противоречат рассчитанным для водоема с фиксированными размером и глубиной (H=10 м, X=10 км). Различия в абсолютных значениях рассчитанных и измеренных ($t_{\rm II}-t'$) обусловлены отличием морфометрических характеристик существующих водое мов от водоемов с заданными размерами и глубинами. В июне и июле, когда изменение морфометрических характеристик оказывает наименьшее влияние на температуру поверхности водоема, различия невелики.

Рис. 3. Районы значений $t_{n}-t'$ на равнинной и слабовсхолмленной территории в августе. *I*--от 4.3 до 4.4°; *II*--от 4.4 до 0°; *III*--от 0 до --1.0°.

На рис. 1, 2 и 3 показаны схемы районирования по значениям $(t_{n}-t')$ за летние месяцы. Границы зон проведены по изотермам, разделяющим зоны с характерными значениями разности $(t_{n}-t')$. Последние намечены по табл. 1. При этом принимались во внимание величина разности и тенденция ее изменения.

Весной и осенью происходит монотонное изменение разности $(t_{\rm m}-t')$ в широтном направлении. В мае $(t_{\rm m}-t')$ на всей территории имеет отрицательный знак, т. е. температура воздуха выше температуры водной поверхности. С широтой она изменяется от $-3,3^{\circ}$ на севере до $-2,6^{\circ}$ на юге. При дальнейшем прогревании зодоемов меняется пространственное распределение $(t_{\rm m}-t')$.

В июне можно выделить три широтные зоны, различающиеся по значениям ($t_{\rm m}-t'$), которые показаны на рис. 1. Севернее верхней границы зоны I вскрытие водоемов происходит позднее 1 VI, поэтому нельзя получить средние месячные значения температуры водной поверхности.

В северной части ЕТС и на большей части Азии (зона I) в июне продолжается интенсивное прогревание водоемов в результате логлощения водой поступающей на поверхность солнечной радиации и адвективного притока тепла с суши, окружающей водоем, поскольку температура воздуха над ней выше температуры водной поверхности. Разность (t_п-t') в этой зоне уменьшается по широте от -3,5 до 0°, так как более южные водоемы находятся з более поздней стадии термического цикла водоема, чем северные. Если в северной части зоны I водоем еще получает тепло з результате взаимодействия с окружающей сушей, то в южной происходит накопление тепла водоемом в основном за счет падающей на поверхность солнечной радиации. Температура поверхности зодоема здесь равна температуре воздуха над сушей, окружающей водоем. Такое соотношение температур поверхности водоема и воздуха над сушей характерно и для зоны П. Внугри этой зоны значения $(t_n - t')$ близки к 0°. В зоне III, охватызающей Прикаспийскую низменность, центральную и южную части Средней Азии, температура водной поверхности снова ниже температуры воздуха. Отрицательные значения (t_n-t') в этой зоне эбусловлены низкой влажностью воздуха, что способствует интенсивному испарению с водной поверхности и, следовательно, понижению ее температуры, кроме того в засушливых районах температура воздуха вообще выше, чем в увлажненных. В пределах зоны III значения (t_п--t') увеличиваются от 0 до -2,5° в направлении с севера на юг, согласно росту дефицита влажности воздуха на суше.

В июле накопление тепла водоемами в основном заканчивается. В северных районах температура поверхности в это время незначительно превышает температуру воздуха на суше. Разность (t_n-t') составляет 0,5—1,0°. К югу (t_n-t') увеличивается, поскольку вследствие более раннего вскрытия водоемов, они успезают накопить большее количество тепла. Затем благодаря влиянию дефицита влажности воздуха увеличение (t_n-t') прекращается и происходит постепенное уменьшение в юго-восточном направлении. Таким образом, в июле можно выделить четыре зоны, в когорых значения (t_n-t') различны по количественным показателям и по тенденции изменения. В северной части ЕТС и на большей насти Азии (зона I на рис. 2) разность (t_n-t') изменяется в пределах 0,5—2,4°, увеличиваясь с севера на юг. В зоне *II* имеет место постоянное значение $(t_n-t')=2,4^\circ$. В зоне *III* пределы изменения (t_n-t') такие же, как и в зоне *I*, и отличие заключается лишь в направлении тенденции изменения (t_n-t') . Если в зоне *I* разность (t_n-t') увеличивается в направлении к югу, то в зоне *III* в этом направлении она уменьшается. Небольшая зона *IV* с отрицательными значениями разности (t_n-t') в пределах от 0,0 дс $-1,2^\circ$ сохраняется в южной части Средней Азии.

В августе начинается устойчивое понижение температуры водной поверхности и воздуха. При этом охлаждение водной поверхности происходит медленнее, так как потеря тепла ею компенсируется притоком из нижележащих слоев. По всей территории уста навливается положительное значение разности $(t_{\pi}-t')$, т. е. темпе ратура водной поверхности выше температуры воздуха над окружающей сушей. При этом в северных широтах ЕТС (до широты 55°) и равнинной территории Азии устанавливаются постоянные значения $(t_{\pi} - t')$, равные 4,3-4,4° (зона I на рис. 3). В более юж ных районах на охлаждение уже сказывается влияние широтного положения. Разность $(t_{\pi}-t')$ постепенно уменьшается до 0° на 42° ш. (зона II). Только в долине р. Амударьи, где режим температуры и влажности воздуха несколько другой по сравнению с окружающей территорией, нулевые значения (t_п-t') наблюдаются гораздо южнее 42° ш. Зона III с отрицательными значениями $(t_{\pi}-t')$ значительно сократилась по площади, благодаря уменьшению различий в дефиците влажности по территории в это время.

В сентябре происходит монотонное уменьшение величины $(t_n - t')$ с севера на юг по мере роста температуры воздуха $(\sim 0,3 \div 0,4^{\circ}$ на 1°). Максимальные значения разности составляют 5,5°, минимальные 0,7°. Так же изменяется разность $(t_n - t')$ и в октябре, но максимальные значения $(t_n - t')$ составляют 4,4°, а минимальные 3,0°.

Таким образом, полученные в настоящей работе результаты позволяют сделать следующие выводы.

1. Связь между температурой поверхности водоема и температурой воздуха над окружающей сушей неодинакова в течение безледоставного периода. Во время интенсивной аккумуляции и отдачи тепла водоемом, т. е. в апреле — июне и октябре — ноябре она более тесная, чем летом и в начале осени, когда большое значение имеет испарение с водной поверхности, определяемое главным образом дефицитом влажности и скоростью ветра.

2. Разность значений температур водной поверхности и воздуха на суше $(t_{\pi}-t')$, характеризующая взаимодействие водоема с окружающей сушей, существенно изменяется в течение безледоставного периода и в зависимости от физико-географических уеловий.

В мае всюду поверхность водоема холоднее воздуха над окружающей его сушей. Разность ($t_{\rm m}-t'$) составляет 2,5—3,5° (меньшие величины в южных широтах). В июне севернее 55° ш. поверхность водоема еще существенно холоднее воздуха над сушей (раз-

ность $(t_n - t')$ изменяется от -3,5 до 0°). Южнее ее (Украина, Черноморское побережье, Южный Урал и северные районы Казахской ССР), температура водной поверхности равна температуре воздуха. На территории Прикаспийской низменности, а также в центральных и южных районах Средней Азии поверхность водоема холоднее воздуха над сушей (разность изменяется от 0 до $-2,5^\circ$).

В июле на всей территории, за исключением южных районов Средней Азии, температура водной поверхности выше температуры воздуха на суше. Разность ($t_{\rm m}-t'$) в центральных районах составляет 2,4°, понижаясь к северу и югу. В южных районах Средней Азии температура водной поверхности ниже температуры воздуха, причем различия не превышают 1°.

В августе температура водной поверхности выше температуры воздуха. Максимальные значения $(t_n - t') \approx 4,0 \div 4,5^\circ$ в северных районах сохраняют постоянное значение до 55-й параллели, а затем уменьшаются к югу до 0° около 42-й параллели. На юге Средней Азии температура воздуха ($\Delta t_1 = -0,1; -1,0^\circ$). Осенью поверхность водоема теплее воздуха над окружающей сушей. Максимальные значения в сентябре 5,5° в северных районах, минимальные в южных 0,7°. В октябре различия между экстремальными значениями уменьщаются, $(t_n - t')_{max} = 4,5^\circ; (t_n - t')_{min} = 3,0^\circ.$

3. Полученные результаты могут быть использованы для оценки температуры поверхности проектируемых водоемов по климатическим картам температуры воздуха на суше.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тимофеев М. П. О методике расчета температуры водоемов.— «Метеорол. и гидрол.», 1958, № 12, с. 3—9.
- 2. Зайков Б. Д. Очерки по озероведению. Л., Гидрометеоиздат, 1960, с 210-213.
- 3. Гольцберг И. А. Микроклимат СССР. Гидрометеоиздат, 1967, с. 115—125.
- 4. Тимофеев М. П. Температура водоема и метеорологические условия окружающей территории. В сб.: Малые водоемы равнинных областей СССР и их использование. М., Изд. АН СССР, 1961, с. 95—100.

Н. В. СЕРОВА

КАРТЫ ЗОН УВЛАЖНЕНИЯ ПОЧВЫ РАВНИННОЙ ТЕРРИТОРИИ КОНТИНЕНТОВ СЕВЕРНОГО ПОЛУШАРИЯ

Карты зон увлажнения почвы равнинной территории континентов Северного полушария пришлось строить как промежуточный этап для построения карт теплофизических характеристик почвы этих континентов согласно методике, разработанной нами для карт СССР и описанной в работах [1, 2].

Однако для зарубежных территорий мы не располагали данными, аналогичными данным агрометеорологических станций СССР, т. е. не могли рассчитывать характеристики почв отдельных конкретных пунктов. Карты теплофизических характеристик почвы континентов приходится строить, ориентируясь на табл. 1, составленную нами ранее [2] по данным почв СССР.

Эта таблица составлена исходя из следующих положений.

Теплофизические характеристики почв зависят в основном от трех физических факторов: 1) механического состава почвы; 2) объемного веса сухой почвы (ее «скелета») и 3) влажности почвы [3].

Таблица 1

Значения теплопроводности λ и объемной теплоемкости с ρ почв разного механического состава в разных зонах увлажнения почвы

$\frac{P}{f}$	Зона увлажнения	Обозначение	Механический состав почвы							
			песок		супесь		суглинок		глина	
			λ·10 ³	Сp	λ·10³	Сp	$\lambda \cdot 10^3$	Сp	λ • 10 ³	сp
>1,33	Избыточно-влаж- ная	Ви	3,4	0,43	3,2	0,52	2,7	0,54	2,4	0,61
1,33—1,00	Влажная	B	3,2	0,40	2,9	0,46	2,6	0,52	2,1	0,53
1,0-0,77	Полувлажная	Пв	3,0	0,39	2,7	0,42	2,5	0,49	2,0	0,51
0,770,55	Полузасушливая	Π_3	2,9	0,38	2,6	0,40	2,3	0,44	1,9	0,47
0,55-0,44	Засушливая	З	2,8	0,37	2,5	0,39	2,1	0,42	1,8	0,45
0,44—0,33	Очень засушливая	\mathcal{S}_{o}	2,7	0,36	2,4	0,38	2,0	0,38	1,8	0,38
0,330,22	Полусухая	C_{π}	2,6	0,35	2,2	0,34	1,9	0,32	1,7	0,30
0,22-0,12	Сухая	С	2,5	0,30	2,1	0,31	1,7	0,30	1,6	0,28
<0,12	Очень сухая	Co	2,4	0,28	2,0	0,27	1,5	0,26	1,4	0,25

Объемный вес сухой почвы в естественных условиях, как показата обработка материалов большого числа агрометстанций СССР, не зависит от климата, в котором находится почва, а зависит лишь от ее механического состава.

Влажность почвы также зависит от механического состава, так как от последнего зависят водоудерживающие свойства почв. Пестаная почва, например, значительно слабее удерживает влагу, чем

Рис. 1. Карта зон увлажнения почвы Европы.

глинистая. Однако такое сравнение возможно лишь в одной и той же климатической зоне, при одних и тех же условиях увлажнения почвы.

При построении карт больших территорий рекомендуется использовать критерий, наиболее удачно характеризующий условия увлажнения почвы, предложенный М. И. Будыко,— отношение осадков к испаряемости $\frac{P}{f}$, где P— годовая сумма осадков в мм, f— годовая испаряемость в мм.

При построении карт теплофизических характеристик почв СССР [4] мы использовали приведенную в [5] шкалу классификации климата по условиям влагообеспеченности почвы. Этой шкале соответствуют зоны увлажнения в табл. 1. Таким образом, для нахождения значений теплофизических ха рактеристик почвы и построения соответствующих карт пеобходи мо иметь две исходные карты: карту механического состава поч и карту зон увлажнения почвы.

Рис. 2. Карта зон увлажнения почвы Азии.

Почвенные карты континентов имеются в физико-географическом атласе [6]. Карта зон увлажнения земного щара была составлена и опубликована Н. И. Ивановым в 1941 г. [7]. Однако коэффициент увлажнения $\frac{P}{f}$ в этой работе имеет градации по зонам более широкие, отличные от принятых в [5], а число зон увлажнения соответственно меньше. Так как значения теплофизических характеристик в табл. 1 найдены нами по зонам в соответствии с работой [5], карты зон увлажнения континентов были составлены также в соответствии с зонами увлажнения, указанными в [5]. Исходными материалами при этом были: данные о годовом коли-

Рис. 3. Карта зон увлажнения почвы Африки.

честве осадков в отдельных пунктах мира [6] и карта испаряемости, составленная Л. И. Зубенок [8].

Карты зон увлажнения почвы составлены нами для Европы, Азии, Африки, Северной и Южной Америки. На картах Европы и Азии на территории СССР изолинии проведены по карте зон увлажнения СССР, приведенной в [5]. Горные почвы отмечены штриховкой. На карте зон увлажнения Европы (рис. 1) большую часть территории Западной Европы занимают горы. Таким характером рельефа и определяется в большой мере распределение зон увлаж-

Рис. 4. Карта зон увлажнения почвы Северной Америки.

нения на этом континенте. Наименьшее увлажнение наблюдается на юго-востоке Испании и Греции, наибольшее — на западных берегах морей и Атлантического океана.

В Азии (рис. 2) горные почвы занимают еще больший процент территории. По равнинной части наибольшая сухость наблюдается

в пустынях Аравийского полуострова, на территории Ирана, Пакистана и северо-запада Индии, а также в пустынях Такла-Макан и Гоби.

Рис. 5. Карта зон увлажнения почвы Южной Америки.

Восточное побережье Азии характеризуется зонами достаточного и избыточного увлажнения.

Для Африки (рис. 3) характерно в основном широтное расположение зон увлажнения. Изменение этого расположения в некоторых районах обусловливается влиянием рельефа. Минимальное увлажнение наблюдается в Сахаре, а также на востоке (п-ов Сомали) и на юге, в районе пустыни Калахари. Области значительного увлажнения почвы находятся на побережье Гвинейского залива, простираются вдоль экватора (бассейн р. Конго). Сгущение изолиний до значений влажной зоны В наблюдается на юге Caxaры и в районе оз. Чал.

Изолинии зон увлажнения на территории Северной Америки (рис. 4) отличаются меньшей густотой, чем на других континентах. Исключение составляет лишь самая южная часть континента -запалный берег Мексиканского залива. Наибольшую территорию в Северной Америке занимают зоны избыточно-влажная B_{μ} влажная В и полувлажная П_в. Расположение изолиний близко к меридиональному, что обусловлено горным массивом, идущим влоль всего западного побережья.

На территории Южной Америки (рис. 5) так же, как и на территории Африки, нас интересует область к северу от экватора. Это область зон от B_{u} до $\Pi_{\mathbf{R}}$, т. е. область избыточного и достаточного увлажнения. К югу от экватора изолинии сгушаются на востоке и юге континента. Эти районы характеризуются возрастанием сухости почвы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Серова Н. В. О картировании теплофизических характеристик почв. Климат почвы. В сб.: Доклады совещания научного совета по изучению климатиче-ских и агроклиматических ресурсов. Л., Гидрометеоиздат, 1971, с. 80-86.
- 2. Серова Н. В. Теплофизические характеристики почв и их географическое распределение. В сб.: Доклады по прикладной климатологии на ВДНХ. Инф. письмо ГУГМС № 19, 1972, с. 168—181.
- 3. Серова Н. В. Распределение теплофизических характеристик почвы на рав-

- 7. Иванов Н. Н. Зоны увлажнения земного шара.— «Изв. АН СССР», сер. географ. и геофиз., 1941, № 3, с. 261-288.
- 8. Агроклиматический атлас мира. М.-Л., Гидрометеоиздат. 1972.

H. B. CEPOBA

КАРТА ТЕМПЕРАТУРОПРОВОДНОСТИ ПОЧВЫ РАВНИННОЙ ТЕРРИТОРИИ СОВЕТСКОГО СОЮЗА

Первым этапом по картированию теплофизических характеритик почв было составление карт для двух характеристик — теплопроводности и объемной теплоемкости почвы. Вначале были построены карты для ETC [1], затем для территории всего Советского Союза [2, 3]. Методика построения этих карт и сами карты опубликованы в работах [1, 2, 3, 4]. Значения величин теплопроводности и объемной теплоемкости, средние для двухградусных квадратов, наносились в центры этих квадратов и затем проводились изолинии.

Следующим этапом работы, излагаемым ниже, было составление карты третьей теплофизической характеристики почвы — температуропроводности — для равнинной территории Советского Союза.

Температуропроводность почвы К связана с теплопроводностью λ и объемной теплоемкостью с ρ следующим простым соотнощением:

$$K = \frac{\lambda}{c \rho}$$

и численно равна тому повыщению температуры почвы, которое наблюдается при передаче одному кубическому сантиметру почвы λ калорий тепла.

Размерность температуропроводности:

$$|K| = \frac{|\lambda|}{|c|\rho|} = \frac{\kappa_{A,\pi}}{c_{M} \cdot c \cdot r_{PA,\pi}} \frac{c_{M^3} \cdot r_{PA,\pi}}{\kappa_{A,\pi}} = \frac{c_{M^2}}{c}.$$

Температуропроводность является важной теплофизической характеристикой почвы. Она определяет скорость изменения температуры в почве и зависит, как и λ , и c_{ρ} , от механического состава почвы, объемного веса сухой почвы и влажности почвы. Характер зависимости теплопроводности и объемной теплоемкости почвы от этих факторов подробно рассматривается, например, в работах [1, 3].

Зависимость температуропроводности К от механического состава, объемного веса и влажности почвы более сложная. Так, если с увеличением влажности почвы ее теплопроводность и объемная теплоемкость непрерывно возрастают, то величина K вначале, в области малой влажности, возрастает, достигает максимума и затем начинает убывать. Характер этих зависимостей для песка и глины виден из рис. 1. Здесь по оси ординат отложена величина температуропроводности почвы $K \cdot 10^3$ см²/с, по оси абсцисс влажность почвы W %.

Рис. 1. Зависимость температуропроводности почвы К от влажности W для четырех значений объемного веса сухой почвы р=0,8; 1,2; 1,4; 1,6 г/см³.

На рисунке отчетливо видно различие в характере зависимости K от W для почв разного механического состава. Для песчаной почвы значения K в целом выше, чем для глинистой, и изменения резче. Максимум значений K для песка— около W = 8%, далее идет резкий спад. Для глинистой почвы максимальные значения температуропроводности имеют место при бо́льших значениях W, максимум выражен нечетко, изменения K при влажности более 15% очень незначительны.

Как показали результаты обработки большого количества материалов наблюдений агрометеорологических станций СССР, в естественных условиях объемный вес сухой почвы не зависит от климата, в котором находится почва, а зависит в основном от ее механического состава.

Средний объемный вес сухой почвы, характерный для почв определенного механического состава, представлен в табл. 1 [1].
Таблица 1

Механический состав почвы песок супесь суглинок глина

Объемный вес сухой почвы, г/см³ 1,51 1,40 1,28 1,16

Как видно из рис. 2, температуропроводность почв разного механического состава в естественных условиях сильно различается. Максимальные значения K соответственно равны: для песка ~8, для супеси 6,5, для суглинка ~ 5 и для глины ~ $4 \cdot 10^{-3}$ см²/с. Максимальные значения для разных почв соответствуют различным значениям влажности почвы: для песка максимум при 8%, для супеси — 10%, для суглинка — при 12—14% и для глины сильно размытый максимум при 18—26% влажности.

Очевидно, что в естественных условиях в зонах слабого увлажнения почвы различия между температуропроводностью песка и глины могут быть очень значительными.

Температуропроводность болотных почв, рассчитанная по теплопроводности и объемной теплоемкости деятельного слоя болотных почв [2, 3], приведена в табл. 2. Данные табл. 2 свидетельствуют о том, что температуропроводность болотных почв значительно меньше, чем минеральных.

Все сказанное относится к средним величинам. Для построения карт теплопроводности λ и объемной теплоемкости *с*ρ эти характеристики были осреднены

Рис. 2. Зависимость температуропроводности почвы К от влажности W для средних значений объемного веса сухой почвы (табл. 1).

1- песок, 2- супесь, 3- суглинок, 4- глина.

по глубине (взят слой почвые

		Τai	блиц	ца 2
Тип болота ¹ 1	2	3	4	5
λ·103 кал/(см·с·град) 0,92	0,64	0,59	0,69	0,85
ср кал/(см ³ ·град) 0,68	0,44	0,39	0,47	0,84
$K \cdot 10^3 \text{ cm}^2/\text{c}$	1,45	1,51	1,47	1,01

¹ 1— грядово-мочажинный комплекс, 2—мохово-лесная группа, 3— моховая группа, 4— древесно-травяная группа, 5— низинные болота.

)—50 см), по времени (для трех летних месяцев июнь — август) и по площади (для двухградусных квадратов). Условия построения карты температуропроводности почвы как частного от деления и на со обусловливают такое же осреднение и для величин K.

При построении карты температуропроводности в центр кажtого двухградусного квадрата помещались значения $K = \frac{\lambda}{c\rho}$. По полученной сетке были проведены изолинии равных значений $K \cdot 10^3$ нерез 1,0 · 10³ см²/с.

Карта температуропроводности почвы равнинной территории СССР приведена на рис. 3.

Наибольшие значения К наблюдаются в районах с песчаными а супесчаными почвами: на крайнем северо-западе, в районе Калининграда, на Украине (в районе Гомель — Житомир), к югу от Уральска (район Гурьева), к югу и востоку от Аральского моря.

Районы с глинистыми и суглинистыми почвами характерны боnee низкими значениями К: территория между Каспийским и Аральским морями, юг Украины и Средняя Волга, Северный Казахстан, Восточная Сибирь и Дальний Восток.

Сильное уменьшение температуропроводности наблюдается в зоне болот Западной Сибири. Возрастание К севернее 64° ш. в этом районе объясняется наличием там песчаных суходолов.

Большим количеством болот объясняются также пониженные значения К в Белоруссии и на юге Кольского полуострова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Серова Н. В. Распределение теплофизических характеристик почв по Европейской территории СССР.— «Тр. ГГО», 1969, вып. 241, с. 95—107.
- 2. Серова Н. В. Распределение теплофизических характеристик почв на равнинной территории СССР. «Тр. ГГО», 1972, вып. 282, с. 120—126.
- 3. Серова Н. В. Теплофизические характеристики почв и их географическое распределение.— В кн.: Доклады по прикладной климатологии на ВДНХ СССР. Информ. письмо ГУГМС № 19, 1972, с. 168—181.
- 4. Серова Н. В. О картировании теплофизических характеристик почв. Климат почвы.— В кн.: Доклады совещания научного совета по изучению климатических и агроклиматических ресурсов. Л., Гидрометеоиздат, 1971, с. 80—86.

О. М. МОГИЛЕВЕР

СТАТИСТИЧЕСКАЯ СТРУКТУРА СРОЧНЫХ НАБЛЮДЕНИИ ЗА ВЕРТИКАЛЬНЫМ ПЕРЕПАДОМ ТЕМПЕРАТУР НА УРОВНЯХ 0,5 и 2,0 м

В последнее время внимание исследователей все более привлекают вопросы изучения внутрисуточной статистической структуры метеопараметров [1—5]. Знание соответствующих статистических характеристик может быть использовано для широкого класса задач вероятностной обработки метеорологической информации: краткосрочного прогноза, выбора инерционности измерительных датчиков и параметров сглаживающих фильтров и т. д. Весьма удобным исходным материалом для этой цели служат данные регулярных наблюдений, проводимых на сети метеорологических станций в установленные сроки.

В настоящей работе изучается статистическая структура срочных наблюдений за вертикальным перепадом температуры. Несмотря на важность подобной информации для вычисления турбулентных потоков тепла и особенно для проведения оценок устойчивости атмосферы, работы в этом направлении нам неизвестны.

Основные препятствия на пути получения достаточно надежных оценок в этом случае определяются отсутствием длинных рядов наблюдений. Решение проблемы можно искать в объединении рядов за соседние дни. Такой подход является многообещающим, но представляет определенные математические трудности, поскольку значения метеопараметра в один и тот же срок соседних суток коррелированы и образуют случайную последовательность (связный ряд). Вопросы статистики связных рядов разработаны в значительно меньшей степени, нежели классическая статистика случайных величин [6].

Здесь мы используем приближенный подход, позволяющий, при определенных предположениях, избежать «проблемы связности» на пути объединения данных за различные дни.

Ниже приводится методика и результаты статистического анализа архивных данных Северо-Западного УГМС по вертикальной разности температур на уровнях 0,5 и 2,0 м (ст. Николаевское). Выбор станции определялся наличием наиболее длинных рядов в фиксированные сроки: 1, 7, 10, 13, 16, 19 ч. Полные ряды имелись в основном для мая и летних месяцев. Поэтому для расчета были выбраны массивы данных за май и июль. За май имелись 12-летние (1957—1968 гг.), за июль — 14-летние (1955—1968 гг.) ряды.

Расчет гистограмм и статистических характеристик осуществлялся на ЭЦВМ БЭСМ-4 с использованием программ ВШ АФИ.

1. Пусть имеется группировка данных, образующая двумерный массив $\{x_{ij}(t_s)\}$, относящийся к фиксированному сроку t_s , где i=1, m — дни, j=1, n — годы, s=1, d — сроки.

Массив $\{x_{ij}(t_s)\}$ представляет собой, по предположению, однородную двумерную выборку из нормальной генеральной совокупности, причем элементы, относящиеся к различным годам (подгруппам), некоррелированы друг с другом:

$$\overline{x_{ij}(t_s)} = \overline{x(t_s)} - \text{const}; \tag{1}$$

$$[x_{ij}(t_s) - \overline{x(t_s)}]^2 = Dx_{ij}(t_s) = Dx(t_s) - \text{const};$$
(2)

$$\overline{x_{kn}(t_s)x_{pm}(t_s)} = 0, \qquad m \neq n;$$
(3)

$$\overline{x_{kl}(t_s)x_{pl}(t_s)} = \rho^{(s)}(k, p);$$
(4)

черта сверху — символ осреднения по ансамблю (операция получения математического ожидания).

Относительно длительности корреляционных связей в подгруппе известно, что

$$\rho^{(s)}(k, p) = 0 \tag{5}$$

при $|k - p| \ge \omega$ для всех s.

Тогда исходный массив $\{x_{ij}(t_s)\}$ можно перестроить в массив $\{\hat{x}_{ij}(t_s)\}_{i=\overline{1, \omega}}$, объединив дни с некоррелированными по (5) знаj=1, m,

чениями метеопараметра. Например, при ω=4 имеем группировку:

В качестве 32-го элемента берется отсчет за первое число следуюшего месяца, если в исследуемом месяце 31 день.

Принятые выще предположения относительно статистической структуры массивов $\{x_{ij}(t_s)\}$ вызваны желанием использовать классический аппарат математической статистики случайных величин. Однако в реальных условиях эти гипотезы не всегда верны, поскольку, например, имеет место годовой ход; кроме того, в ряде случаев меняется методика наблюдений и т. д.

Тем не менее сам факт объективного существования отклонений от принятой модели не обязывает еще отказаться от нее, если эти отклонения малозначимы [7]. Поэтому важным этапом в реа лизации методики статистического анализа исходных массивов дан ных является оценка степени их соответствия принятым гипоте зам.

Применение критерия Вилькоксона [8] к малым выборкам образованным наблюдениями, относящимися к фиксированном сроку одного дня, показало, что может быть принята гипотеза од нородности выборок.

Проверка гипотезы об однородности ряда дисперсий в течени месяца проводилась с помощью приема Бартлетта [9]. Рассматри валась статистика:

$$S_m = \frac{\max_i S_i^2}{\sum_{i=0}^{m_1} S_i^2},$$

где S_i^2 — выборочные оценки дисперсии в *i*-тый день (для фикси рованного срока), построенные по выборкам одинакового объема *n*

Таблица 1

К проверке гипотезы однородности дисперсии вертикального перепада температуры воздуха

7ч		13 1	1	19 ч			
$\max_{i} S_{i}^{2}$	S _m	$\max_{i} S_{i}^{2}$	Sm	$\max_{i} S_{i}^{2}$	S _m	_	
0,13	0,21	0,49	0,24	0,19	0,25		

Таблица

Дисперсионный анализ влияния годового хода вертикального перепада температуры воздуха (для 13 ч 2, 6, 10,..., 30 числа месяца)

Месяц	Компонент дисперсии	Сумма квадратов	Число степеней свободы	Оценка дисперсии		
Май	Между классами	$Q_1 = 0,15$	$m_1 - 1 = 7$	$S_1^2 = 0,02$		
	Внутри класса	$Q_2 = 17,25$	$m_1(n-1) = 77$	$S_2^2 = 0,02$		
	Все наблюдения	Q = 17,40	$m_1 n - 1 = 95$	$S^2 = 0,18$		
Июль	Между классами	$Q_1 = 1, 10$	$m_1 - 1 = 7$	$S_{1}^{2}=0,16$		
	Внутри класса	$Q_2 = 26,94$	$m_1(n-1) = 104$	$S_2^2 = 0,26$		
	Все наблюдения	Q=28,04	$m_1n - 1 = 111$	$S^2 = 0,25$		

В табл. 1 приведены значения (град²) максимальных выборочных оценок дисперсий и самих S_m для различных сроков июля, когда подгруппа включает 8 дней со второго по тридцатое с шагом $\omega = 4$ суток. В нашем случае n = 14, $m_1 = 8$.

186

Как следует из табл. 1, для всех сроков нет оснований отвергнуть гипотезу равенства дисперсий (так как вычисленное значение S_m меньше табличного $S_{\rm T}$, равного 0,2645 при 5%-ном уровне значимости). Поскольку все наблюдения в m_1 выборках независимы, то ис ходя из условия однородности наблюдений по каждому дню и ра венства дисперсий во всех выборках, можно проверить нулевую ги потезу о равенстве средних значений в пределах месяца, исполь зуя методику однофакторного дисперсионного анализа [8 (табл. 2).

Рис. 2. Суточный ход оценок математического ожидания v(t) и дисперсии $S^2(t)$. $a - май, \delta - нюль.$

Как следует из табл. 2, для мая и июля выборочная дисперсия внутри классов (выборок) Q_2 больше выборочной дисперсии между классами Q_1 и уже поэтому различие выборочных средних незначимо. Все наблюдения можно рассматривать как выборку из однородной совокупности.

2. Поскольку, как показано в [3], корреляционные связи для температуры воздуха на уровне 2,0 м затухают в течение пяти суток, то для перепада температур можно смело выбрать ω =4 суткам. Действительно, так как перепад температур определяет степень устойчивости атмосферы, а стратификация сильно меняется в течение суток, то для перепада температур следует ожидать наличия значительно меньших масштабов, чем для температуры.

В соответствии с принятым допущением о верхней оценке длины корреляционной связи (ω =4 суткам) месячные массивы для мая и июля были перестроены, как показано выше. Были построены гистограммы для всех сроков (1, 7, 10, 13, 16, 19 ч) за май и июль; соответствующие примеры представлены на рис. 1. Рассмотрение гистограмм показывает, что для всех сроков распределения одномодальны и близки к нормальным.

При статистическом исследовании суточного хода перепада тем-

ператур на уровнях 0,5 и 2,0 м оценки математического ожидания $v(t_s)$ были вычислены по известной формуле [10] для каждого из шести сроков по 96 реализациям для мая и 112 реализациям для июля. Графическое изображение v(t) представлено на рис. 2.

Как и следовало ожидать, вертикальный перепад температур в обоих случаях имеет ярко выраженный суточный ход, определяющий изменение термической стратификации приземного слоя. В полуденные часы v(t) достигает максимума; однако в условиях Ленинградской области он невелик: 0,5°. В утренние и вечерние часы v(t) проходит через нуль (безразличная стратификация), в ночные часы господствует устойчивая стратификация (v(t) < 0). В первом приближении ход v(t) есть моногармоническое колебание с суточным периодом. Так для июля нами была получена следующая аналитическая аппроксимация v(t):

$$\mathbf{v}(t) = 0.5 \cos\left(\frac{\pi}{12} t - 3.14\right). \tag{6}$$

Для оценки дисперсии $Dx(t_s)$ использовалось выражение:

$$S^{2}(t_{s}) = \frac{1}{\omega} \sum_{i=1}^{\omega} S^{2}_{i}(t_{s}),$$
(7)

где

$$S_i^2(t_s) = \frac{1}{n_1} \sum_{j=1}^{n_1} [\stackrel{\wedge}{x_{ij}}(t_s) - \nu(t_s)]^2 (n_1 = nm_1)$$
(8)

— выборочная оценка дисперсии, найденная по *i*-тому столбцу $\{x_{ij}(t_s)\}$.

Графики $S^{2}(t)$ совмещены с соответствующими графиками v(t) на рис. 2.

Рассчитав для каждого срока оценки коэффициентов корреляции

$$r^{(s)}(i_1, i_2) = \frac{1}{n_1} \sum_{j=1}^{n_1} \frac{\sum_{i=1}^{n_1} \frac{\left[x_{i_1j}(t_s) - v_{i_1}(t_s)\right]\left[x_{i_2j}(t_s) - v_{i_2}(t_s)\right]}{S_{i_1}(t_s)S_{i_2}(t_s)}, \quad (9)$$

определяющие связность элементов в массивах $\{x_{ij}(t_s)\}$, и определив эквивалентное число некоррелированных отсчетов

$$N_{9} = \frac{n_{1} \omega^{2}}{\sum_{i_{1}, i_{2}}^{\omega} r^{(s)}(i_{1}, i_{2})},$$
(10)

построим доверительные границы ($a_{\rm H}$ — нижнюю и $a_{\rm B}$ — верхнюю) для $\overline{x(t_s)}$ (табл. 3). Как видно из табл. 3, наибольшая связность имеет место в дневные часы, что приводит к уменьшению эквива-

лентного числа некоррелированных отсчетов в массиве. С друго стороны, данные табл. З подтверждают физически очевидный фак наличия суточного хода математического ожидания, поскольку име ется значимое расхождение в оценках для различных сроков (дс верительные границы для 1, 7 и 13 ч не пересекаются).

Таблица

					- P 5// / M		,••• <i>,</i>			·		
		N	1ай (N=	404)		Июль (N=448)						
ts	N	$\overline{x}(t)$	s)	Dx((t_s)	N	$\overline{x(t)}$	s)	Dx	(t_s)		
	1°э	a _H	a _B	b _H	b _B	тэ	$a_{_{ m H}}$	a _B	b _H	b _B		
1	312	-0.5	04	0 19	0.37	304	04	03	0.13	0.27		
7	342	0,1	0,2	0,05	0,11	278	0,2	0,2	0,06	0,11		
10	250	0,3	0,4	0,09	0,19	259	0,4	0,5	0,16	0,30		
13	233	0,3	0,5	0,13	0,25	272	0,4	0,5	0,19	0,36		
16	240	0,2	0,3	0,09	0,20	302	0,2	0,3	0,12	0,22		
19	325	-0,2	0,2	0,08	0,15	249	0,2	0,1	0, 0 6	0,12		
		(ł	l	{	ł	1	l		

Доверительные границы для математического ожидания и дисперси (вероятность 0,95)

Аналогично, пользуясь понятием доверительного интервала [8], можно оценить значимость расхождения оценок дисперсии в различные сроки, т. е. выяснить имеет ли дисперсия $Dx(t_s)$ суточный ход. Значения доверительных 95%-ных границ ($b_{\rm H}$ — нижней и $b_{\rm B}$ верхней), определенных по формуле

$$S^{2}(t_{s}) - t_{q} \sqrt{\frac{2}{n_{1}}} \max_{i} S^{2}_{i}(t_{s}) < Dx(t_{s}) < S^{2}(t_{s}) + \max_{i} S^{2}_{i}(t_{s})t_{q} \sqrt{\frac{2}{n_{1}}},$$
(11)

где t_q =1,96 при q=5%, помещены в табл. 3.

Так как границы для 7 и 13 ч не пересекаются, то можно говорить о суточном ходе дисперсии срочных отсчетов вертикального перепада температур. В целом суточный ход оценки дисперсии в дневные и вечерние часы совпадает с ходом оценки математического ожидания.

Автокорреляционная функция перепада температур рассчитывалась для различных опорных сроков t_s и сдвигов τ по формуле

$$r(t_{k}, t_{p}) = r(t_{k}, \tau) = \frac{1}{\omega} \sum_{i=1}^{\omega} r_{i}(t_{k}, t_{p}), \qquad (12)$$

$$r_{i}(t_{k}, t_{p}) = \frac{1}{n_{1}} \frac{\sum_{j=1}^{n_{1}} [\hat{x}_{ij}(t_{k}) - v_{i}(t_{k})][\hat{x}_{ij}(t_{p}) - v_{i}(t_{p})]}{S_{i}(t_{k})S_{i}(t_{p})}$$
(13)

эмпирический коэффициент корреляции для сроков t_k и t_p.
 Графики полученной автокорреляционной функции представлены на рис. 3, а соответствующие численные значения — в табл. 4
 в виде взаимных корреляционных матриц. Поскольку в каждом ряду, как указывалось выше, число элементов достаточно большое

1 — май, 2 — июль.

где

(порядка 100), то можно легко оценить значимость эмпирически корреляций [8]. Действительно, для 5%-ного уровня значимост критическая область, соответствующая ненулевым корреляциям будет

$$|\mathbf{r}(t_s, \tau)| > 1.95 \frac{1 - r^2(t_s, \tau)}{\sqrt{n_1}}.$$
 (14)

Из (14) следует, что с вероятностью 95% для n_1 =96 и n_1 =112 мн можем считать значимым отклонение от нуля при $r(t_s, \tau) \ge 0,19$.

Как видно из рис. 3, корреляционная функция вертикального перепада температур спадает чрезвычайно быстро — в течение 3 ча сов — до значений, не превосходящих 0,4, что свидетельствуе о слабой связанности разности температур. Для опорных сроков 1 7 и 19 ч в мае оценки корреляционной функции незначимы уже при $\tau = 6$, 3 и — 3 часа соответственно, что может быть объяснено быст рым и резким изменением термической стратификации за время сдвига. Корреляционные функции для 10 и 16 ч носят обратносим метричный характер, которому может быть дана следующая трак

___ Таблица 4

Оценки значений автокорреляционной функции $r(t_s, \tau) = r(t_s, t_p)$ (в клетках по диагонали сверху вниз даны значения для $\tau = 0, 24, 48$ ч)

-	t _p												
t_s	1	7	10	13	16	19	1	7	10	13	16	19	
	Май							Июль					
	1,0						1,0						
1	0,1	0,02	0,04	-0,13			0,18	0,10	0,07	-0,04			
	0,02	-					0,17						
		1,0						1,0					
7	0,02	0,11	0,02	-0,03	0,01	0,06	0,10	0,31	0,12	0,17	0,19	0 ,10	
		0,12						0,14					
			1,0						1,0				
10	0,04	0,02	0,22	0,32	0,34	0,04	_0,07	-0,12	0,31	0,0	0,0	-0,05	
			0,16						0,15				
				1,0						1,0			
13	0,13	—0,0 3	0,32	0,23	0,35	0,06	_0,04	0,17	0,0	0,22	0,36	0,13	
				0,14						0,25		[
					1,0						1,0		
16		0,01	0,34	0,35	0,27	0,07		0,19	0,0	0,36	0,21	0,24	
					0,11						0,15		
						1,0			and the	5. L.		1,0	
19		0,06	0,04	-0,06	0,07	0,06		0,10	0,05	0,13	0,24	0,30	
	۳.					0,06				алан (т. 1997) ал		0,29	
						5. T]	.			l	

192

овка: в 10 ч уже практически господствует неустойчивая стратиэикация, сильно коррелированная с неустойчивостью в последуюцие часы, в то время как с более ранними значениями (при безазличной стратификации) нет реальной корреляционной связи аналогично в 16 ч имеет место неустойчивость и значения перегада температур не коррелированы с областью безразличной страификации). В 13 ч корреляционная функция приблизительно соотетствует стационарному процессу.

Отмеченные выше особенности поведения корреляционной функии в мае сохраняются и для июля с той только разницей, что братносимметричные кривые характерны для 13 и 19 ч, в то вреия как в 16 ч корреляционная связь приближенно стационарна.

Как следует из табл. 4, изменение стратификации резко сказыается на характере корреляционных связей. С другой стороны, как легко видеть, относительно большая корреляция имеет место при сдвигах кратных суткам, когда сохраняется идентичная стратирикация (значимость коэффициентов корреляции в этом случае шенить затруднительно, поскольку элементы различных подгрупп

массива $\{x_{ii}(t_s)\}$ коррелированы).

К сожалению, исходный статистический материал не позволил исследовать корреляционную функцию при сдвигах менее 3 часов. Таким образом, вертикальный перепад температур представлят собой быстропеременный процесс, нестационарный как по математическому ожиданию и дисперсии, так и по нормированной корреляционной функции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Марченко А. С., Помозова Л. И., Чубенко М. А. Временная статистическая структура метеорологических процессов.— «Тр. НИИАК», 1968, вып. 54(4).
- 2. Киселева Т. Л., Чудновский А. Ф. Статистическое исследование суточного хода температуры воздуха.— «Бюлл. научно-техн. информации по агроном. физике», № 11, 1968.
- 3. Киселева Т. Л. Статистический анализ корреляционных функций. Бюлл. научно-техн. информации по агроном. физике, № 11, 1968.
- Жуковский Е. Е. и др. Исследование статистических характеристик относительной влажности воздуха. — «Тр. АФИ», 1969, вып. 20.
- Хейфец А. И., Чудновский А. Ф. Исследование статистических характеристик суточного хода солнечной радиации.— «Тр. АФИ», вып. 20, 1969.
- Яглом А. М. Статистические методы экстраполяции метеорологических полей.— «Тр. ВНМС», т. 2, Л., Гидрометеоиздат, 1963.
 Колмогоров А. Н. К вопросу о пригодности найденных статистическим
- Колмогоров А. Н. К вопросу о пригодности найденных статистическим путем формул прогноза. — «Ж. геофизики», 1933, т. 3, вып. 1.
- 8. Фишер Р. А. Статистический метод для исследователей. М., 1934.
- 9. Ван-дер-Варден. Математическая статистика. М., Изд-во иностр. лит. 1960.
- Марченко А. С. Устойчивость оценок математического ожидания и дисперсии для связных метеорологических временных рядов.— «Изв. АН СССР». Физика атм. и океана, 1965, № 9.

СОДЕРЖАНИЕ

Б. Г. Вагер, Е. Д. Надёжина. Модель масштаба турбулентности и	÷
расчет структуры пограничного слоя атмосферы	3
Б. Г. Вагер, Е. Д. Надежина. Численные эксперименты по расчету	
горизонтально-неоднородного планетарного пограничного слоя	П
А. С. Дубов, Л. П. Быкова. Об изменении характеристик туроулент-	00
ности при натехании воздушного потока на леснои массив	- 20
1. А. Цейтин. К вопросу о трансформации температуры воздуха над тер-	20
	30
А. С. Дубов. О влиянии переороса части стока сионрских рек на терми-	12
Ческий режим процессов планетарного масштаоа	40
11. 5. A president C. B. B. C. DUPIROBERNA, A. C. \mathcal{A} yous Antalepicinka	51
Р.С.Бортковский К уточнению опенок тепло- и вагообмена океана	01
и атмосферы при шторме	58
Э. К. Бютнер. Динамические характеристики приземного слоя возлуха	
при наличии переноса песка у поверхности	70
Э. К. Бютнер, О. К. Захарова. Динамические характеристики турбу-	
лентного потока в режиме не полностью развитой шероховатости	84
О. К. Захарова. Трение и теплообмен с поверхностями, покрытыми ис-	•
кусственными препятствиями	91
Н. А. Лазарева, Л. Р. Орленко, О. Б. Шкляревич. Влияние мезо-	
неоднородностей подстилающей поверхности на профиль ветра в по-	100
граничном слое атмосферы	102
О. Б. Шкляревич. О профилях сильных ветров в пограничном слое ат-	100
мосферы по экспериментальным данным	109
О. В. Шкляревич, коэффициенты нарастания скорости вегра с высотои	199
н И Норожи тор Природа фена	130
Γ B	100
HOTTU HA ARTÉGIO OKCAHA	136
Б Н Егоров. Расседная ралиация нал океаном в условиях сплошной об-	
лачности	140
Т. В. Кириллова, Р. Г. Тимановская. Оценка погрешностей расчета	
статистических характеристик радиационных потоков по эмпирическим	
зависимостям	147
Р. Г. Тимановская. Пространственно-временная структура потоков ко-	
ротковолновой радиации при кучевых облаках	152
Л. В. Несина. О соотношении температуры поверхности водоема и тем-	1.00
пературы воздуха над окружающей сушей	103
Н. В. Серова. Карты зон увлажнения почвы равнинной территории конти-	179
нентов северного полушария	114
п. в. Серова. Карта температуропроводности почвы равнинной терри-	179
о м моги девер Статистическая структура срочных наблюлений за	
о. на полодонии осруги ура сроимая насторияти в	184
peptingaining nepenadow temperily we promise the standing of the	

ТРУДЫ ГГО, вып. 326

Физика пограничного слоя атмосферы

Редактор Е. И. Ильиных

Техн. редактор М. С. Костакова

Корректоры: Т. В. Алексеева, Л. И. Хромова

Сдано в набор 6/VI 1974 г. Подписано к печати 13/II 1975 г. М-17059. Формат 60×90^{1/18}, бум. тип. № 1. Печ. л. 12.75. Уч.-изд. л. 13,04. Тираж 500 экз. Индекс МЛ-332. Заказ № 624. Цена 91 коп.

Гидрометеоиздат. 199053. Ленинград, 2-я линия, д. 23.

Сортавальская книжная типография Управления по делам издательств, полиграфии и книжной торговли Совета Министров Карельской АССР. Сортавала, Карельская, 42.

