ГЛАВНОЕ УПРАВЛЕНИЕ ГИДРОМЕТЕОРОЛОГИЧЕСКОЙ СЛУЖБЫ ПРИ СОВЕТЕ МИНИСТРОВ СССР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А. И. ВОЕЙКОВА.

ТРУДЫ

06

T78

ВЫПУСК 296

КОМПЛЕКСНЫЙ ЭНЕРГЕТИЧЕСКИЙ ЭКСПЕРИМЕНТ (КЭНЭКС-71)

Под редакцией член-корр. АН СССР К. Я. КОНДРАТЬЕВА канд. физ.-мат. наук Л. Р. ОРЛЕНКО

270445

ЛЕНИНГРАД 1973

УДК 551.501:551.506.5:551.521

Сборник является вторым в серии, посвященной комплексному исследованию энергетики атмосферы, В нем представлены: а) материалы наблюдений экспедиции, проведенной в районе Уральска в июле 1971 г., описание программы работ и методики наблюдений; б) результаты анализа полученных данных, относлщихся к проблеме энергетического взаимодействия атмосферы с подстилающей поверхностью.

Сборник рассчитан на специалистов, работающих в области физики атмосферы.

© Главная геофизическая обсерватория им. А. И. Воейкова (ГГО), 1973.

К. Я. КОНДРАТЬЕВ, С. П. МАЛЕВСКИИ-МАЛЕВИЧ, Л. Р. ОРЛЕНКО, Ю. И. РАБИНОВИЧ, Н. Е. ТЕР-МАРКАРЯНЦ, Л. Р. ЦВАНГ

программа экспедиции кэнэкс-71

В связи с дальнейшим развитием работ по программе Комплексного энергетического эксперимента [1] в 1971 г. была осуществлена вторая экспедиция — КЭНЭКС-71.

В результате работ 1970 г. [2, 3], помимо решения многих методических вопросов проведения такого эксперимента, был изучен ряд особенностей переноса радиационной энергии в атмосфере и трансформации ее в другие виды энергии. Были определены, например, величины радиационных притоков тепла в свободной атмосфере, пограничном и приземном слоях на основе осуществления полного (замкнутого) радиационного эксперимента. По данным спектральных измерений впервые получены количественные оценки влияния аэрозоля на поглощение солнечной радиации. В известной мере удалось выполнить комплексные исследования различных видов переноса энергии (лучистая и турбулентная теплопередача и др.). Вместе с тем стало очевидным, что при проведении следующей экспедиции необходимо расширение работ с целью более обстоятельного изучения переноса турбулентной энергии. В связи с этим программа экспедиции КЭНЭКС-71, во многом повторяя и дополняя (в особенности это касается аэрозольных измерений) радиационную часть КЭНЭКС-70, была существенно расширена включением в нее измерений турбулентных потоков тепла, влаги и количества движения, которые обеспечивал Институт физики атмосферы АН СССР.

Экспедиция КЭНЭКС-71 проводилась в июне—июле 1971 г. в Западном Казахстане (Уральская область). Самолет-лаборатория Ил-18, оснащенный различной алпаратурой для радиационных измерений, базировался в Куйбышеве, самолет-лаборатория Ил-14, обеспечивающий измерения турбулентных потоков, — в Уральске.

Как показала экспедиция 1970 г., песчаная пустыня, несмотря на чрезвычайно высокую однородность отражательных свойств подстилающей поверхности, характеризуется заметной температурной неоднородностью и неоднородностью поля ветра в нижнем слое в связи с наличием барханного рельефа и большими перегревами освещенных склонов барханов.

С этой точки зрения выбор экспедиционного полигона в условиях степного ландшафта обеспечил более высокую степень однородности подстилающей поверхности. Однако при выполнении лётных работ экспедиции не удалось найти достаточно протяженную радиационно-однородную трассу полета, что привело к известным затруднениям в увязке наземных и самолетных данных измерений.

В экспедиции участвовали сотрудники Главной геофизической обсерватории (отделы радиационных исследований, физики пограничного слоя, экспериментальной геофизики и исследования атмосферной диффузии и загрязнения атмосферы). Института физики атмосферы АН СССР. Ленинградского государственного университета, Московского государственного университета, Государственного оптического института, Казахского управления Гидрометеорологической службы. Кроме того, в экспедиции участвовали студенты Ленинградского гидрометеорологического института. Мос-КОВСКОГО института инженеров геодезии. аэрофотосъемки и картографии. По техническим причинам отказались от участия в экспедиции наземная и самолетная группы Центральной аэрологической обсерватории, обеспечив из ранее запланированных разделов работы лишь наземные озонометрические наблюдения.

К сожалению, погодные условия не были благоприятными для проведения экспедиции и бо́льшая часть наблюдений выполнена в условиях меняющейся облачности. Характеристика погодных условий в период проведения экспериментальных работ дается в [4]. Ниже излагается программа выполненных наблюдений и указываются институты — исполнители отдельных разделов программы.

- I. Приземный слой атмосферы и верхний слой почвы:
- измерения составляющих радиационного баланса (ГГО, ИФА);
- прямые измерения турбулентных потоков тепла, влаги и количества движения (ИФА);
- градиентные измерения температуры, влажности воздуха и скорости ветра (ГГО, ИФА);
- определение потока тепла в почве (ГГО, ИФА);
- измерения радиационных притоков тепла (ГГО, ИФА);
- определение концентрации аэрозоля (ЛГУ);
- запись спектров коротковолновой радиации (падающей и отраженной) (ЛГУ);
- определение содержания озона (ЦАО);
- определение особенностей ландшафтных характеристик района измерительного полигона (ЛГУ).
 - II. Пограничный слой и свободная атмосфера:
- шаропилотные базисные трехпунктные наблюдения до высоты 2000 м (ГГО);
- аэростатные измерения температуры и влажности воздуха, средней скорости и порывистости ветра до высоты 400 м (ГГО);
 вертолетные измерения температуры и влажности воздуха и ра
 - диационных потоков до высоты 2000 м (ГГО);

- самолетные прямые измерения турбулентных потоков тепла и количества движения (ИФА);
- определение средней скорости ветра и характеристик турбулентности путем стереофотограмметрирования дымовых струй (ГГО);

Рис. 1. План экспедиционного полигона.

А. Площадка, ГГО: 1— градиентные мачты, 2— актинометрическая площадка, 3— почвенная площадка, 4— регистраторы, 5— спектрометр, 6— аэрозольные измерения, 7— пункты базисных шаропилотных измерений, 8— пункты стереофотограмметрических измерений, 9— пункт аэростатного зондирования, 10— будка для выдержки метеорографов; Б. Площадка И ФА: 1— градиентная мачта, 2— мачта «журавль» для измерения турбулентных потоков

Б. Площадка ИФА: *1*—градиентная мачта, 2—мачта «журавль» для измерения турбулентных потоков тепла и количества движения, 3—мачта для измерения турбулентных потоков водяного пара, 4—мачта «журавль» для измерения радиационных потоков, 5—регистраторы, 6— площадка для запуска шаров.

- самолетные измерения спектральных и интегральных потоков радиации на различных уровнях (ГГО, ЛГУ);
- самолетные спектральные измерения угловых распределений интенсивностей восходящего и нисходящего коротковолнового и длинноволнового излучения (ГОИ);
- получение инфракрасных изображений подстилающей поверхности с самолета (ГГО);

- самолетные измерения вертикальных профилей атмосферного давления, температуры и влажности воздуха (ГГО);

 самолетные измерения вертикального распределения концентрации аэрозольных частиц (ЛГУ, ГГО);

Рис. 2. Схема дневных полетов по основной программе.

 радиозондирование атмосферы на ст. Уральск (УГМС КазССР).
Комплекс наземных измерений выполнялся на двух площадках — ГГО и ИФА. На рис. 1 представлены результаты тахеомет-

рической съемки экспедиционного полигона, выполненной М. Маркиным и Н. Бабашкиным.

При обработке материалов экспедиции КЭНЭКС-70 обнаружены значительные трудности в построении профилей метеорологических и актинометрических элементов и в приведении данных для разных высот к единому моменту времени. Поэтому в экспедиции КЭНЭКС-71 все площадки измерений на разных уровнях последовательно повторялись, что дает возможность путем построения графиков суточного хода измеряемых элементов на разных высотах определить профили, отнесенные к единым моментам времени. На рис. 2 и 3 приведены использованные в ходе экспедиции два варианта схем самолетных измерений.

Продолжительность рабочей «площадки» Ил-18 на каждой высоте со-

ставляла около 7 мин. Полет производился при положении Солнца «справа» (в течение первых пяти минут под углом 120°, в последующие две минуты — под углом 90° к направлению по-

Таблица 1

Приборы и высоты измерений

		· · · · · · · · · · · · · · · · · · ·	Высота	
Определяемая характеристика	Прибор	Регистратор	(слой измерений)	Примечание
	Площадка	а ГГО		
Коротковолновая ра-		[ł	
диация: прямая	Актинометр АТ-50	ЭПП-09	1,5 м	
рассеянная суммарная отраженная	Пиранометр М-80 Пиранометр М-80 Альбелометр	ЭПП-09 ЭПП-09 ЭПП-09	1,5 м 1,5 м 1.5 м	
Восходящая и нисхо-	Балансомер Козы-	ЭПП-09	1,2 м	
дящая длинновол- новая радиация	рева Балансомер Козы- рева	К-12-21	10, 50, 100, 200, 300, 500, 1000, 1500, 300, 500, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1	Вертолетные измерения
Длинноволновый баланс	Балансомер Козы- рева	ЭПП-09	2000 м 0,1; 1; 5;8 м	
Длинноволновый приток тепла	Суммарный селек- тивный радио-	ЭПП-09	1; 5; 8 м	Только в ночное
Спектр солнечной радиации (падаю- шей и отраженной)	к-2	H-700	2 м	время
Температура, влаж- ность воздуха	Психрометры Ас- смана Термометры со-	ЭПП-09	0,25; 0,50; 1,0; 2,0 м 0.1: 0.5: 1.0:	
	противления		2,0; 4,0; 8,0;	
	Электрометеоро- граф, механиче- ский метеоро-	К-12-21	10, 50, 100, 200, 300, 500, 1000, 1500,	Вертолетны е измерения
	Граф Механический метеорограф		2000 м 25, 50, 100, 200, 300, 400 м	Аэростат- ные изме- рения
Скорость ветра	Радиозонд Контактные ане- мометры	Счетчики импульсов, регистратор	0—30 км 0,25; 0,50; 1,0; 2,0; 5,0; 9,4; 16,3 м	
	Шаропилотные наблюдения		25—3000 м	
		Фотографи- рование дымовых	5—300 м (через 10 м)	Стереофото- грамметри- ческие
Направление ветра	Радиозонд М-63 Шаропилотные	струй	0—30 км 8 м 25—3000 м	измерения
Температура почвы по глубинам Теплофизические	Радиозонд Термометры со- противления ИТК	MO-47	0—30 км 0,5; 10; 15; 20 40; 60 см 5, 15 см	
характеристики почвы			.,	

Определяемая характеристика	Прибор	Регистратор	Высота (слой измерений)	Примечание
	Площадка	а ИФА		1
Пульсации: горизонтальной и вертикальной составляющих	Анемометр аку- стический	Магнитофон	5 м	Дополни- тельно про- водились
скорости ветра температуры воз-	Термометр пуль-	Магнитофон	5 м	измерения w', u' и $T'на разлиц-$
влажности воздуха	Гигрометр пуль- сационный (ин-	Магнитофон	5 м	ных высо- тах от 0,1
Турбулентные потоки $\overline{w'T'}$, $\overline{w'u'}$, $\overline{w'e'}$, фракрасныи)	Коррело- метр	5 м	до 7 м Определя- лись при измерениях непосредст- венно по корреломет-
Коротковолновая				рам
суммарная отраженная	Пиранометр М-80	ЭПП-09, Н-373	1—5 м	
Длинноволновый баланс	Пиранометр М-80 Модуляционный балансомер	ЭПП-09 ЭПП-09	1, 2, 5 м	
	Балансомер Яни-	ЭПП-09	2 м	
Потоки тепла в почву Градиенты темпера- туры	Тепломер АФИ Градиентограф ИФА	ЭПП-09 Н-37	3-5 cm 0,5-2 m; 1-2 m; 2-4 m; 2-8 m;	
Скорость ветра	Контактный ане-	N.	2-12 M 0,5; 1; 2; 4;	
Влажность воздуха	Психрометр ди- станционный	H-37	0,5; 5 м	

лета). В конце площадки самолет выходил в точку проведения наземных измерений. Полеты самолета Ил-14 осуществлялись в направлении ветра, продолжительность полета составляла примерно 30 мин.

Все измерения выполнялись сериями продолжительностью в несколько часов. Большинство измерений сделано в дневные часы. Для характеристики суточного хода радиационных и турбулентных потоков и метеорологических элементов были выполнены две суточные серии (рис. 4).

В табл. 1—3 приведены сведения об измеряемых элементах, используемых приборах и высотах измерений в пункте наземных наблюдений и с самолетов. Подробное описание методик измерений и обработки дается в работах [5, 6]. Основная часть материа-

Таблица 2

Комплекс измерений, выполненных с помощью самолета Ил-18

Наименование прибора	Регистратор	Спектральная область, мкм	Угол поля зре- ния, градусы	Продолжитель- насть однаго измерения	Определяемая характеристика
Пиранометры	эпп-09	0,3—3	170	5 мин	Восходящий и нисхо-
Пиргеометры	ЭПП-09	3.0-30	170	5 мин	То же
Спектрометры К-2	К-12-21	0,3-1,0	180	3 c	То же
Широкоугольный радио-	ПС-01	3-30	150	3 мин	Восходящий поток
метр					
Спектрометр СП-102	К-12-21	25,5	1,5	6 мин	Угловое распределе- ние интенсивности излучения
Спектрометр СПИ-2М	К-12-21	0,4-2,5	30	10 c	То же
Спектрометр ИКСС-2	H-700	2-25	0,5	10 мин	Прозрачность атмо- сферы
Тепловизор ТВ-60	РФК-2	2,5-5,5	6'	15 c	Изображение подсти-
Аэрозольный импактор					лающей поверхно- сти и облачности Счетная концентра-
непрерывного действия					ция, спектр разме-
Самолетный термогигро- метр СТГ	К-4-51] [-	ров аэрозоля Температура, влаж- ность, давление

Таблица З

Комплекс измерений, выполненных с помощью самолета Ил-14

Определяемая характеристика	Прибор	Регистратор	Частотный диапазон, Гц
Пульсации вертикальной компоненты скорости	Акустический анемо- метр	Запись на магнитофон- ную ленту	0—20
ветра Пульсации горизонталь- ной компоненты ско- рости ветра	Термоанемометр постоянного тока	То же	0—20
Пульсации температуры	Термометр сопротив- лений	То же	020
Средняя температура	То же	Визуальный отсчет по стрелочному прибору	

лов наблюдений приводится в приложении к настоящему сборнику. Описание измерительного комплекса, осуществленного на площадке ИФА, дано в [8]. Следует отметить, что по сравнению с

Время местное Московское	8 9 10 11 12 13 14 13 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6
Актинометрические измерения	
Спектральные измерения	
радиентные наблюдения	
семпература почвы	
Ізмерение потоков тепла, влаги и количества дви- жения	
тэрозольные измерения	
Ззонометрические наблюдения	
Паропилотные наблюдения	•••• •••• ••••
хэростатное зондирование	
Зертолетное зондирование	
амолетное ГГО	
ондирование ИФА	
задиозондирование	•
	Рис. 4. Схема наблюдений (суточная серия)

КЭНЭКС-70 [1, 7] программа работ дополнительно включала комплекс исследований ИФА, а также следующие виды работ:

- проведение стереофотограмметрических съемок,
- выполнение аэростатных измерений,
- измерения профиля нисходящего длинноволнового потока радиации в пограничном слое с вертолета,
- определение радиационных притоков тепла в приземном слое в дневное время.

Руководили экспедиционными работами со стороны ГГО С. П. Малевский-Малевич, Л. Р. Орленко, Ю. И. Рабинович, со стороны ИФА — Л. Р. Цванг, С. Л. Зубковский, Б. М. Копров. Отдельными разделами работ руководили: наземной актинометрией А. А. Елисеев (ГГО), Д. В. Соколов (ИФА), градиентными измерениями З. М. Утина (ГГО), Д. Ф. Тимановский (ИФА), шаропилотными измерениями Н. А. Лазарева (ГГО), аэростатным зондированием Б. И. Вдовин и Е. В. Петрова (ГГО), вертолетным зондированием А. А. Елисеев и Г. А. Тюлькова (ГГО), стереофотограмметрией В. С. Елисеев (ГГО), самолетными измерениями Б. А. Дерюгин (ГГО), В. П. Кухарец (ИФА), спектральными измерениями Л. И. Чапурский и О. Б. Васильев (ЛГУ), аэрозольными измерениями Л. С. Ивлев (ЛГУ), самолетными актинометрическими измерениями М. А. Прокофьев (ГГО), озонометриче-скими измерениями А. С. Бритаев (ЦАО). В руководстве подготовкой экспедиции принимала участие Н. Е. Тер-Маркарянц (ГГО.)

ЛИТЕРАТУРА

- 1. Кондратьев К. Я. и др. Комплексный энергетический эксперимент. Метеорология и гидрология, 1970, № 11, с. 51—57.
- 2. Кондратьев К. Я. и др. Предварительные результаты первой экспедиции по программе Комплексного энергетического эксперимента (КЭНЭКС-70).— Метеорология и гидрология, 1971, № 6, с. 48—56.
- 3. Комплексный энергетический эксперимент. Под ред. К. Я. Кондратьева, Л. Р. Орленко. Труды ГГО, 1972, вып. 276, с. 279.
- 4. Гусева Л. Н. и др. Синоптическая обстановка в период работы экспедиции
- КЭНЭКС-71. См. наст. сборник. 5. Лазарева Н. А. и др. Профили метеорологических элементов по материалам наблюдений. — См. наст. сборник.
- 6. Елисеев А. А. и др. Профили радиационных потоков по материалам наблюдений. — См. наст. сборник.
- 7. Кондратьев К. Я. и др. Программа Каракумской экспедиции. Методика наблюдений. Труды ГГО, 1971, вып. 276, с. 5—16.
- 8. Елагина Л. Г. и др. Экспериментальное исследование баланса тепла на поверхности почвы. — См. наст. сборник.

В. В. ВИНОГРАДОВ, А. А. ГРИГОРЬЕВ

ЛАНДШАФТНАЯ ХАРАКТЕРИСТИКА ОПЫТНОГО ПОЛИГОНА КЭНЭКС-71

Опытный полигон КЭНЭКС-71 расположен в Западном Казахстане (Уральская область) восточнее озера Челкар, в пределах сухостепной ландшафтно-климатической зоны¹. Территория исследований приурочена к северо-восточной окраине Прикаспийской низменности — аккумулятивной низменности краевой впадины, которая представляет плоскую морскую аккумулятивную равнину с абсолютными отметками 30—40 м, с общим уклоном поверхности с северо-востока (от увалов Общего Сырта) на юго-запад (в сторону Каспийского моря). Абсолютные отметки участка геофизических измерений 38—40 м над ур. м. Почти повсеместно развиты верхнечетвертичные отложения хвалынского яруса, представленные супесями, песками, суглинками и глинами с преобладанием плотных суглинков. Хвалынские отложения обычно подстилаются апшеронскими глинами на глубине 8—11 м.

Зональной растительностью в пределах полигона являются сухостепные полынково-типчаково-ковыльные и полынно-типчаковые сообщества, местами с заметной комплексностью растительного покрова. Зональные почвы принадлежат к светло-каштановым.

На полигоне КЭНЭКС-71 были выделены семь видов геосистем (рис. 1).

1. Сухостепные равнины с однородным растительным покровом из ксерофильно-разнотравно-типчаково-ковыльных сообществ на светлокаштановых почвах развиты на дренированных равнинах, сложенных легкосуглинистыми отложениями. Однородность поверхности сухих степей, однако, сильно нарушена пашнями, которые занимают от 10 до 60% территории контура.

2. Равнины с комплексным почвенно-растительным покровом преобладают на территории полигона и расположены на плоских или пологонаклонных водоразделах, тяготеющих к речным долинам, озерным ваннам, лиманным, западинным, старичным и дру-

¹ Характеристика района составлена по данным полевых наземных и аэровизуальных (с вертолета) наблюдений, а также опубликованных литературных и картографических материалов [1—7].

гим понижениям. Грунтовые воды умеренно глубокие (на глубине 7—9 м). Почвы таких равнин преимущественно солонцеватые. В пределах фоновой равнинной поверхности развиты блюдцеобразные микрозападины диаметром 5—8 м, иногда до 15—25 м, суффозионного генезиса. Комплексность равнины представляет собой частое чередование фрагментов (размером до 10—20 м) белополынных сообществ на солонцах, степных и типчаковых сообществ на светлокаштановых солонцеватых почвах. В комплекс входят фрагменты возникших под влиянием сбоя сообществ однолетников. В частности, один из таких комплексов представлен на участке, где проводились основные наземные геофизические измерения КЭНЭКС-71:

10% асс. полынково-типчаково-ковыльная на луговокаштановых солонцеватых почвах, с покрытием растительности до 100%;

30% асс. ромашниково-белополынно-типчаковая на светлокаштановых солонцеватых почвах с покрытием растительности 60— 70%;

40% асс. однолетниково-ромашниково-белополынная на средних степных солонцах с покрытием растительности 50—60%;

20% асс. однолетниково-белополынно-чернополынная на солонцах степных мелких с покрытием растительности 20—40%.

Во время проведения КЭНЭКС-71 поверхность почв комплексной равнины была воздушно-сухая, растительность находилась в фазе окончания раннелетней вегетации.

3. В южной части района встречаются древнедельтовые супесчаные отложения. На них развиты бурые незасоленные супесчаные почвы, которые почти полностью распаханы. Почвы во время съемки свежие, посевы зеленые в стадии молочно-восковой спелости.

4. Западины представляют замкнутые плоскодонные понижения диаметром несколько сотен метров и глубиной до 2—5 м. Они встречаются повсеместно в северной и центральной части полигона. Заливаются западины в апреле на 20—30 дней. На дне западин густая луговая растительность из пырея, вейника, бекмании, мезофильного разнотравья, местами с пятнами осоки и ситника. Почвы лугово-лиманные слитные, влажные и сырые. Грунтовые воды на глубине 2—3 м.

Склоны западин покрыты сильно сбитой и несколько разреженной растительностью из мятлика, пырея, полынка на свежих и влажных луговых солонцеватых почвах. По окраинам западин развиты полынково-типчаковые, галофитноразнотравно-пырейные сообщества с покрытием 80—90% на лугово-каштановых и луговых солонцах сухих и свежих.

5. Лиманообразные понижения единичны на территории полигона (Сасык-коль). Их размеры достигают 2—4 км, а глубина 10— 15 м. На дне лимана круглый год мелкая вода с тростниковыми зарослями. Затем следует лояс осочников с сырыми лугово-болотными почвами, которые сменяются пырейниками на луговолиманных влажных почвах.

Рис. 1. Карта-схема геосистем опытного полигона «КЭНЭКС-71».

1 — морские аккумулятивные сухостепные равнины, 2 — морские аккумулятивные комплексные равнины, 3 — древнеаллювиальные супесчаные равнины, 4 — лугово-степные западины, 5 — лугово-болотные лиманы, 6 — лугово-солончаковые депрессии, 7 — долины рек, 8 — направление основных аэрогеофизических съемок.

Окраина лимана резко очерчена полосой плавника, береговым валом и занята переходной полосой к комплексной сухостепной растительности с преобладанием галоморфных компонентов (острецово-чернополынных 70%, камфоросмово-чернополынных 20%) на сухих солонцах.

6. Солончаковые депрессии представляют наиболее контрастные сочетания озер с солоноватой водой, мокрых засоленных почв, тростниковых зарослей, солончаков с выцветами соли на поверхности, сообществ с разреженной галофильной (кокпек, сарсазан и др.) растительностью. Такие понижения локализованы в крайней юго-восточной части полигона в районе Соль-Коль и к юго-западу от Кызыл-Агач. В период проведения исследований их поверхность была сухая. Соровые отложения представлены солями разной мощности, примерно до 0,1—0,15 м, подстилаемыми суглинками, илами мощностью 0,5—0,8 м.

7. Дренирующие ландшафт реки (Ирено-Анкаты, Анкаты, Купер-Анкаты, Шесай-Уленты, Уленты и др.) начинаются за пределами полигона в районе Зауральских Сыртов, характеризуются узкими обрывистыми берегами с глубиной вреза долин до 8—10 м и шириной 0,1—1 км. Одни реки впадают в оз. Челкар, другие уже вне полигона теряются в степи, в бессточных депрессиях. На участке исследования в среднем и нижнем течении рек вода обычно сохраняется, но иногда пересыхает и русла разбиваются на ряд плесов.

В долинах можно проследить обрывки террас: низкой пойменной высотой до 0,5—0,7 м, иногда высокой пойменной до 1,5 м и надпойменной высотой 5—6 м. Пойма и склон надпойменной террасы обычно заняты густыми ивняковыми и тростниковыми зарослями. Террасированные уступы в долинах рек покрыты степной полынно-типчаковой растительностью сложной структуры и пересекаются старичными понижениями с луговой (пырейной) и лугово-болотной (пырейно-осоковой) растительностью. Местами в долинах встречаются пашни, огороды и залежи.

ЗАКЛЮЧЕНИЕ

По характеру микрорельефа и преобладающему почвенному и растительному покрову территория полигона КЭНЭКС-71 в целом весьма однородна. Отражательные и излучательные контрасты преобладающих фоновых геосистем невелики. Вместе с тем в пределах полигона расположены и такие геосистемы, которые по геофизическим характеристикам выделяются на однородном фоне территории. Наибольшие контрасты с фоном составляют геосистемы реч-

ных долин и лиманов, за ними следуют геосистемы солончаковых депрессий и западин. Изображения указанных геосистем были использованы нами для привязки, координации и сравнительного анализа материалов аэрогеофизических измерений. Местами существенным фактором, нарушающим однородность естественного фона, является распаханность территории. По аэрогеофизическим профилям распаханность на отдельных участках трассы не превышает 20%, а в целом по трассам не превышает 5-10%.

Наконец, местами заметное влияние на неоднородность подстилающей поверхности оказывает наличие построек, дорог и пятен с уничтоженным естественным растительным и почвенным покровом у колодцев и населенных пунктов.

ЛИТЕРАТУРА

- 4. Доскач А. Г. Геоморфологическое районирование Северного Прикаспия. В кн.: «Вопросы улучшения кормовой базы в степной, полупустынной и пустынной зонах СССР.», М.-Л., 1954, с. 265-274.
- 2. Жуков М. М. Плиоценовая и четвертичная история севера Прикаспийской
- впадины. Проблемы Западного Казахстана, 1945, 11. 3. Иванов В. В. Степи Западного Казахстана в связи с динамикой их по-крова, М.-Л., Изд. АН СССР, 1958, с. 288.
- 4. И ванова Е. Н. Очерк почв южной части Подуральского плато и прилегающих районов Прикаспийской низменности. - Мат. ОКИСАР АН СССР, сер. Казахст., 1928, 14.
- 5. Ларин И. В. и др. Основные закономерности распределения растительности и геоботаническое районирование Северного Прикаспия в пределах междуречья Волга-Урал. — В кн.: «Вопросы улучшения кормовой базы в степной, полупустынной и пустынной зонах СССР. «М-Л., 1954, с. 9—33.
- 6. Мильков Ф. Н. Чкаловские степи. Чкалов, 1947, с. 92. 7. Никитин С. А. Растительность восточной части Прикаспийской низменности. - В кн.: «Пустыни СССР и их освоение», М.-Л., 1954, с. 216-265.

Л. Н. ГУСЕВА, Б. А. ДЕРЮГИН, Б. Д. ЗАВАРИН, О. Б. ШКЛЯРЕВИЧ

СИНОПТИЧЕСКАЯ ОБСТАНОВКА В ПЕРИОД РАБОТЫ ЭКСПЕДИЦИИ КЭНЭКС-71

Период работы экспедиции КЭНЭКС-71 (с 27 июня по 23 июля 1971 г.) в климатологическом плане характеризуется максимумом месячных сумм прямой радиации, радиационного баланса и, следовательно, большой разностью температур поверхности почвы и воздуха. В дневное время температура поверхности почвы на 16— 20° С выше температуры воздуха, ночью в нижнем слое воздуха преобладает инверсионное распределение температуры [1].

Суточный ход упругости водяного пара выражен отчетливо. Обычно наблюдается два максимума и два минимума: один максимум вечером, около 21 ч, и вторичный утром, около 7 ч; один минимум — перед восходом Солнца, и вторичный — днем. Суточная амплитуда упругости водяного пара достигает 1,2—2,1 мб.

С развитием процессов конвекции происходит размывание сплошной облачности. Повторяемость пасмурного состояния небанаименьшая. Рассматриваемый период характерен значительной повторяемостью полуясного неба. Максимум облачности прихоцится на дневные часы, минимум — на ночные. В этот же период грозы имеют наибольшую повторяемость и интенсивность.

В рассматриваемый период погода в районе Куйбышев — Амамбай (пункт расположения наземной экспедиции) была очень неустойчивой. Эта неустойчивость была вызвана повышенной циклоничностью и связанной с ней сменой воздушных масс. В первые дни работы экспедиции (27—29 июня) погода определялась прохождением холодных вторичных фронтов. В последующие четыре дня (30 июня — 3 июля) район экспедиции находился под влиянием гребня высокого давления. С 4 июля произошла перестройка барического поля и в период с 4 по 19 июля погода в Амамбае обусловливалась прохождением волновых циклонов, получивших свое развитие на холодной ветви арктического фронта. В последние дни (20—23 июля) установился антициклонический характер погоды.

Ниже будет дана более подробная характеристика погоды в дни проведения серий наблюдений.

27 июня погода в Амамбае определялась размытой областью

повышенного давления, возникшей после прохождения вторичного холодного фронта, связанного с малоподвижным циклоном, центр которого был расположен над районами Южного Урала.

В период проведения серии наблюдалось развитие кучевой облачности (к 14 часам количество ее достигло 9 баллов).

28—29 июня погода в Амамбае обусловливалась прохождением вторичных холодных фронтов по юго-западной периферии южноуральского циклона. С 11 до 13 ч 29 июня фронт прошел через Амамбай и вызвал увеличение кучевой и кучево-дождевой облачности до 8 баллов. Прохождение фронта сопровождалось поворотом ветра у поверхности земли от юго-западного до северо-западного и увеличением горизонтального градиента температуры от 1,5 до 2,7° С на 100 км (с 9 до 12 ч московского времени). Данные о горизонтальных градиентах температуры и давления приведены в приложении 5 к настоящему сборнику.

В тылу циклона над районом Саратова располагалась малоподвижная область высокого давления, гребень от которой распространялся на восток и 30 июня над пунктом наземных измерений установилась антициклоническая погода, которая сохранялась в последующие три дня. Воздушная масса, формирующая антициклон, была очень запыленной. Отмечалась густая дымка. Горизонтальная видимость 2 июля была не более 4 км (по данным летающей лаборатории ГГО). Наклонная видимость с высоты 6 км была равна 6—8 км.

Ко второй половине дня 4 июля погода в районе Амамбая ухудшилась. Количество облачности увеличилось до 9—10 баллов в связи с приближением с запада фронтальной зоны, ориентированной от Астрахани на Казань в меридиональном направлении.

В течение суточной серии 4—5 июля пункт наземных измерений находился в однородной воздушной массе и только утром 5 июля произошла смена воздушных масс, обусловленная прохождением холодного фронта, связанного с волновым циклоном, образовавшимся в районе Астрахани в 3 ч 4 июля. Циклон смещался под действием высотной фронтальной зоны в северо-восточном направлении, и с 6 до 7 ч 5 июля в районе Амамбая было отмечено прохождение холодного фронта, которое сопровождалось небольшим понижением температуры воздуха в утренние часы. На высотах температурный контраст во фронтальной зоне не прослеживался.

10 июля погода в рассматриваемом районе обусловливалась влиянием циклона, центр которого находился на расстоянии около 500 км к северо-западу от наземной точки наблюдений. Над районом экспедиции с 12 до 13 ч прошел вторичный холодный фронт, связанный с этим циклоном, прохождение которого сопровождалось усилением юго-западного ветра у поверхности земли с 6,6 до 8,6 м/с и переменной облачностью.

Указанный выше циклон смещался на восток и к 21 ч 11 июля центр его, очерченный изобарой 1005 мб, находился в районе Свердловска. Погода 11—12 июля определялась прохождением вторичных холодных фронтов в тылу этого циклона. 11 июля фронт проходил с 10 до 11 ч. Его прохождение сопрозождалось увеличением кучевой облачности до 9 баллов, сменой зетров у земли и на высотах с юго-западного на северо-западный и увеличением силы ветра с 4,8 до 7,3 м/с.

По данным наземных измерений видно, что 12 июля фронты пропрошли в период с 12 до 13 ч и с 15 до 17 ч. 13 июля циклон продолжал смещаться в восточном направлении и погода в Амамбае определялась гребнем высокого давления, ориентированным с Черного моря на Свердловск.

Рис. 1. Приземная синоптическая карта за 12 ч 16 июля 1971 г.

В дневные часы развивались внутримассовые кучевые и кучевотождевые облака. С 16 до 16 ч 30 мин выпал сильный ливневый тождь. 15 июля гребень начал разрушаться, а с запада смещалась ронтальная зона, ориентированная по ложбине к циклону, нахоиящемуся над югом Карского моря. В 9 ч 15 июля фронт нахоился в 200—250 км западнее Амамбая. Интенсивность фронтальтой зоны постепенно уменьшалась, и фронт в течение дня 15 июля ставался малоподвижным, так как располагался в параллельных ысотных потоках. Над Амамбаем в течение суток наблюдалась плошная фронтальная облачность слоистых и слоисто-кучевых рорм с высотой нижней границы 600—1000 м.

В период суточной серии 16—17 июля погода в Амамбае опрецелялась прохождением нескольких волн на холодном участке

фронтальной зоны, которая начала смещаться к северо-востоку в результате перестройки высотного барического поля.

Первая волна прошла с 11 до 12 ч 16 июля, она вызвала смену направления ветра от северо-восточного к юго-юго-западному, вторая — с 17 до 18 ч. В это время снова ветер изменил направление с юго-западного на северо-западное. Наземный пункт наблюдений оказался в холодной воздушной массе. С 21 до 22 ч прохождение третьей волны сопровождалось поворотом ветра к востоко-юго-востоку. Над Амамбаем прошел теплый участок фронта. Прохождение волн сопровождалось увеличением облачности до 8 баллов.

Рис. 2. Карта барической топографии 700 мб за 15 ч 16 июля 1971 г.

С 22 ч 16 июля до 1 ч 17 июля температура, по данным градиентных измерений, повышалась вследствие того, что пункт наблюдений после прохождения теплого фронта находился в теплом секторе. С 1 до 2 ч 17 июля прошла зона холодного фронта, вызвавшая уменьшение облачности и понижение температуры. Помимо адвективного фактора, понижение обусловливалось и радиационным выхолаживанием. С 2 до 6 ч вновь отмечалось некоторое повышение температуры, которое объясняется прохождением теплого участка фронта следующей болны.

На рис. 1 и 2 представлены синоптическая карта за 12 ч 16 июля и карта барической топографии 700 мб за 15 ч 16 июля соответственно.

С утра 17 июля количество облачности постепенно уменьшалось в связи с перемещением фронтальной зоны на восток и усилением над районом экспедиции гребня антициклона, центр которого находился над Куйбышевом. Такой характер погоды сохранялся втечение всего следующего дня.

С борта самолета-лаборатории ГГО 16 и 18 июля было отмечено наличие аэрозольного слоя с верхней праницей на высотеоколо 3 км.

19 июля с 13 до 16 ч 30 мин отмечалось понижение температуры с 34,4 до 32,4°С. Такое понижение температуры при положительном радиационном балансе связано с прохождением холодного фронта в ложбине циклона, центр которого находился западнее Куйбышева на 100—150 км.

С 20 по 24 июля в районе экспедиции установилась антициклоническая погода.

ЛИТЕРАТУРА

1. Справочник по климату СССР. Вып. 9. Ч. 1, 1966, стр. 37—55. Ч. 2, 1965, стр. 62—171. Ч. 4, 1968, стр. 58—96. Ч. 5, 1968, стр. 64—177, 222—228. Л., Гидрометеоиздат.

Н. А. ЛАЗАРЕВА, Л. Р. ОРЛЕНКО, В. И. СКНАРЬ, И. И. ЧЕСТНАЯ

ПРОФИЛИ МЕТЕОРОЛОГИЧЕСКИХ ЭЛЕМЕНТОВ ПО МАТЕРИАЛАМ НАБЛЮДЕНИЙ

Как уже отмечалось в [1], программой экспедиции КЭНЭКС-71 предусматривался широкий комплекс наблюдений, включающий наряду с измерениями радиационных и турбулентных потоков тепла наблюдения за распределением по высоте давления, температуры, влажности воздуха, скорости и направления ветра.

Распределение метеорологических элементов используется как для проверки расчетных схем (в частности, при расчетах лучистых цотоков), так и непосредственно при исследованиях энергетики атмосферы. В связи с этим существенное внимание при составлении программы экспериментальных работ было уделено методике наблюдений с целью получения надежной и более полной информации о полях метеорологических элементов.

Для получения профилей метеоэлементов использовались различные методы измерений и различная аппаратура. Значительное внимание при этом уделялось стыковке получаемых данных. В связи с этим при использовании различных методов уровни измерений обязательно перекрывались, а однотипная алпаратура градуировалась в одинаковых условиях.

Существенная изменчивость метеорологических элементов в пограничном слое со временем исключает возможность получения одновременных профилей такими экспедиционными средствами, как аэростат, вертолет и самолет. В связи с этим ставилась задача получения довольно детального временного хода всех характеристик на фиксированных уровнях, позволившего в дальнейшем получить путем интерполяции профили метеорологических элементов в заданные моменты времени от уровня подстилающей поверхности до высоты 3—4 км.

Ниже будут даны краткие сведения по методике наблюдений и обработки и краткая характеристика материалов, приведенных в приложениях 2 и 3 к настоящему сборнику.

По сравнению с КЭНЭКС-70 [2] отличия в методике наблюдений были незначительные. Для получения вертикального распределения давления, температуры и влажности воздуха пспользовались прадиентные наблюдения в приземном слое, наблюдения за температурой почвы, данные аэростатного, вертолетного и самолетного зондирования, а также данные стандартного радиозондирования.

1. На высотах 0,25, 0,50, 1,0 и 2,0 м температура и влажность воздуха определялись с помощью психрометров Ассмана, установленных в двух повторностях на расстоянии 4—5 м друг от друга. В течение 20-минутного интервала производилось 10 отсчетов сухого и смоченного термометров. Осредненные значения относились к середине интервала измерений. Для получения температуры воздуха использовались также термометры сопротивления (с сопротивлением ~ 250 Ом), включенные в мостовую схему с компенсацией; термометры помещались в корпуса психрометров, подвешивались горизонтально. Входные отверстия при этом направлялисьна север, так как конструкция мачты не позволяла разворачивать их по ветру. Уровни измерений 0,1, 0,5, 1,0, 2,0, 4,0, 8,0 и 11,1 м. Регистрация показаний термометров производилась на ЭПП-09. В течение 20-минутного интервала каждый термометр опрашивался 15 раз. Обработка данных велась по градуировке, полученной в сосуде Дюара для целиком собранной схемы.

2. Температура поверхности почвы определялась с помощью термометров сопротивления, установленных в двух повторностях. В течение 20-минутного интервала производилось четыре отсчета по каждому термометру.

3. Для зондирования 400-метрового слоя использовался привязной аэростат объемом 80 м³, наполненный гелием. Для подъема и спуска аэростата применялась лебедка типа ЛЗ-3, смонтированная на шасси ГАЗ-51. В качестве основного прибора использовался аэростатный метеорограф системы ГГО, регистрирующий атмосферное давление, температуру и влажность воздуха, а также среднюю скорость ветра. Зондирование производилось до высоты 400 м с 5-минутными выдержками на высотах 25, 50, 100, 150, 200, 300 и 400 м. Спуск аэростата производился без площадок.

4. Вертолетное зондирование выполнялось в нижнем 2-километровом слое с помощью вертолета Ми-1. Измерения давления, температуры и влажности воздуха производились с помощью самолетного метеорографа А-10. Дополнительно наблюдения за температурой воздуха производились с помощью электрометеорографа. Полеты выполнялись площадками по 3—5 мин каждая в радиусе 10—15 км. Уровни измерений 10, 50, 100, 200, 500, 1000, 1500 и 2000 м. Зондирование на нижних уровнях производилось непосредственно над пунктом наземных измерений, на верхних — на 10 км восточнее наземной точки.

5. Измерения давления, температуры и влажности воздуха на самолете Ил-18 производились с помощью самолетного термогиг-

рометра (СТГ). позволяющего получить надежные данные при точном соблюдении заланного режима полета. Основной залачей самолетного зондирования было получение временного хода радиационных потоков на фиксированных уровнях. При выбранной схеме полетов Ил-18 [1] надежные данные могли быть обеспечены на четырех уровнях (в пределах нижних 4—6 км), когда в течение 7 мин полеты самолета производились по горизонтали. Самолетные данные явились, таким образом, некоторым дополнением (очень немногочисленным) основным материалам Κ температурного зондирования — аэростатного, вертолетного и радиозондирования.

6. Радиозондирование производилось в стандартные сроки (4 ч 30 мин, 10 ч 30 мин, 16 ч 30 мин и 22 ч 30 мин по местному времени) радиозондом А-22-IV в Уральске в 80 км от пункта наземных измерений.

7. Измерение скорости ветра в приземном слое производилось с помощью контактных анемометров. Уровни измерений: 0,25, 0,5, 1,0, 2,0, 5,2, 9,4 и 16,3 м. На нижних трех уровнях приборы устанавливались в двух повторностях. Обработка данных производилась по часовым интервалам. Направление ветра определялось с помощью анеморумбографа М-64, установленного на уровне $Z \approx 10$ м. Среднечасовое направление ветра вычислялось по шести значениям, снятым с ленты через каждые 10 мин.

8. Для получения профиля ветра в 3-километровом слое использовались данные базисных шаропилотных наблюдений, выполнявшихся с трех пунктов (длина базы ~ 500 м).

Для получения среднечасовых значений скорости и направления ветра в пограничном слое в течение часа выпускались четыре шара со скоростью подъема 150—200 м/мин. Слежение за каждым шаром производилось в течение 15 мин. Для оценки характера распределения ветра в вышележащих слоях за отдельными шарамипилотами наблюдения производились до больших высот (в течение 30 мин). Основные же сведения о скорости и направлении ветра в свободной атмосфере дают радиозондовые наблюдения.

Обработка шаропилотных наблюдений проводилась на ЭВМ «Минск-22» по программе, составленной Е. И. Софиевым и В. П. Курбаткиным, предусматривающей также получение среднего профиля по данным нескольких шаров-пилотов. Подробное изложение программы и оценка точности базисных шаропилотных наблюдений дается в [3].

Обеспечивали наблюдения и первичную обработку Б. И. Вдовин и Е. В. Петрова (аэростатное зондирование), Б. Д. Заварин (самолетное зондирование), Т. Т. Лабазова (наблюдения за температурой почвы), Н. А. Лазарева (шаропилотные наблюдения), С. И. Леготина (наблюдения за температурой воздуха по термометрам сопротивления), Г. А. Тюлькова (вертолетное зондирование), З. М. Утина (градиентные наблюдения за температурой, влажностью воздуха и скоростью ветра).

Вертикальное распределение температуры и влажности

Простая на первый взгляд задача — стыковка профилей метеоэлементов по измерениям различными методами, рещается далеко не просто. Это связано прежде всего с тем, что каждый из методов имеет свои погрешности, обусловленные как погрешностями приборов (расхождения в этих случаях являются систематическими), так и различным периодом осреднения. Последнее обстоятельство особенно существенно при наблюдениях в условиях сильно развитой конвекции. Дополнительные трудности возникают в связи с тем, что указанные выше способы измерений не могли быть обеспечены в одной точке и дают, таким образом, некоторые осредненные в пространстве характеристики с различным горизонтальным масштабом осреднения. Влияние масштаба осреднения может оказаться существенным на небольших высотах особенно при горизонтально неоднородной подстилающей поверхности.

Основными и наиболее надежными данными по температуре и влажности явились данные измерений в приземном слое. К ним привязывались данные температурного зондирования в вышележащем слое. Обработка данных зондирования в нижнем 3-километровом слое сводилась к построению графиков временно́го хода температуры и влажности воздуха на заданных уровнях и снятию с графиков временно́го хода значений (температуры и влажности) для фиксированных моментов времени. При неполной информации часто использовалась двойная интерполяция — по времени и высоте. В результате были получены «мгновенные» профили метеорологических элементов. В качестве примера на рис. 1 приводятся профили температуры и влажности по данным измерений различными методами.

Анализ полученных данных показал, что в ряде случаев имеются существенные расхождения в значениях температуры и влажности на одной и той же высоте, полученных различными методами. Как правило, данные о температуре по термометрам сопротивления и психрометрам Ассмана близки в вечерние и ночные часы, в дневные часы расхождение между измеренными величинами иногда достигали 2-3°С. Градиент температуры при этом практически оставался одинаковым. Довольно большие расхождения в показаниях психрометров Ассмана и термометров сопротивления, по-видимому, обусловлены температурными неоднородностями подстилающей поверхности, особенно выраженные в дневные часы. В связи с этим в слое 0,1-11 м профили температуры получены путем осреднения наблюдений по термометрам сопротивления и по психрометрам Ассмана. Влажность воздуха в слое 0,25-2 м дается по психрометрам Ассмана, на уровнях 4, 8 и 11 м получена путем графической интерполяции.

Следует отметить, что в ряде случаев 30-минутное осреднение было недостаточным при наблюдениях в условиях сильно развитой конвекции. В таких случаях на лентах самописцев хорошо прослеживаются температурные волны, обусловленные, по-видимому, прохождением термиков. В указанных случаях при интерполяции данных использовались среднечасовые значения температуры и влажности.

Рис. 1. Среднечасовые профили температуры и влажности в слоях 0-200 м (а) и 100-400 м (б), по данным измерений различными методами. 16 июля 1971 г. 12 ч 30 мин. 1- психрометры Ассмана, 2- термометры сопротивле-

ния, 3 — аэростат, 4 — самолет, 5 — вертолет, 6 — радиозонд, 7 — осредненные профили.

В слое 25—400 м осредненный профиль получен по данным аэростатного и вертолетного зондирования, в слое 500—2000 м — по данным вертолетного и самолетного зондирования и с учетом данных радиозондирования. Последние определяют профиль температуры и влажности выше 3 км.

Следует отметить, что данные вертолетного и аэростатного зондирования довольно хорошо согласуются между собой (на нижних уровнях, когда зондирование проводилось над пунктом наземных измерений, практически совпадают). На верхних уровнях отмечается некоторое систематическое занижение данных вертолетного зондирования, которое, вероятно обусловлено влиянием озера Челкар, расположенного в 20 км восточнее пункта наземных измерений. Самолетные данные несколько завышены, что частично можнообъяснить значительной протяженностью трассы полета.

Хорошее согласование аэростатного и вертолетного зондирования позволило не только контролировать надежность данных наблюдений, но в ряде случаев при неполной информации дополнять одни наблюдения другими при получении временного хода температуры и влажности. Следует, однако, заметить, что полный комплекс наблюдений не всегда удавалось получить. В частности, вертолетное зондирование проводилось лишь с 13 июля, а самолетное зондирование не всегда обеспечивало надежную информацию.

Таким образом, в начальный период для большинства случаев профили температуры и влажности в слое 25—400 м как в ночные, так и в дневные часы даны по аэростатным данным, в слое 400— 3000 м используются приведенные данные радиозондирования.

Несколько слов о возможности использования данных радиозондирования. Как уже указывалось выше, радиозондирование проводилось в 80 км от пункта аэростатного и вертолетного зондирования. Привязка к данным радиозондирования в свободной атмосфере стала возможной лишь благодаря тому, что горизонтальные градиенты температуры в свободной атмосфере при выполнении наблюдений были невелики (как правило, менее 0,5° С/100 км (см. приложение 5).

В пределах нижних 500—1000 м отмечались значительные расхождения в температуре и влажности в Уральске и в пункте наземных измерений, обусловленные различием в характере подстилающей поверхности. Особенно заметны различия во влажности. Река Урал и ее притоки обусловливали в районе Уральска в течение суток более высокую влажность в нижних слоях по сравнению с пунктом наземных измерений. Анализ профилей влажности по материалам экспедиционных наблюдений и материалам радиозондирования показал, что влияние мезонеоднородностей прослеживается до высоты $\sim 1-1,5$ км и проявляется это в резком изменении градиента влажности на верхней границе указанного слоя. Различия в температуре выражены менее ярко.

Это позволило при отсутствии вертолетного зондирования с достаточной точностью стыковать данные аэростатных, а в некоторых случаях также данные градиентных и радиозондовых наблюдений. В этих случаях для приведения данных радиозондирования к аэростатным невязка на уровне z=400 м разбрасывалась пропорционально высоте в предположении, что на уровне $z \sim 2-3$ км для температуры и на уровне 1-1,5 км для влажности невязки равны нулю. Полученные в результате анализа «мгновенные» профили температуры и влажности в слое 0—3 км даны в приложении 2 к настоящему сборнику. Вследствие малой изменчивости полей температуры и влажности со временем на высотах выше 3 км при стыковке полученных профилей с данными в свободной атмосфере могут быть использованы данные радиозондирования в ближайшие сроки.

Следует отметить, что описанная выше обработка данных наблюдений одновременно обеспечивала тщательный критпросмотр материала наблюдений и позволила исключить ошибки, не обнаруженные при первичном анализе данных.

Атмосферное давление

Давление воздуха определялось по данным аэростатного (в слое 2—400 м), вертолетного (в слое 2—2000 м) и радиозондирования (в вышележащем слое) с точностью ± 1 мб с учетом временно́го хода. При анализе данных было обнаружено расхождение в показаниях датчиков давления в Уральске и в пункте наземных наблюдений, где измерения производились с помощью анероида. Это расхождение, по данным 17 параллельных измерений, составило 1,8 мб на z=2 м и 2,3 мб на z=300 м. Определенный по синоптическим картам горизонтальный градиент давления в направлении Уральск-Амамбай для тех же случаев составил 0,1 мб/80 км.

Так как высота пунктов наблюдений над уровнем моря одинаковая, указанные расхождения могут быть объяснены лишь систематической погрешностью датчика давления в пункте наземных наблюдений. Эта поправка была введена в данные о давлении, полученные по материалам аэростатного и вертолетного зондирования.

Профили ветра

Как показал анализ экспедиционных материалов, при достаточном осреднении данные наблюдений в приземном слое хорошо стыкуются с данными шаропилотных наблюдений.

Критпросмотр материалов наблюдений за скоростью ветра в приземном слое путем анализа профилей ветра, а также временного хода проводился при первичной обработке данных. Это позволило дать среднечасовые профили скорости ветра в слое 0,25— 16 м (приложение 3) без дополнительного анализа данных. Как уже отмечалось выше, обработка шаропилотных данных производилась с помощью ЭВМ «Минск-22» с выдачей на печать как результатов обработки по отдельным шаропилотам, так и осредненных значений (по двум базам и по всем шарам-пилотам, выпущенным в срок наблюдений).

Критпросмотр полученных данных проводился путем сравнения значений скорости и направления, полученных по двум базам. В случае больших расхождений (~1 м/с) предпочтение отдавалось неинтерполированным (или экстраполированным) значениям. Дополнительно анализировались профили ветра по данным отдельных шаров-пилотов. Окончательные значения скорости и направления ветра получены по осредненному профилю путем графической интерполяции (приложение 3).

Приведенные в приложении 3 данные о направлении ветра на высотах z = 10 м (М-64) и z = 25 м (шаропилотные данные) для отдельных случаев сильно отличаются друг от друга. Как показывает анализ экспериментальных данных [4], изменение направления в указанном слое невелико, а при неустойчивой стратификации практически отсутствует. Это позволяет путем сопоставления данных о направлении ветра, полученных различными методами, выявить возможные систематические погрешности, обусловленные неточной ориентировкой датчика направления ветра. Сопоставление меосредненных данных показало, что указанные выше расхождения в направлении ветра носят случайный характер и обусловлены недостаточным осреднением при получении среднего направления как по М-64, так и по шаропилотным данным.

Краткая характеристика полученных данных

Как следует из приведенных данных, основной объем наблюдений выполнен в дневное время и характеризует таким образом термически неустойчивый погра-

мически неустойчивый пограничный слой. Для двух серий чаблюдений профили даются в суточном ходе.

Хотя в целом погода в период экспериментальных работ была неустойчивой [5], наблюдения, как правило, проводились в безоблачные дни и в дни с небольшой облачхарактеризующиеся ностью, большими суточными амплитудами температуры, удельной влажности и скорости ветра. Наиболее характерной для характеристики суточного хода метеоэлементов является серия наблюдений 4—5 июля, выполненная, как показал анализ синоптической обстановки, в относительно однородной воздушной массе. Правда, в

Рис. 2. Изменение с высотой суточной амплитуды температуры (A_t) и влажности (A_q) воздуха, осредненных за две серии наблюдений (4—5 и 16—17 июля).

ночные часы сказалось натекание облачности верхнего яруса, несколько снизившее радиационное выхолаживание в ночные часы.

Высота распространения суточных колебаний температуры, как следует из рис. 2, составляет днем около 3 км, суточные колебания

удельной влажности, скорости и направления ветра отчетливо выражены в слое ~2 км.

Приведенные в приложениях 2 и 3 данные о профилях температуры, влажности и ветра дополняются данными о скорости и направлении геострофического ветра и данными о горизонтальных градиентах давления и температуры из приложения 5.

ЛИТЕРАТУРА

- Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71 См. настоящий сборник.
- Кондратьев К. Я. и др. Программа Каракумской экспедиции. Методика наблюдений. — Труды ГГО, 1972, вып. 276, с. 5—16.
 Зайцев А. С. и др. Обработка базисных шаропилотных наблюдений на
- Зайцев А. С. и др. Обработка базисных шаропилотных наблюдений на ЭВМ и экспериментальная оценка точности метода. — Труды САНИГМИ, 1970, вып. 49 (64), с. 87—95.
- Курпакова Т. А., Орленко Л. Р. Профиль ветра в пограничном слое атмосферы по экспериментальным данным. — Труды ГГО, 1970, вып. 257, с. 64—73.
- Гусева Л. Н. и др. Синоптическая обстановка в период работы экспедиции КЭНЭКС-71. — См. наст. сборник.

А. А. ЕЛИСЕЕВ, И. И. ИВАНОВА, С. П. МАЛЕВСКИЙ-МАЛЕВИЧ, М. А. ПРОКОФЬЕВ, Л. И. ПРОКОФЬЕВА

ПРОФИЛИ РАДИАЦИОННЫХ ПОТОКОВ ПО МАТЕРИАЛАМ НАБЛЮДЕНИЙ

Для получения профилей интегральных радиационных потоков в экспедиции КЭНЭКС-71 были осуществлены измерения в приземном слое и в свободной атмосфере на самолете Ил-18. Кроме того, было проведено несколько зондирований с актинометрической аппаратурой (длинноволновые потоки) на вертолете Ми-1.

Наземные актинометрические наблюдения проводились на площадке с достаточно однородной подстилающей поверхностью [1]. Приемники радиации были попарно установлены на двух стойках, расположенных на расстоянии 10 м. На одной стойке на высоте 1,5 м измерялись суммарная и отраженная радиация пиранометрами М-80, обращенными вверх и вниз соответственно. Для измерения рассеянной радиации верхний пиранометр затенялся теневым щитком от прямой радиации. Прямая радиация измерялась актинометром АТ-50, причем слежение трубы актинометра за Солнцем обеспечивалось специальным часовым механизмом. Восходящий и нисходящий потоки длинноволновой радиации определялись раздельно с помощью радиационных термоэлементов ЛЭТИ, конструктивно объединенных в одном приборе типа балансомера [2]. Этот балансомер располагался на другой стойке на высоте 1,2 м. Как выяснилось, чувствительность его к коротковолновой радиации оказалась ощутимой, поэтому он был защищен от прямой радиации теневым полукольцом, подобным стандартному [3]. Температура инерционного корпуса балансомера измерялась посредством термосопротивления и измерительного моста. Показания перечисленных приемников регистрировались шеститочечным электронным самописцем ЭПП-09 (с интервалами 120 с).

Поверка приемников коротковолновой радиации проводилась в актинометрической трубе по Солнцу, дважды во время экспедиции с использованием контрольной пары актинометр АТ-50 — гальванометр ГСА. Переводный множитель и поправки контрольной пары были в свою очередь определены сравнением с образцовой парой Центральной лаборатории поверки. Самолетный пиранометр ЛЭТИ был поверен в трубе по наземному экспедиционному пиранометру М-80. Радиационные термоэлементы ЛЭТИ, установленные на вертолете Ми-1 и самолете Ил-18 для измерения длинноволновых потоков, имели фильтры (хлористое серебро), одинаковые с наземными термоэлементами и градуировались также по «черному телу» по единой методике.

Наземные актинометрические наблюдения проводились непрерывно в течение часа наблюдений, рассеянная радиация измерялась в течение второго и пятого десятиминутного интервала часа. При обработке измеренные значения осреднялись за первую и третью десятиминутки каждого получасового интервала (рассеянная радиация — за вторую десятиминутку) и далее полагались средними за этот получасовой интервал.

В безоблачные околополуденные и ночные часы дополнительно проводились наблюдения, позволившие получить эффективное длинноволновое излучение $E_{s\phi}$ на нескольких уровнях z в приземном слое. С этой целью в дневное время с помощью балансомера Козырева, перемещающегося по высоте, измерялась разность эффективного излучения на уровнях z, равных 0,1, 0,25, 2,0, 5,0, 8,0 м, и z = 1 м [4]. Полученные данные позволили получить профиль эффективного излучения в приземном слое.

Для получения $E_{\vartheta\phi}/_{z=1M}$ использовались одновременные измерения с помощью другого прибора, установленного на z=1,2 м. Поправка, необходимая для приведения $E_{\vartheta\phi}$ к уровню z=1,0 м, не превышала 0,001 кал/см² мин.

Значения $E_{\partial \Phi}(z)$ в ночные часы определялись из соотношения

$$E_{\vartheta\phi}(z) = E_{\vartheta\phi}|_{z=1,2} + \left[\frac{dE_{\vartheta\phi}}{dm}\Big|_{z} + \frac{dE_{\vartheta\phi}}{dm}\Big|_{z=1}\right] \frac{\rho_{\varpi}(z-1)}{2}, \qquad (1)$$

где значения $\frac{dE_{9\Phi}}{dm}$ определялись прямым методом для верхней и нижней границ слоя согласно [4]. Здесь ρ_w — плотность водяного пара, средняя в слое (z-1), m — эффективная поглощающая масса водяного пара

$$m = \int_0^z \rho_w dz.$$

В табл. 1 приведены значения $E_{3\phi}$ (z) кал/(см² · мин), соответствующие по времени середине получасового интервала наблюдений. Время указано среднее местное солнечное.

Наблюдения интегральных радиационных потоков в свободной атмосфере в экспедиции КЭНЭКС-71 с борта самолета-лаборатории Ил-18 ГГО проводились с помощью термоэлементов системы ЛЭТИ [2, 5]. Методика наблюдений в целом существенно отличалась от принятой в эксперименте КЭНЭКС-70 [7, 9].

Наблюдения велись по четырем программам, причем данные, полученные при работе по I—III программам, позволяют определить притоки лучистой энергии к соответствующим слоям атмосферы, а при работе по IV программе — оценить горизонтальную неоднородность потоков на выбранной высоте.

Таблица 1

Эффективное излучение в приземном слое. 1971 г.

· ח				Высот	а, м		
Дата ч	оремя, и мин	0,1	0,25	1	2	5	8
4/VII	$\begin{array}{c} 11 \\ 45 \\ 12 \\ 12 \\ 13 \\ 45 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	0,347 0,344 0,360	0,250 0,255	$\begin{array}{c} 0,378\\ 0,398\\ 0,415\\ 0,415\\ 0,420\\ 0,423\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,437\\ 0,407\\ 0,389\\ 0,113\\ 0,106\\ 0,109\\ 0,111\\ 0,106\\ 0,109\\ 0,111\\ 0,106\\ 0,109\\ 0,111\\ 0,246\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,304\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,095\\ 0,088\\ 0,087\\ 0,086\\ 0,291\\ 0,312\\ 0,330\\ 0,347\\ 0,364\\ 0,369\\ 0,322\\ 0,338\\ 0,350\\ 0,359\\ 0,$	0,240 0,245	0,368 0,386 0,401 0,403 0,404 0,407 0,417 0,420 0,407 0,390 0,378 0,370 0,378 0,370 0,378 0,370 0,234 0,257 0,294 0,312 0,101 0,103 0,095 0,094 0,095 0,094 0,095 0,094 0,095 0,094 0,320 0,320 0,328 0,337	0,364 0,380 0,394 0,395 0,397 0,398 0,407 0,411 0,398 0,382 0,372 0,365 0,120 0,114 0,115 0,118 0,119 0,114 0,115 0,118 0,119 0,114 0,076 0,054 0,230 0,252 0,288 0,305 0,107 0,107 0,107 0,107 0,107 0,104 0,096 0,275 0,298 0,316 0,335 0,349 0,340 0,326 0,335

Методика определения профилей потоков, отнесенных к единому моменту времени, отличалась от ранее принятой. Это объясняется тем, что предложенная Фарапоновой и Кастровым [8] и использованная при обработке данных экспедиции КЭНЭКС-70 [7, 9] методика приведения результатов наблюдений за коротковолновой радиацией к единому моменту времени была в свое время разработана для условий безоблачной атмосферы. При проведении экспедиции КЭНЭКС-71 наблюдениям постоянно сопутствовала частичная облачность (от 1 до 5—6 баллов). При этом использование методики Фараионовой — Кастрова невозможно и, кроме того, по ней нельзя получить «мгновенный» разрез атмосферы для длинноволновых потоков.

Как уже указывалось в [6], программа наблюдений предусматривала получение временного хода всех радиационных потоков на заданных уровнях по результатам измерений во время ряда последовательных подъемов и спусков.

Графики временно́го хода потоков использовались для получения «мгновенного» разреза зондируемой толщи атмосферы (полученные данные приведены в приложении 1). Подобный прием позволяет, во-первых, в чекоторой степени освободиться от требования однородности атмосферы (безоблачные условия или сплошная облачность), во-вторых, получить профили радиационных потоков и притоков за достаточно большой период времени, воспользовавшись данными непрерывных наземных наблюдений и интерполируя результаты измерений на каждой высоте, а также экстраполируя их за границы времени наблюдений (в небольших пределах), если условия меняются не слишком быстро.

Ясно, что для получения достаточного количества точек на каждой высоте (по крайней мере трех — на граничных высотах и двух — на промежуточных) необходимо за время наблюдений выполнить соответствующее число подъемов и спусков. Кроме того, быстрая смена высот необходима для проведения качественных спектральных наблюдений [7]. Такой режим полета приводит к тому, что в начале «площадки» создается очень большой перепад температур между корпусом прибора, установленного на фюзеляже, и окружающим воздухом. Пиранометры и, в особенности, пиргеометры, использовавшиеся для самолетных наблюдений, обладая малой инерцией термоэлемента, имеют заметную тепловую инерцию корпуса, так что в описанных условиях процесс установления постоянной температуры корпуса приборов затягивался до 10-12 мин. В то же время рабочие площадки имели, как правило, несколько меньшую длительность. В подобных условиях (большие градиенты и быстрые изменения температуры) приборы могут не сохранять линейности, т. е. приведенные в работе [9] формулы (1) и (2), используемые для получения потока из выходного сигнала прибора, перестают быть справедливыми. Кроме того, даже если линейность прибора сохраняется, быстрое изменение температуры и выходного сигнала требует синхронной их регистрации. Это требование также трудно выполнимо при имеющейся инерционной регистрирующей аппаратуре.

Исходя из изложенного, была принята следующая методика обработки показаний приборов. По результатам измерений на площадке строились кривые изменения выходного сигнала прибора, температуры датчика и потока, полученного из «мгновенных» значений этих величин. Время от момента выхода в горизонтальный полет до установления теплового равновесия между прибором и воздушным потоком зависит от тепловой инерции прибора, перепада температур, скорости и плотности набегающего потока. Как указано в [10], при использовании приборов, обладающих малой тепловой инерцией, и проведении полетов по методике, не требующей резкой смены высот, это время составляло около 2 мин.

Материалы экспедиции КЭНЭКС-71 показали, что при неблагоприятном действии всех перечисленных факторов оно может увеличиваться до 10—12 мин. Поэтому для получения «равновесных» значений сигнала, температуры прибора и радиационного потока бралась 15-я минута, считая от начала горизонтального полета на площадке. Таким образом, удалось провести экстраполяцию результатов до условий теплового равновесия приемников с окружающей средой. Экстраполированные значения потоков были при этом получены как путем непосредственного снятия отсчетов с кривых, так и пересчетом из экстраполированных значений выходного сигнала и температуры прибора. Изложенное относится, прежде всего, к приемникам длинноволнового излучения — пиргеометрам, поскольку описанное явление сказалось в основном на их показаниях. Однако и показания пиранометров были исправлены подобным же образом.

Правильность примененного подхода подтверждается совпадением результатов, полученных обоими методами, а также согласованием исправленных величин с результатами наземных, вертолетных наблюдений и наблюдений с помощью самолетного метеорологического радиометра MP-1 конструкции Л. Б. Красильщикова, представленных в табл. 2. Данные наблюдений с помощью радиометра MP-1 получены В. А. Беловым. В табл. 2 приведены значения, усредненные по времени наблюдений.

Как и в экспедиции КЭНЭКС-70 [9], здесь отмечалось изменение с течением времени внешнего вида фильтров пиргеометров, связанное с влиянием на покрытие внешних условий. В связи с этим по окончании экспедиции была произведена повторная градуировка приборов. Она показала, что чувствительность датчика восходящего длинноволнового потока уменьшилась за время экспедиции на 15%. Чувствительность датчика нисходящего излучения практически не изменилась. В связи с этим была проведена оценка того максимального вклада, который могло внести такое изменение чувствительности прибора в величину потока. Дело в том, что изменение чувствительности происходило, по всей вероятности, постепенно, так что определить момент, с которого следует пользоваться новым ее значением, не представляется возможным.

Таблица 2

	•	· · ·	,	
		E_{\uparrow}		
Время,	Высота,	Пиргео-	Радио-	
чимин	м	метр	метр	
12 20—12 28	406	0,720	0,710	
12 39—12 48	926	0,704	0,708	
12 58—13 07	1990	0,684	0,680	
13 17—13 22	4060	0,612	0,615	
13 54—14 02	935	0,716	0,707	
14 14—14 20	2000	0,688	0,651	

Сравнение измеренных величин E_{\uparrow}	по	пиргеометру
ЛЭТИ и радиометру	MP	-1.
4 июля (самолетное зонл	unor	ание)

Такая оценка показала, что в реальных условиях погрешность определения потока за счет ошибки в величине чувствительности на 15% остается в пределах 3—7%, причем 3% — это вклад на нижних площадках. Такое соотношение погрешностей объясняется тем, что основную долю регистрируемого длинноволнового потока составляет собственное излучение прибора по крайней мере на малых высотах. Одновременно была произведена оценка погрешности по разбросу значений потока на площадке по данным измерений во время выполнения горизонтальных полетов. Этот разброс вызван существенной неоднородностью подстилающей поверхности и достигает 6—8%, причем, естественно, что на нижних площадках он оказывается максимальным.

Как показали лабораторные измерения, проведенные после экспедиции, пиргеометр, использовавшийся для измерения потока противоизлучения атмосферы, обладает значительной чувствительностью к коротковолновой радиации. При чувствительности к длинноволновой радиации 40,2 мВ/(кал · см⁻² · мин⁻¹) его чувствительность к коротковолновой радиации составляет 8,7 мВ/(кал × × см⁻² · мин⁻¹) при нормальном падении лучей. Величины нисходящего потока длинноволновой радиации были исправлены с учетом этого фактора, причем было сделано предположение о косинусной зависимости от угла падения, и таким образом учитывалась высота Солнца в момент измерений. Как показал последующий анализ, эту погрешность полностью устранить не удалось, поэтому результаты измерений противоизлучения атмосферы в дневные часы требуют дополнительной корректировки.

Опыт работы показал, что при дальнейших экспериментах для повышения точности наблюдений (что крайне необходимо для стыковки самолетных и наземных данных) необходимо унифицировать приемники радиации, используемые для измерения как коротковолновых, так и длинноволновых потоков, их градуировку и по возможности методику наблюдений.
ЛИТЕРАТУРА

- 1. Виноградов Б. В., Григорьев А. А. Ландшафтная характеристика опытного полигона КЭНЭКС-71. — См. настоящий сборник.
- 2. Козырев Б. П. Новые системы актинометрических приборов. Изв. ЛЭТИ. 1969, вып. 87, с. 118—128.
- 3. Руководство гидрометеорологическим станциям по актинометрическим наблюдениям. Л., Гидрометеоиздат, 1971, с. 220.
- 4. Елисеев А. А. Результаты экспериментального определения радиационного притока тепла в приземном слое. — См. настоящий сборник.
- 5. Козырев Б. П. Высокочувствительный пиранометр с черной приемной поверхностью и с ксеноновым наполнением. — Изв. ЛЭТИ, 1968, вып. 72, c. 24-37.
- 6. Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71. См. наст. сборник.
- 7. Кондратьев К. Я. и др. Предварительные результаты первой экспедиции по программе комплексного энергетического эксперимента (КЭНЭКС-70). ---Метеорология и гидрология, 1971, № 6, с. 48-56.
- 8. Фарапонова Г. П., Кастров В. Г. Актинометрические измерения в ниж-
- ней тропосфере над Кызылкумами. Труды ЦАО, 1954, вып. 3, с. 27—37. 9. Прокофьев М. А., Тер-Маркарянц Н. Е. Актинометрические измерения в свободной атмосфере в экспедиции КЭНЭКС-70. Труды ГГО, 1972, вып. 276, с. 43—61.

Л. Г. ЕЛАГИНА, С. Л. ЗУБКОВСКИЙ, Б. М. КОПРОВ, Д. Ю. СОКОЛОВ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ БАЛАНСА ТЕПЛА НА ПОВЕРХНОСТИ ПОЧВЫ

Вопрос о балансе тепла на поверхности почвы неизменно привлекает к себе внимание исследователей-метеорологов. Его научное содержание заключается в проверке самого баланса (т. е. приходящего и уходящего количества тепла), в выделении основных членов в уравнении притока тепла к поверхности почвы и в определении соотношений между ними при различных метеорологических условиях и для различных подстилающих поверхностей. Таким образом, постановка задачи здесь не представляет трудностей, однако ее экспериментальное решение не относится к легким. Надежное и аккуратное определение любого из членов уравнения баланса тепла — турбулентных и радиационных потоков в атмосфере, потока тепла в почву — методически не очень просто.

Сопоставление значений этих членов требует прежде всего правильной оценки точности их измерения. Только при таком условии результат эксперимента может позволить выяснить истинную роль различных членов в уравнении баланса, а в случае незамыкания этого уравнения может свидетельствовать о необходимости учета каких-то дополнительных факторов, не отраженных в используемой форме уравнения баланса. Широко распространенный способ «замыкания» уравнения, опирающийся на измерение только части его членов и приравнивание их алгебраической суммы неизмеряемым слагаемым в уравнении, с нашей точки зрения, представляет лишь ограниченный интерес, так как не может привести к вполне надежным результатам.

Из числа известных нам работ о балансе тепла на поверхности почвы, проводившихся в Советском Союзе, остановимся в первую очередь на работах Б. А. Айзенштата [1] и [2], который долучил большой фактический материал с помощью разработанного им компенсационного метода измерения турбулентных потоков тепла и влаги и прямых измерений радиационных потоков и потока тепла в почву. Согласие результатов компенсационного измерения с определениями турбулентных потоков тепла и влаги по вертикальным профилям температуры и влажности, а также замыкание баланса тепла на поверхности почвы оказались удовлетворительными. К недостаткам работ Айзенштата следует отнести то, что турбулентные потожи тепла и влаги определялись им с помощью недостаточно надежного косвенного метода. Следует уломянуть также работы С. Л. Костина и В. Н. Адаменко [3] и [4], которые проанализировали данные, полученные в ходе измерений над различными подстилающими поверхностями; однако измерения турбулентных потоков и в этих работах также были косвенными.

Наиболее подробные данные одновременных измерений радиационного баланса, потока тепла в почву и турбулентных потоков тепла и влаги, определяемых с помощью прямого пульсационного метода, опирающегося на само определение этих потоков, были получены Суинбенком и Дайером [5] в Австралии в 1962—1964 гг. К недостаткам этой работы следует отнести тот факт, что пульсационные измерения проводились приборами со сравнительно большой постоянной времени, так что вызванное инерцией приборов ослабление турбулентных пульсаций высокой частоты могло искавить истинные значения потоков.

В Институте физики атмосферы АН СССР в течение ряда лет разрабатывалась и применялась в экспедиционных условиях аппаратура для пульсационных измерений полей скорости ветра и температуры. В последние годы также сконструированы и проверены в полевых условиях новый прибор для измерения радиационных потоков и пульсационные инфракрасные гигрометры. Эта аппаратура, дополненная тепломером конструкции Агрофизического института для измерения потока тепла в почву, позволили провести прямые и одновременные измерения всех основных компонент теплового баланса поверхности почвы. Основная цель при этом заключалась в изучении равенства:

$$q_{\rm p} + q_{\rm r} + q_e + q_{\rm m} = \Delta, \tag{1}$$

где q_p — радиационный баланс на поверхности земли, q_r — вертикальный турбулентный поток тепла, q_e — поток скрытого тепла за счет испарения воды, q_n — поток тепла в почву. Анализ величины Δ — разбаланса тепла на поверхности почвы, который может быть вызван, во-первых, недостатками в методике измерений, во-вторых, систематическими ошибками приборов, и, наконец, наличием некоторых добавочных механизмов переноса тепла к поверхности, не учтенных в уравнении (1), играет центральную роль в данной работе.

Наблюдения проводились в июне и июле 1971 г. в районе г. Уральска в степных условиях, характеризующихся относительно высокой температурой, небольшим количеством осадков и сравнительно однородной подстилающей поверхностью. Измерение радиационного баланса q_p производилось на высотах от 1 до 5 м раздельно для коротковолновой и длинноволновой радиации: $q_p = q_{p.K.} + q_{p.д.}$. Коротковолновая составляющая баланса $q_{p.K.}$ определялась по разности показаний двух пиранометров Янишевского.

2*

-39

измерявших падающую $q \downarrow_{\mathbf{p}.\mathbf{k}}$. и восходящую $q \uparrow_{\mathbf{p}.\mathbf{k}}$. коротковолновую радиацию, так что $q_{\mathbf{p}.\mathbf{k}} = q \downarrow_{\mathbf{p}.\mathbf{k}} - q \uparrow_{\mathbf{p}.\mathbf{k}}$. Контроль чувствительности пиранометров производился путем выборочного сравнения их показаний с данными, полученными в этой же экспедиции сотрудниками Главной геофизической обсерватории, которые работали со стандартно оттарированными приборами.

Длинноволновый баланс (в интервале длин волн 2,5—45 мкм) измерялся модуляционным балансомером конструкции ИФА. Модуляционный метод измерения состоит в том, что один и тот же датчик попеременно облучается то падающей, то восходящей радиацией. Это осуществляется за счет поворота датчика вокруг горизонтальной оси с частотой 0,1 Гц. В качестве приемников радиации использовались датчики Б. П. Козырева с фильтром из KRS-5. Указанный метод позволил уменьшить ошибки измерений по сравнению с общепринятыми стандартными методами.

Турбулентные потоки тепла $q_{\rm T}$ и поток тепла за счет скрытой теплоты испарения q_e измерялись пульсационным методом на основе следующего определения соответствующих величин:

$$q_{\rm r} = c_{\rho} \rho \overline{w'T'}, \ q_e = L \overline{w'e'}, \tag{2}$$

где черта сверху означает временное осреднение, а w' — пульсация вертикальной компоненты скорости ветра, T' — пульсация температуры, e' — пульсация абсолютной влажности (массы водяного пара в единице объема воздуха), L — удельная теплота испарения воды, c_n и о — теплоемкость и плотность воздуха.

Измерение w' производилось акустическим анемометром [6]. Т' — микротермометром сопротивления [7]. Для измерения пульсаций влажности использовалось два прибора. В первый лериод экспедиции (июнь) применялся новый инфракрасный гигрометр конструкции ИФА. В нем используется принцип определения влажности по неразрешенному спектру воды в области длин волн около 2,69 мкм. Прибор построен по двухлучевой схеме, в которой рабочий пучок проходит через многоходовую кювету с базой 37 см и максимальным числом ходов, равным 40, а оптический путь пучка сравнения равен 25 см. Для разложения света в спектр применяется монохроматор с дифракционной решеткой, имеющий разрешение 86Å/мм. Приемником света служит фотосопротивление из сульфида свинца с германиевым окном. Во второй период экспедиции влажность измерялась другим инфракрасным пульсационным гипрометром конструкции ИФА, имеющим отличную от первого оптическую схему и конструкцию, подробно описанную в работах [8] и [9]. Все пульсационные измерения проводились на высоте H = 5 м. причем для измерения пульсаций применялись два анемометра, датчики которых располагались в непосредственной близости к датчикам температуры и влажности. Операция перемножения сигналов с последующим осреднением произведения, т. е. получение w'T' и w'e', осуществлялась электронным перемножителем [10]. Общий рабочий диапазон частот датчиков и перемножителей составляет от 0,0025 до 10—20 Гц.

Поток тепла в почву определяется тепломером конструкции Агрофизического института [11] на глубине 3—4 см от поверхности почвы.

Измерения проводились сериями по 20—30 мин в основном в утренние и дневные часы. В отдельные дни для получения суточного хода измеряемых величин производились более длительные наблюдения. Примеры суточного хода величин $q_{\rm p}$, $q_{\rm r}$, q_e , $q_{\rm m}$ и $q_{\Sigma} = q_{\rm m} + q_{\rm r} + q_e$ приведены на рис. 1 и 2. Эти примеры пока-

Рис. 1 Суточный ход величин q_{p} (1), q_{r} (2), q_{e} (3), q_{n} (4) и q_{p} (5). 27 июня 1971 г.

зывают, что основным членом в левой части уравнения (1) является радиационный баланс q_p . Сумма турбулентного потока гепла и потока тепла за счет испарения влаги $q_T + q_e$ составляет приблизительно 80% от величины q_p , причем этот относительный вклад мало меняется при изменении самих величин потоков. Отношение q_e/q_T изменяется от 1 до 0,2, а в отдельных случаях бывает и еще меньше. Максимальное значение этого отношения наблюдалось 26 июля 1971 г. в ясный ветреный день, накануне которого прошел обильный дождь. Уже в течение этого дня по мере высыхания почвы отношение q_e/q_T уменьшилось до значения примерно 0,2. Поток тепла в почву в дневное время дает относигельно малый вклад в общий баланс тепла и составляет 10—20% от величины q_p . В ночные часы, когда все прочие потоки умень-

шаются, вклад величины $q_{\rm m}$ становится более существенным и совпадает по порядку величины с вкладом турбулентного потока тепла. Знаки величин $q_{\rm p}$, $q_{\rm T}$ и $q_{\rm m}$ естественным образом меняются при переходе от дневных к ночным условиям. В наших условиях не наблюдалось сколько-нибудь значительных отрицательных величин q_{e} , т. е. отсутствовала заметная конденсация влаги на поверхности почвы.

На рис. 3 представлено соотношение между q_p и суммой $q_z = q_r + q_e + q_n$. Равенство этих величин, соответствующее пунк-

Рис. 2. Суточный ход величин $q_{\rm p}$ (1), $q_{\rm r}$ (2), $q_{\rm e}$ (3), $q_{\rm n}$ (4) и q_{Σ} (5). 4—5 июля 1971 г.

тирной прямой линии на рис. 3, свидетельствовало бы о замыкании баланса тепла на поверхности почвы за счет потоков $q_{\rm p}$, $q_{\rm T}$, q_e и $q_{\rm n}$, т. е. о равенстве нулю величины Δ в уравнении (1). Данные (1) получены при измерении пульсации влажности гигрометром первого типа. Как видно из рисунка, почти все точки лежат ниже прямой линии и величина Δ составляет в среднем 25% от $q_{\rm p}$. Таким образом, в поставленном эксперименте величина «разбаланса» оказалась достаточно большой. (По этому вопросу см. также работу [12]. Можно указать следующие возможные причины незамыкания баланса.

Прежде всего, измерение турбулентных потоков и потока тепла в почву в наших опытах производилось не непосредственно на поверхности почвы, а на некотором расстоянии от нее. Так, например, тепломер для измерения $q_{\rm II}$ находился на глубине 3— 4 см. Количество тепла, затрачиваемое на прогрев поверхностного слоя почвы толщиной 3—4 см в первой половине дня, довольно значительно, и, по нашим оценкам, его величина достигает примерно 0,05 кал/(см² · мин). Поскольку основная часть результатов получена именно в это время дня, эту поправку надо иметь в виду. Легко получить соответствующую оценку и для прогрева приповерхностного слоя воздуха толщиной 5 м, поскольку измерение $q_{\rm T}$ производилось именно на этой высоте. При реальных скоростях прогрева атмосферы расход тепла на нагрев этого слоя не превышает 0,001—0,002 кал/см² мин, т. е. в балансе тепла на поверхности им можно пренебречь.

Рис. 3. Соотношение между величинами q_p и q_{Σ} . 1 — данные первого' периода, 2 — данные второго периода.

Необходимо также отметить, что турбулентный поток тепла на высоте 5 м может отличаться от потока тепла на поверхности также и вследствие горизонтальной неоднородности, порождающей горизонтальную адвекцию тепла. Эта величина становится существенной при наличии горизонтального градиента средней температуры $\frac{\partial \overline{T}}{\partial x}$ (где ось x направлена по ветру) порядка $(1 \div 2) \cdot 10^{-3} \circ C/M$. Можно предположить наличие такого градиента вблизи точки измерения за счет нарушения естественного покрова при установке датчиков. Аналогичный механизм при наличии горизонтальных градиентов влажности может играть роль и в применении к скрытым потокам тепла.

Систематические ошибки измерения можно разделить на две сруппы: ошибки, знак которых нам неизвестен (в основном это ошибки калибровки), и ошибки, знак которых нам известен, но абсолютная величина которых поддается только грубой оценке. Для турбулентных потоков необходимо отметить, что возможно некоторое занижение результатов измерения, вызываемое пространственным и временным осреднением пульсаций w', T', e';

пространственным разнесением датчиков и ограниченностью ча стотного диапазона перемножителей. Измеренное значение w' является результатом осреднения истинной вертикальной компоненты скорости ветра вдоль вертикального отрезка длиной около 20 см. Характерные масштабы осреднения использовавшихся пульсационных гигрометров равны 35 и 70 см, соответствующий масштаб датчика пульсационного термометра — около 3—4 см. Разнесение центров датчиков w' и e' составляет около 30° см в направлении влоль ветра, а датчиков w' и T'- около 10 см в поперечном направлении. Влияние пространственного осреднения и разнесения датчиков на результат измерения потоков естественным образом уменьшается с ростом высоты в силу сдвига максимума соответствующих взаимных спектров в сторону больших масштабов. Вместе с тем, при ограничении полосы пропускания перемножителя частотой 0,0025 Гц, чрезмерное увеличение высоты может привести к занижению лотоков в силу искажения низкочастотной части пульсаций. Высота 5 м была выбрана как компромиссная в данной ситуации. Установить действительную величину занижения в настоящий момент затруднительно, хотя наличие его не вызывает сомнения. По-видимому, величина занижения турбулент ных потоков в данной ситуации никак не может превзойти 10-15%. Эта ошибка, так же как и систематические ошибки неизвестного знака, связанные с неточностями в калибровке, не поддаются строгой оценке ввиду отсутствия эталонных приборов для измерения турбулентных пульсаций. Косвенные соображения позволяют считать, что ошибки калибровки не превышают 5-7%

Дополнительными членами в уравнении баланса тепла на по верхности почвы, не учтенными в нашей работе, можно считать затрату лучистой энергии на фотосинтез и на тепло, переносимос почвенными водами. Однако в условиях сухих степей со слабо развитой растительностью этими факторами, по-видимому, можно пренебречь.

Таким образом, указанное выше незамыкание баланса тепла вполне может объясняться методическими погрешностями и систе матическими ошибками приборов¹. Проведенный анализ намечае пути уменьшения погрешностей за счет расширения частотного диапазона приборов, уменьшения размеров датчиков и приближе ния точек измерения к поверхности земли. Разброс точек на гра фиках носит случайный характер и связан как со случайными ошибками измерения, так и с реальными флуктуациями измеряе мых величин. Увеличение времени наблюдения позволит уменьшити случайную ошибку до необходимого уровня.

¹ В данной работе не анализируются возможные погрешности измерени длинноволнового баланса вследствие изменения чувствительности датчиков Козы рева (см. статью [13]. Данные наблюдений ИФА обрабатывались по рекомен дуемой в паспорте чувствительности прибора. Указанное обстоятельство може объяснить некоторое завышение радиационного баланса по сравнению с дан ными ГГО, приведенными в приложении 1, и, следовательно, завышение вели чины Δ. — Прим. ред.

Основные результаты работы заключаются в следующем:

1. Прямые измерения основных компонент теплового баланса на поверхности почвы позволили оценить характерную величину этих компонент и соотношение между ними для условий Казахстанской степи в летнее время.

2. Отмечено незамыкание баланса тепла на величину порядка 0,25 др, которое можно объяснить ошибками измерений, возникающими как из-за погрешностей измерительных приборов и обработки, так и вследствие недостаточной длительности времени измерений, а также некоторыми неучтенными членами в уравнении баланса тепла у поверхности почвы.

ЛИТЕРАТУРА

- 1. Айзенштат Б. А. О тепловом балансе подстилающей поверхности. Изв. АН СССР, сер. геогр. и геофиз., 1951, № 1, с. 82-87.
- 2. Айзенштат Б. А. О непосредственном определении компонент теплового баланса поверхности земли. — Информационный сборник № 1. Динами-ческая и сельскохозяйственная метеорология. Л., 1951, с. 65—75. 3. Костин С. И. Радиационный, тепловой и водный баланс почвенно-расти-
- тельных провинций центральной черноземной полосы. Труды ГГО, 1970, вып. 263, с. 80—107.
- 4. Адаменко В. Н. Тепловой баланс и возможности мелиорации термического режима почвы. — Труды ГГО, 1969, вып. 248, с. 38—48. 5. Swinbank W. C. and Dyer L. J. Micrometeorological expeditions 1962—
- S. Swill Bark, W. C. and Dyell L. J. Introductor logical experiments 1962– 1964, Division of meteorological physics technical paper, No 17, Common wealth scientific and industrial research organisation, Australia, 1968, p. 48.
 Бовшеверов В. М., Воронов В. П. Акустический флюгер. Изв. АН СССР, сер. геофиз., 1960, № 6, с. 882—886.
- 7. Цванг Л. Р. Измерение частотных спектров температурных пульсаций в приземном слое атмосферы. — Изв. АН СССР, сер. геофиз., 1960, № 8, c. 1252-1263.
- В. Елагина Л. Г. Оптический прибор для измерения турбулентных пульсаций влажности. Изв. АН СССР, сер. геофиз., 1962, № 8, с. 1100—1107.
 Елагина Л. Г., Горшков В. И., Мироненко Э. Т. Об измерениях турбулентных потоков влаги с помощью инфракрасного гигрометра. Изв. АН СССР, Физика атмосферы и океана. 1970, т. 4, № 1, с. 92—96.
- 10. Бовшеверов В. М. и др. Приборы для статистического анализа турбулентности. Труды совещания по исследованию мерцания звезд. М. – Л.
- Изв. АН СССР, 1959, с. 26—33. 11. Каганов М. А., Розеншток Ю. А. Об измерении тепловых потоков с помощью тепломеров. Изв. АН СССР, сер. геофиз., 1961, № 8, с. 1174— 1179.
- 12. Леготина С. И., Орленко Л. Р. Тепловой баланс подстилающей поверхности в период экспедиции КЭНЭКС-71. - См. наст. сборник.
- 13. Елисеев А. А. и др. Профили радиационных потоков по материалам наблюдений. — См. наст. сборник.

С. И. ЛЕГОТИНА, Л. Р. ОРЛЕНКО

ТЕПЛОВОЙ БАЛАНС ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ В ПЕРИОД ЭКСПЕДИЦИИ КЭНЭКС-71

Одной из задач комплексного энергетического эксперимента [1] является исследование соотношения между составляющими теплового баланса подстилающей поверхности. Целесообразность таких исследований диктуется, в частности, необходимостью более полного учета процессов тепло- и влагообмена на подстилающей поверхности в задачах численного моделирования общей циркуляции атмосферы. В связи с этим программой экспедиции КЭНЭКС-71 [2] предусматривались непосредственные измерения всех составляющих теплового баланса, а также измерения характеристик, необходимых для получения потоков на уровне подстилающей поверхности расчетным путем.

Радиационный баланс. Коротковолновая радиация (прямая, суммарная, рассеянная и отраженная) измерялась с помощью стандартной аппаратуры, потоки длинноволновой радиации — с помощью балансомера Козырева. Методика наблюдений и обработки дается в [3]. Осредненные по получасовым интервалам времени значения радиационного баланса и его составляющих даны в приложении 1 к настоящему сборнику.

В дальнейшем при анализе будут использованы среднечасовые значения радиационного баланса.

Поток тепла в почву В. Для непосредственного определения потока тепла в почву использовались тепломеры АФИ, установленные на уробне 3-5 см. Указанные измерения выполнялись группой ИФА АН СССР.

Для получения расчетных значений потока тепла в почву производились наблюдения за температурой почвы на различных глубинах и измерения теплофизических констант почвы.

Температура почвы измерялась с помощью термометров сопротивления, установленных на глубинах 0, 5, 10, 15, 20, 40, 60 см. На верхних двух уровнях датчики были установлены в двух повторностях. В течение получасового интервала производились четыре отсчета по каждому термометру сопротивления. Осредненные за 1 час профили температуры почвы приводятся в приложении 4 к настоящему сборнику. Теплофизические характеристики почвы — теплопроводность λ и температуропроводность k определялись с помощью ИТК конструкции ГГО, установленных на уровнях 5 см (две повторности) и 15 см.

При анализе данных были обнаружены систематические расхождения в значениях λ и k, измеренных в дневные и вечерние часы. Дневные значения оказались несколько завышенными. Наличие в почве воздушных каналов, образующихся при высыхании почвы, могло повлиять на точность определения λ и k при сильно перегретой почве, поэтому данные измерений в дневные часы в дальнейшем не использовались.

Значительная изменчивость измеренных значений λ и k в вечерние и ночные часы носила случайный характер и, по-видимому, обусловлена в основном ошибками отдельных измерений. Отмечается зависимость λ и k от глубины. В связи с этим расчеты потоков тепла в почву производились по осредненным значениям теплофизических констант, которые приводятся в табл. 1.

Таблица 1

Средние значения теплопроводности λ,	,
температуропроводности k и объемной	
теплоемкости рс	

Глубина, см	λ - 10 ³ кал/(см · с · °С)	<i>k</i> • 10 ³ см ² • с	<i>рс</i> кал/(см ³ · °С)
5	0,726	2,45	0,299
15	1,130	3,03	0,373
Среднее	0,928	2,74	0,336

Расчеты потоков тепла в почву (кал/(см² · мин)) производились по формуле (см. [4]).

$$B = \frac{c\rho}{60\Delta\tau} \left(S_1 - \frac{a}{10} S_2 \right). \tag{1}$$

Здесь $c\rho$ — объемная теплоемкость (кал/(см³ · °C)); $\Delta \tau$ — промежуток времени (в часах); $a = k \cdot 3, 6 \cdot 10^3$ — коэффициент (см² · ч);

$$S_{1} = 20 \left(0,082\Delta T_{0} + 0,333\Delta T_{5} + 0,175\Delta T_{10} + 0,156\Delta T_{15} + 0,004\Delta T_{20} \right)^{\circ} C/cM,$$
(2)

$$S_2 = \frac{\Delta \tau}{2} \left[\Delta T_1' + \Delta T_2' \right], \tag{3}$$

где ΔT_z — разность температур в конечный и начальный моменты времени на уровне z (z=0, 5, 10, 15, 20 см), $\Delta T_1'$ и $\Delta T_2'$ — разность температур на глубинах 20 и 10 см в первый и второй сроки наблюдений соответственно.

Расчеты производились по среднечасовым профилям температуры почвы, в отдельные сроки по получасовым. Величины потока тепла в почву, интерполированные на заданные моменты времени, приведены в табл. 5.

Одновременные наблюдения позволили сопоставить рассчитанные значения B со значениями, измеренными тепломерами АФИ и отнесенными, таким образом, к уровню ~ 4 см.

Расхождения между указанными величинами обусловлены прежде всего тем, что при измерениях не учитываются изменения теплосодержания слоя 0—4 см.

На рис. 1 приводятся разности между рассчитанными и измеренными значениями потока тепла в почву в суточном ходе по данным параллельных наблюдений для трех ясных дней. Из рисунка следует, что наибольшие расхождения между указанными величинами отмечаются в предполуденные и вечерние часы и достигают 0,1 кал/см² мин (при абсолютной величине потока 0,16

Рис. 1. Разность между рассчитанными (B_p) и измеренными $(B_{изм})$ значениями потока тепла в почву в суточном ходе, 2/VII~(1),~4-5/VII~(2) и 10/VII (3).

и —0,10 кал/см² мин соответственно). При этом в дневные часы измеренный поток тепла оказывается заниженным, в вечерние и ночные часы — завышенным по сравнению с рассчитанным. Следует отметить, что такое соотношение сохраняется ото дня ко дню.

Турбулентный поток тепла P_0 . Надежное определение величины P_0 на уровне подстилающей поверхности необходимо не только для исследования баланса тепла на поверхности, но также для исследования баланса тепла пограничного слоя атмосферы [5].

Как уже отмечалось выше, в КЭНЭКС-71 Институт физики атмосферы АН СССР осуществлял непосредственные измерения турбулентных потоков тепла, основанные на регистрации пульсаций вертикальной составляющей скорости ветра и температуры с помощью малоинерционной аппаратуры [6, 7]. Однако прямые измерения P₀ осуществлялись лишь в начальный период экспедиционных работ и, таким образом, для определения турбулентного потока тепла потребовалось применение расчетных методов.

В настоящее время предложено несколько методов расчета турбулентных потоков в приземном слое по данным градиентных наблюдений [4, 8, 9, 10], которые, однако, не получили должной проверки на массовом материале. В связи с этим по материалам параллельных наблюдений было проведено сопоставление рассчитанных различными методами [4, 8, 9] потоков тепла с измеречными (табл. 2).

Таблица 2

Дата	Время, ч	1	2	3	4	5
2/VII	12-13 14-15 16	0,33 0,35	0,28 0,35	0,22 0,33	0,35 0,40	0,36 0,43
4/VII	16-17 12-13 14-15 16-17	$0,34 \\ 0,35 \\ 0,35 \\ 0,26$	0,20 0,35 0,40 0,32	0,29 0,36 0,38	0,36 0,36 0,40	0,32 0,40 0,46 0,38
.10/VII Среднее	10-11	$0,20 \\ 0,25 \\ 0,32$	0,32 0,27 0,32	0,30 0,28 0,31	0,38 0,35 0,37	0,38 0,30 0,38

Турбулентный поток тепла по данным измерений и расчетов

Примечание. В таблице обозначено: 1 — измеренные величины, 2 — рассчитанные по Казанскому—Монину [8], 3 — по Зилитинкевичу—Чаликову [9], 4 — по методу теплового баланса [4], 5 — с использованием $\alpha_{\rm T}/\Phi_u^2 = f({\rm Ri})$ (см. рис. 2).

В расчетах использовались средние профили метеорологических элементов [11]. Анализ временного хода температуры показал наличие в ряде случаев в дневные часы изменений температуры с периодом 5—15 мин, обусловленных, по-видимому, прохождением термиков. В связи с этим для получения надежных характеристик использовались среднечасовые значения градиентов температуры. При этом число Ричардсона изменялось от —0,035 до —0,115 (среднее значение его составляло —0,058).

В указанном диапазоне Ri рассмотренные методы дают довольно близкие результаты. Хорошее совпадение измеренных и рассчитанных по [8 и 9] значений P_0 следовало ожидать. Напомним, что при разработке методики расчета турбулентных потоков в [8 и 9] были использованы выполненные ранее Институтом физики атмосферы измерения турбулентных потоков и профилей метеоэлементов. При этом отношение коэффициентов турбулентности для тепла ($k_{\rm T}$) и импульса ($k_{\rm u}$) в работе [8] принималось равным единице, а в работе [9] практически задавалось константой, определяемой по тем же экспериментальным данным при нейтральной стратификации ($\alpha_{\rm T} = 0.83$).

Многочисленные экспериментальные данные свидетельствуют не только о различии коэффициентов турбулентности для тепла и количества движения при условиях, отличных от равновесных, но и о существенной зависимости $\alpha_{\rm T} = \frac{k_{\rm T}}{k_u}$ от стратификации. По данным различных авторов, величина $\alpha_{\rm T}$ меняется от нескольких десятых при устойчивой стратификации до нескольких единиц при свободной конвекции [10]. В работах [8 и 9] указанная зависимость частично учтена подбором функций по экспериментальным данным. Однако специфика обработки при этом может привести к некоторой систематической погрешности в потоках в условиях, отличных от используемых при получении эмпирических функций, а также при расчетах затрат тепла на испарение. В связи с этим встает вопрос о необходимости более полного учета $\alpha_{\rm T}$ при расчетах турбулентного потока тепла. В работе [10] приводится зависимость $\alpha_{\rm T}$ от безразмерного параметра z/L. Здесь

$$L = -\frac{v_*^3}{\pi (g/T_0) P_0 / \rho c_p},$$
 (4)

где v — динамическая скорость, T_0 , ρ , c_p — температура, плотность и удельная теплоемкость воздуха, g — ускорение силы тяжести, \varkappa — постоянная Кармана.

Максимальные значения $\alpha_{\rm T}$ при неустойчивой стратификации (z/L < 0) составляют ~ 3, при устойчивой стратификации экспериментальные точки в основном лежат в интервале от 0 до 0,9. В области больших отрицательных z/L величина $\alpha_{\rm T}$ практически не меняется при изменении z/L.

Хотя имеются многочисленные данные о величине $\alpha_{\rm T}$, следует отметить, что, как правило, они получены по данным измерений турбулентного потока тепла и напряжения трения пульсационными методами и носят в себе, таким образом, погрешности указанных величин. В связи с этим представляется целесообразным использование для определения $\alpha_{\rm T}$ данных, в которых измерения P_0 контролировались бы другим независимым способом определения.

В качестве такого независимого метода может служить метод теплового баланса, позволяющий при отсутствии испарения с подстилающей поверхности определить P_0 как остаточный член по измеренным значениям радиационного баланса и рассчитанным значениям потока тепла в почву ($P_0 = R - B$).

Для определения $\alpha_{\rm T}$ нами использовались данные о турбулентных потоках, полученные Суинбенком [12] и Айзенштатом [13] (в последней работе P_0 определялось методом компенсации). Сопоставление полученных в указанных работах значений P_0 с величиной (R - B) показало удовлетворительное согласование. По определению

$$\alpha_{\rm T} = - \frac{P_0/\varrho c_p}{k_\mu \partial \Theta/\partial z}.$$

(5)

(6)

В приземном слое градиент потенциальной температуры $\partial \Theta / \partial z$ может быть заменен градиентом абсолютной температуры $\partial T / \partial z$. Для его определения с достаточной точностью можно воспользоваться логарифмической интерполяционной формулой, позволяющей определить $\partial T / \partial z$ по данным измерений температуры на двух уровнях (z_1 и z_2):

$$rac{\partial T}{\partial z} = rac{T_2 - T_1}{z \ln z_2/z_1}$$
для $\dot{z}_1 > z > z$

50

tie ti

Коэффициент турбулентности для импульса k_u существенно зависит от стратификации. Определить его в стратифицированном приземном слое без привлечения каких-либо схем практически невозможно.

Известно, однако, что на небольших высотах влияние стратификации невелико и распределение ветра с достаточной точностью описывается логарифмическим законом. Выполненный авторами анализ многочисленного экспериментального материала показал, что толщина указанного слоя при неравновесных условиях составляет ~ 2 м. Это позволяет использовать при определении k_u для z < 2 м логарифмическую модель приземного слоя. Более строго k_u может быть определено из соотношения

$$k_{\mu}\Phi_{\mu}^{2} = x^{2}z \frac{u_{1}}{\ln z_{1}/z_{0}} = x^{2}z \frac{u_{2}-u_{1}}{\ln z_{2}/z_{1}},$$
(7)

где u_1' и u_2' — скорость ветра на уровнях z_1' и z_2' соответственно, $\Phi_u^2 = x z \frac{\partial u}{\partial z} / v_*, v^*$ — динамическая скорость.

В соответствии с теорией подобия величина Φ_u определяется стратификацией воздуха в приземном слое и может быть представлена в виде $\Phi_u = (1 - \sigma Ri)^{-1/4}$. Значение σ определялось различными авторами по экспериментальным данным. При неустойчивой стратификации можно положить $\sigma = 18$.

С учетом (6) и (7) выражение для α_{T} запишется в виде:

$$\alpha_{\rm T} = \frac{P_0}{\rho c_p x^2} \frac{\ln z_2/z_1}{T_1 - T_2} \frac{\ln z_2/z_1}{u_2 - u_1} \Phi_u^2. \tag{8}$$

На рис. 2 приводится полученная зависимость от числа Ричардсона. В область больших отрицательных Ri кривая экстраполировалась в соответствии с [10].

Указанная зависимость была использована для расчетов величины P_0 на основании соотношения (8) по материалам экспедиции. Результаты расчетов приведены в табл. 2.

Рассчитанные с учетом a_T значения P_0 оказались несколько выше измеренных. Измеренные величины нам представляются несколько заниженными в связи с указанным выше наличием пульсаций температуры с периодом, сравнимым с периодом пульсационных наблюдений. По оценкам авторов [7], занижение измеренных величин может составлять 10—15%.

Надежность приведенных в табл. 2 данных будет оцениваться ниже на основе замыкания баланса тепла на уровне подстилающей поверхности.

Затраты тепла на испарение LE_0 . Испарение определялось по данным пульсационных наблюдений при использовании оптического метода для измерения пульсаций влажности [14]. Сопоставление измеренных и рассчитанных различными методами значений LE_0 приведено в табл. 3, в которой приводятся также результаты расчетов по формуле

$$LE_{\mathbf{g}} = L\rho k_{u} \frac{q_{1} - q_{2}}{\ln z_{2}/z_{1}}, \qquad (9)$$

где величина k_u определялась соотношением (7) при z = 1 м, т. е. коэффициент турбулентности для влаги принимался равным коэффициенту турбулентности для импульса.

Вопрос о коэффициенте турбулентности для влаги изучен недостаточно. Существует мнение, что коэффициенты турбулентности для тепла и влаги можно принять одинаковыми. Такое предположение, в частности, используется при расчетах LE_0 по методу теплового баланса [4].

Имеющиеся данные о роли лучистого притока в балансе тепла

Таблина З

Дата	Время, ч	1	2	3	4	5
2/VII	12-13 14-15	0,04 0,05	0,07 0,05	0,05 0,05	0,08 0,06	0,03 0,03
4/VII	$ \begin{array}{c c} 16-17 \\ 12-13 \\ 14-15 \end{array} $	$0,04 \\ 0,09 \\ 0,03$	0,07 0,11 0,08	0,07 0,11 0,07	0,10 0,11 0,08	$0,05 \\ 0,08 \\ 0,04 $
10/VI1	16—17 10—11	0,02 0,00	0,02 0,00	0,02	$0,02 \\ 0,00$	0,01 0,00
Среднее		0,04	0,06	0,05	0,06	0,03
Прим	1ечание.	Обозна	ачения 1	—4 см.	в табл.	2, 5

Затраты тепла на испарение по данным измерений и расчетов

по формуле (9).

в пограничном слое атмосферы (см., например, [5, 15]) позволяют отнести значительные расхождения в величинах k_т и k_u за счет существенного влияния лучистого теплообмена на механизм передачи тепла, наиболее сильно проявляющегося в приземном слое. В связи с этим встает вопрос о правомерности гипотезы о равенстве k_т и k_q. О различии механизмов передачи тепла и влаги свидетельствуют некоторые косвенные данные, в частности отмеченное в [11] различие в высоте распространения суточных колебаний температуры и влаги. Имеются экспериментальные работы, полтверждающие равенство kg и ky [16].

Таблица 4

4

0,43 0,41

Обозначения

5

Сопоставление R-B и $P_0 + LE_0$, полученных различными способами

2

0,38

1—5 см. в табл. 1 и 2.

 $P_0 + LE_0$

3

0,36

По ланным табл. 4 можно отметить некоторое завышение рассчитанных на основании [8, 9] потоков влаги по сравнению с измеренными.

О замыкании баланса тепла деятельной поверхности. Непосредственные измерения и расчетные методы позволили, таким образом, получить все составляющие теплового баланса.

Как уже указывалось выше, при исследованиях теплового ба-

ланса ставилась задача рассмотреть замыкание баланса тепла на подстилающей поверхности.

R - B

0.43

1

0,36

Примечание.

Измеренные и рассчитанные значения R и Po относятся к высоте ~ 1-1,5 м и, таким образом, для дневных условий будут несколько завышены по сравнению с уровнем подстилающей поверхности. Однако при условии, что в приземном слое $R - P_0 pprox$ \approx const, на замыкании баланса это не скажется.

В табл. 4 дается сопоставление осредненных за семь сроков R-B с величинами $P_0 + LE_0$, полученными по материалам

Составляющие теплового баланса подстилающей поверхности

Дата	Время, ч	Ri	R	В	Pu Po	LE ₀	Δ
27/VI 30/VI 1/VII 2/VII 4/VII 5/VII 10/VII 12/VII 13/VII 15/VII 16/VII 17/VII 18/VII	$\begin{array}{c} 10 - 11 \\ 12 - 13 \\ 10 - 11 \\ 12 - 13 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 17 - 18 \\ 19 - 20 \\ 22 - 23 \\ 0 - 01 \\ 02 - 03 \\ 04 - 05 \\ 06 - 07 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ $	$\begin{array}{c} -0,025\\ -0,060\\ -0,045\\ -0,045\\ -0,095\\ -0,070\\ -0,060\\ -0,135\\ -0,011\\ -0,035\\ -0,070\\ -0,035\\ -0,070\\ -0,045\\ -0,050\\ -0,045\\ -0,050\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,045\\ -0,025\\ -0,035\\ -0,0$	$\begin{array}{c} -\\ 0,44\\ 0,61\\ 0,49\\ 0,58\\ 0,44\\ 0,60\\ 0,548\\ 0,62\\ 0,44\\ 0,659\\ 0,44\\ 0,659\\ 0,44\\ 0,59\\ 0,09\\ -\\ 0,00\\ 0,562\\ 0,38\\ 0,09\\ -\\ 0,00\\ 0,62\\ 0,38\\ 0,09\\ -\\ 0,00\\ 0,62\\ 0,38\\ 0,24\\ 0,37\\ 0,00\\ 0,62\\ 0,48\\ 0,37\\ 0,29\\ 0,62\\ 0,48\\ 0,37\\ 0,29\\ 0,62\\ 0,48\\ 0,37\\ 0,29\\ 0,62\\ 0,55\\ 0,20\\ 0,10\\ 0,00\\ 0,10\\ 0,00\\ 0$	$\begin{array}{c} 0,14\\ 0,11\\ \\ -\\ 0,16\\ 0,18\\ 0,10\\ 0,05\\ 0,18\\ 0,10\\ 0,02\\ 0,16\\ 0,02\\ 0,01\\ 0,02\\ 0,01\\ 0,02\\ 0,01\\ -0,00\\ -0,06\\ 0,01\\ -0,00\\ -0,06\\ 0,01\\ -0,00\\ 0,01\\ -0,00\\ 0,01\\ 0,00\\ -0,06\\ 0,01\\ 0,00\\ 0,01\\ 0,00\\ 0,01\\ 0,00\\ 0,00\\ 0,00\\ 0,11\\ -0,06\\ 0,01\\ 0,00\\ 0,11\\ -0,06\\ 0,01\\ 0,00\\ 0,11\\ -0,06\\ 0,01\\ 0,00\\ 0,11\\ -0,06\\ 0,01\\ 0,00\\ 0,11\\ -0,06\\ 0,01\\ 0,00\\ 0,11\\ 0,06\\ 0,01\\ 0,00\\ 0,11\\ 0,06\\ 0,00\\ 0,19\\ 0,00\\ $	$\begin{array}{c c} & 0,19 \\ 0,27 \\ 0,20 \\ 0,28 \\ 0,30 \\ 0,42 \\ 0,38 \\ 0,31 \\ 0,33 \\ 0,33 \\ 0,34 \\ 0,33 \\ 0,34 \\ 0,35 \\ 0,43 \\ 0,35 \\ 0,40 \\ 0,26 \\ 0,07 \\ -0,01 \\ 0,28 \\ 0,32 \\ 0,00 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -0,02 \\ -0,01 \\ -0,02 \\ -$	$\begin{array}{c} - \\ - \\ 0,12 \\ 0,06 \\ 0,04 \\ 0,04 \\ 0,03 \\ 0,03 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,08 \\ 0,04 \\ 0,01 \\ 0,03 \\ 0,05 \\ 0,02 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,01 \\ 0,00 \\ 0,00 \\ 0,01 \\ 0,00 \\ 0,00 \\ 0,01 \\ 0,00 \\ 0,00 \\ 0,01 \\ 0,00 \\ 0$	$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $
· · ·	12—13	0,182	0,55	0,17	0,30	—	

Дата	Время, ч	Ri	R	В	P_0	LE_0	Δ
19/VII 20/VII 21/VII 22/VII 23/VII	$\begin{array}{c} 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 10 - 11 \\ 12 - 13 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 10 - 11 \\ 12 - 13 \\ 10 - 11 \\$	$\begin{array}{c} -0,140\\ -0,112\\ -0,188\\ -0,336\\ -0,105\\ -0,050\\ -0,015\\ -0,070\\ -0,070\\ -0,070\\ -0,070\\ -0,070\\ -0,070\\ -0,070\\ -0,035\\ -0,035\\ -0,030\\ -0,035\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -0,00\\ -$	$\begin{array}{c} 0,37\\ 0,54\\ 0,44\\ 0,32\\ 0,39\\ 0,62\\ 0,27\\ 0,57\\ 0,57\\ 0,54\\ 0,41\\ 0,56\\ 0,41\\ 0,56\\ 0,54\\ \end{array}$	$\begin{array}{c} 0,18\\ 0,15\\ 0,02\\0,04\\ 0,20\\ 0,12\\ 0,06\\ 0,20\\ 0,10\\ 0,18\\ 0,18\\ 0,18\\ 0,18\\ 0,16\\ 0,10\\ \end{array}$	$\begin{array}{c} 0,34\\ 0,43\\ 0,31\\ 0,16\\ 0,26\\ 0,40\\ 0,12\\ 0,36\\ 0,37\\ 0,16\\ 0,38\\ 0,18\\ 0,30\\ 0,24\end{array}$	$\begin{array}{c} 0,03 \\$	$\begin{array}{c}\\\\\\ 0,09\\0,10\\ 0,01\\ 0,02\\0,09\\ 0,00\\ 0,05\\ 0,17\\ \end{array}$

измерений и расчетов указанными выше способами и приведенными в табл. 2 и 3.

Полученные данные показывают, что учет зависимости α_{T} от спратификации улучшает замыкание теплового баланса по данным измерений и расчетов. В связи с этим, а также с учетом большого диапазона изменений Ri значение турбулентного потока тепла для всего периода экспедиции определилось на основании (8) и рис. 2.

Рассчитанные величины P₀ и другие составляющие теплового баланса приведены в табл. 5. Затраты тепла на испарение вычислены на основании (9).

В табл. 5 приведена также величина расхождений между измеренным радиационным балансом и расходной частью теплового баланса $P_0 + LE_0 + B$. В среднем для дневных наиболее обеспеченных сроков (10—15 ч) расхождения между R и $P_0 + LE_0 + B$ практически отсутствуют. Это говорит о том, что незамыкание баланса тепла для отдельных сроков обусловлено случайными ошибками в измеренных и рассчитанных величинах потоков.

Как известно, в вечерние и ночные сроки потоки определяются с большой погрешностью. Судить о замыкании баланса тепла в указанные сроки по имеющимся немногим данным довольно трудно. Тем не менее даже немногочисленные данные позволяют считать, что в среднем рассчитанный в ночные часы баланс неплохо коррелирует с измеренным. Вместе с тем, необходимы дальнейшие разработки по уточнению зависимости а_т от стратификации с привлечением различных экспериментальных данных.

Отметим в заключение, что ход потоков со временем является типичным для летних условий и характеризуется ярко выраженным суточным ходом, большими абсолютными значениями в околополуденные часы и размытым максимумом радиационного баланса и турбулентного потока тепла. В отличие от R и P_0 поток тепла в почву имеет ярко выраженный максимум в утренние часы.

Затраты тепла на испарение в целом невелики. Величины LE₀ изменялись от 0 до 0,25 кал/(см² · мин) (после выпадения осадков).

Основной вклад в баланс тепла, таким образом, вносит днем радиационный баланс и турбулентный теплообмен, ночью существенную роль играет также поток тепла в почву.

Отношение B/R меняется в суточном ходе. Днем оно составляет 0,3—0,4, ночью ~ 0,6, в послеполуденные и переходные часы близко к нулю. Ото дня ко дню величина В/R меняется незначительно (для дневных часов в пределах 20%).

ЛИТЕРАТУРА

- 1. Кондратьев К. Я. и др. Комплексный энергетический эксперимент (КЭНЭКС). — Метеорология и гидрология, 1970, № 11, с. 51—57.
- 2. Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71. См. настоящий сборник.
- 3. Елисеев А. А. и др. Профили радиационных потоков по материалам наблюдений. См. настоящий сборник.
- 4. Руководство по градиентным наблюдениям и определению составляющих теплового баланса. Л., Гидрометеоиздат, 1964, с. 130.
- 5. Ключникова Л. А., Орленко Л. Р. Некоторые результаты исследования баланса тепла в пограничном слое атмосферы. — См. настоящий сборник.
- 6. Бовшеверов В. М., Гурвич А. С., Цванг Л. Р. Прямые измерения потока тепла в приземном слое атмосферы. — ДАН СССР, 1959, № 125,) № 6, c. 1242—1245.
- 7. Елагина Л. Г. и др. Экспериментальное исследование баланса тепла на поверхности почвы. — См. настоящий сборник.
- 8. Казанский А. Б., Монин А. С. Определение турбулентных потоков количества движения, тепла и влаги по данным градиентных наблюдений. ---Метеорология и гидрология, 1962, № 12, с. 3-8.
- 9. Зилитинкевич С. С., Чаликов Д. В. О расчете вертикальных потоков в приземном слое атмосферы по данным градиентных наблюдений. -Физика атмосферы и океана, 1968, т. 4, № 9, с. 915—929.
- 10. Лайхтман Д. Л. Физика пограничного слоя атмосферы. Гидрометеоиздат, 1970, c. 340.
- 11. Лазарева Н. А. и др. Профили метеорологических элементов по материалам наблюдений. — См. настоящий сборник. 12. Swinbank W. C. The exponential wind profile. Quart. J. Roy. Meteorol.
- Soc. 1964, vol. 90, N 384, pp. 119-135.
- Айзенштат Б. А. и др. Тепловой баланс деятельной поверхности. Труды ГГО, 1961, вып. 107, с. 34—43.
- 14. Елагина Л. Г. Оптический прибор для измерения турбулентных пульсаций влажности. — Изв. АН СССР, сер. геофиз. 1962, № 8, с. 1101— 1107.
- 15. Елисеев А. А. Результаты экспериментального определения радиационного притока тепла в приземном слое. — См. настоящий сборник. 16. Пристли С. Х. Б. Турбулентный перенос в приземном слое атмосферы.
- Л., Гидрометеоиздат, 1964, с. 160.

А. А. ЕЛИСЕЕВ

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ РАДИАЦИОННОГО ПРИТОКА ТЕПЛА В ПРИЗЕМНОМ СЛОЕ

В экспедиции КЭНЭКС-71 были выполнены измерения лучистого притока тепла в длинноволновой области в приземном слое. Методика этих экспериментов в основном аналогична описанной

в [1]. В ночное время прямым методом измерялась величина $\frac{dE_{3\Phi}}{dm}$ ($E_{3\Phi}$ — эффективное излучение, m — эффективная поглощающая масса водяного пара) посредством суммарного селективного радиометра [1], затем по известной влажности воздуха вычислялось радиационное изменение температуры на уровне расположения радиометра. В дневное и ночное время измерялась также величина эффективного излучения поочередно на высотах 0,1; 1; 5; 8 м посредством балансомера ЛЭТИ с бело-блестящей приемной поверхностью [2]; затем вычислялось радиационное изменение температуры, среднее в соответствующем слое.

Для того чтобы исключить влияние коротковолновой радиации, чувствительность основной и компенсационной термобатарей каждой стороны балансомера уравнивалась использованием приема «солнце — тень» путем шунтирования термобатареи, более чувствительной к прямой радиации. Таким приемом для одного из балансомеров, используемого для определения лучистого притока тепла в приземном слое, удалось снизить чувствительность к коротковолновой радиации до величины, меньшей 0,025 мВ · см² · мин/кал при различных углах падения и азимутах прямой радиации, что позволило пренебречь влиянием коротковолновой радиации.

Наблюдения проводились в безоблачное время в околополуденные часы до появления облачности. Температурная стратификация характеризовалась значительными вертикальными градиентами, в десятки и сотни раз превышающими адиабатический [3].

Разница температур подстилающей поверхности и воздуха на высотах 0,1—0,25 м достигала 20° С.

Послеполуночные часы наблюдений характеризовались мощной инверсией глубиной около 10°С с максимумом температуры на

высоте 120 ÷ 250 м и небольшим скачком температуры у поверхности в пределах 1°С. Подстилающая поверхность представляла собой ровную глинистую почву с сухой низкорослой травой высотой меньше 5 см, покрывающей 40 ÷ 60% площади поверхности (подробнее см. [4]). Наблюдения притока сопровождались наблюдением температуры и влажности воздуха в приземном слое и в свободной атмосфере.

В табл. 1 приведены полученные значения $[E_{\vartheta\Phi}(z) - E_{\vartheta\Phi}(z=1)]$. Значения $[E_{\vartheta\Phi}(z) - E_{\vartheta\Phi}(z=1)]$ в ночные часы определялись как $\frac{dE_{\vartheta\Phi}}{dm}\rho_w(z-1)$, где $\frac{dE_{\vartheta\Phi}}{dm}$ — среднее из значений $\frac{dE_{\vartheta\Phi}}{dm}$, измеренных на границах слоя посредством суммарного селективного радиометра, ρ_w — плотность водяного пара, средняя в слое (z-1) м. Как видно из табл. 1, изменения $E_{\vartheta\Phi}$ в слое 1—8 м не превышали — 0,03 кал/см² · мин днем и + 0,012 кал/см² · мин ночью, что соответствовало относительным изменениям $E_{\vartheta\Phi}(z)$, равным 7 и + 10% соответственно.

Таблица 1

Пата	Время,			Высота	, м	
дата	чи мин	0,1	0,25	2	5	8
4/VII 5/VII 10/VII 16/VII 17/VII	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1	+8,7		$ \begin{array}{r} 5 \\ -8,4 \\ -12,0 \\ -15,8 \\ -19,0 \\ -15,0 \\ -7,6 \\ \end{array} $ $ \begin{array}{r} -10,4 \\ -8,4 \\ -10,2 \\ +6,2 \\ +6,3 \\ \end{array} $	$\begin{array}{c c} & & & \\ & -10,5 \\ & -18,0 \\ & -23,3 \\ & -28,0 \\ & -25,1 \\ & -22,2 \\ & -11,2 \\ & +7,5 \\ & +8,0 \\ & +3,8 \\ & -14,5 \\ & -13,8 \\ & -14,5 \\ & -13,8 \\ & -16,8 \\ & +12,0 \\ & +12,0 \end{array}$
22/VII 23/VII	$ \begin{array}{r} 1-2 \\ 3-4 \\ 4-5 30 \\ 11-12 \\ 12-13 \\ 14-15 \\ 11-12 \\ 12 \\ 12 \\ 12 \end{array} $	+16,8 +25,0			+6,3 +6,4 +5,2 -10,4 -8,4	+12,0 +9,2 -15,5 -12,9 -29,0 26,0

Значения $E_{\mathfrak{d}\Phi}(z) - [E_{\mathfrak{d}\Phi}(z=1)] \cdot 10^3 \text{ кал/(см²·мин)}$

Примечание. Данные за ночные сроки получены прямым методом.

На рис. 1 представлены средние профили эффективного излучения в приземном слое по наблюдениям в околополуденные часы в экспедиции КЭНЭКС-71 и рассчитанные теоретически [5]. Как видно, полученный по наблюдениям профиль $E_{эф}(z)$ хорошо под-

тверждается результатами расчета, выполненного для сходных условий, при наличии скачка температуры у поверхности 20° С.

Полученные из наблюдений значения радиационного изменения температуры, имея обычно тот же знак, что и фактически наблюдаемые, значительно превосходили их по модулю, в особенности в дневные часы. Это отмечалось и в работах [6, 7].

В табл. 2 показан временной ход изменения температуры.

Из табл. 2 видно, что даже без учета действия коротковолновой радиации днем имеет место значительный радиационный нагрев, увеличивающийся с приближением к подстилающей поверхности. Моменты максимума радиационного нагрева, эффек-

Рис. 1. Зависимость эффективного излучения от высоты в приземном слое в дневное время. 1- экспериментальные данные, 2- теоретический расчет.

тивного излучения и радиационной температуры поверхности совпадали в пределах одного часа.

Были предприняты также измерения лучистого притока тепла в слое ниже 1 м в дневные часы. При этом существенным оказалось влияние радиационной неоднородности подстилающей поверхности. По результатам проведенных экспериментальных оценок характерный размер неоднородности составлял 0,2—0,4 м. Изменение восходящего излучения на таком расстоянии по горизонтали достигало 0,01—0,02 кал/(см² мин), что соизмеримо с изменением $E_{аф}$ по вертикали в слое ниже 1 м. Для уменьшения соответствующей погрешности балансомер на нижней границе слоя (0,1—

Таблица 2

		Изменение температуры, °С/ч					
Дата	Время, ч	радиа- ционное	факти- ческое	радиа- ционное	факти- ческое		
le de la companya de la compa		Слой	5—1 м	Слой 8	8—5 м		
4/VI1	$11-12 \\ 12-13 \\ 13-14 \\ 14-15 \\ 15-16 \\ 16-17 \\ 17-18 $	4,2 6,0 7,9 9,6 8,5 7,6 3,8	1,60,80,60,40,20,10,0	1,44,05,06,25,34,82,4	1,00,90,80,60,30,10,1		
		высот	а 1 м	высот	а8м		
5/VII	$0-1 \\ 2-3 \\ 5-6$	-2,1 -1,8 -1,4	$ {-1,5 \atop -1,0 \atop +1,0}$	$\begin{vmatrix} -2,4\\ -2,7\\ -0,8 \end{vmatrix}$	-1,0 -1,0 +1,0		

Примечание. 5/VП в 5—6 ч значительно увеличилась облачность, чем и объясняется фактический нагрев.

0,25 м) располагался над участком, восходящее излучение которого было равно среднему значению, определенному предварительно при горизонтальном перемещении балансомера на этой высоте над площадью около 2 м². Таким путем удалось уменьшить погрешность до <u>+</u>50% от величины притока в слой 0,1—1 м.

Рис. 2. Радиационное (а) и фактическое (б) изменение температуры 22/VII в 11—12 ч (1) и 23/VII в 11—13 ч (2).

На рис. 2 показаны вертикальные профили радиационных и фактических изменений температуры в околополуденные часы 22 и 23/VII в слое 0,1—8 м. Из рисунка видно, что радиационный

нагрев весьма значителен, в особенности в слое 0,1—1 м, что обусловлено наличием скачка температуры у поверхности. Зависимость радиационного нагрева от высоты и его абсолютные значения хорошо согласуются с результатами расчетов [5]. Из рассмотрения рис. 2 можно заключить, что нерадиационный приток тепла, вызывающий выхолаживание, также значителен и сильно увеличивается с приближением к подстилающей поверхности.

Автор приносит благодарность В. П. Некрасову за помощь при постановке и проведении наблюдений.

ЛИТЕРАТУРА

- 1. Елиссев А. А. К методике измерения лучистого притока тепла в приземном слое. Труды ГГО, 1970, вып. 257, с. 101—108.
- Козырев Б. П. Компенсационный термоэлектрический балансомер с белой и блестящей приемными поверхностями, защищенными от воздушных потоков полусферами из KRS-5. — В кн.: «Актинометрия и оптика атмосферы». Труды VI Межведомственного совещания. Таллин, 1968, с. 178—184.
- Лазарева Н. А. и др. Профили метеорологических элементов по материалам наблюдений — См. настоящий сборник.
- 4. Виноградов Б. В., Григорьев А. А. Ландшафтная характеристика опытного полигона КЭНЭКС-71. — См. настоящий сборник.
- Фарапонова Г. П. О радиационном нагревании воздуха за счет длинноволновой радиации в дневные часы. — Изв. АН СССР. Физика атмосферы и океана. 1969, т. V, № 8, с. 868—870.
 Тимановская Р. Г., Фарапонова Г. П. Определение радиационного
- 6. Тимановская Р. Г., Фарапонова Г. П. Определение радиационного притока тепла в приземном слое атмосферы. Изв. АН СССР, ФАО, 1967, т. III, № 12, с. 1259—1270.
- T. III, № 12, c. 1259—1270.
 7. Funk I. P. Measured radiative flux divergence near the ground at night. Quart. I. Roy. Met. Soc. 1960, v. 86, № 369, c. 382—390.

Л. А. КЛЮЧНИКОВА, Л. Р. ОРЛЕНКО

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ БАЛАНСА ТЕПЛА В ПОГРАНИЧНОМ СЛОЕ АТМОСФЕРЫ

Получение комплексных материалов наблюдений по программе КЭНЭКС [1, 2] впервые позволило рассмотреть баланс тепла по экспериментальным данным не только для подстилающей поверхности [3], но и для отдельных слоев атмосферы. Тепловое влияние подстилающей поверхности, как известно, наиболее ярко проявляется в пограничном слое. В связи с этим в программе КЭНЭКС-71 основное внимание было уделено экспериментальному исследованию притоков тепла в пограничном слое — лучистого и турбулентного.

Программой работ предусматривалось получение всех характеристик, необходимых для исследования баланса тепла на основе уравнения притока тепла

$$\rho c_p - \frac{d\Theta}{dt} = -\frac{\partial P}{\partial z} - \frac{\partial (F-S)}{\partial z}.$$
 (1)

Здесь Θ , ρ и c_p — потенциальная температура, плотность и удельная теплоемкость воздуха соответственно. P — турбулентный поток тепла

$$P = -\rho c_p k_T \left(\frac{\partial T}{\partial z} + \gamma_p \right) \tag{2}$$

F — эффективное излучение, S — баланс коротковолновой радиации ($S \downarrow - S \uparrow$).

Точность определения потоков P(z), F(z) и S(z) еще недостаточна, чтобы можно было определить производную с надежной точностью на различных уровнях. В связи с этим возникает необходимость рассмотрения баланса тепла по слоям значительной толщины.

После интегрирования уравнения (1) по высоте от 0 до *z*, получим

$$\Delta Q = \int_{0}^{z} \rho c_{p} \frac{d\Theta}{dt} dz = (P_{0} - P_{z}) + (F_{0} - F_{z}) + (S_{z} - S_{0}), \qquad (3)$$

где P₀, S₀, F₀ — соответствующие потоки у земли.

+62

Левая часть уравнения (3) в развернутом виде может быть представлена соотношением

$$\int_{0}^{z} \rho c_{p} \frac{d\Theta}{dt} dz = \int_{0}^{z} \rho c_{p} \frac{\partial\Theta}{\partial t} dz + \int_{0}^{z} \rho c_{p} \left(u \frac{\partial\Theta}{\partial x} + v \frac{\partial\Theta}{\partial y} \right) dz + \\ + \int_{0}^{z} \rho c_{p} w \frac{\partial\Theta}{\partial z} dz, \qquad (4)$$

где u, v, w — составляющие скорости ветра по осям x, y и z соответственно. Первое слагаемое правой части соотношения (4) представляет собой изменение теплосодержания столба воздуха высотой z и может быть рассчитано по материалам наблюдений за изменением во времени температуры и давления воздуха на различных уровнях. Второе и третье слагаемые характеризуют вклад адвективного и конвективного переноса в балансе тепла в слое толщиной z. Адвективные притоки могут быть оценены по материалам шаропилотных наблюдений и данным синоптических карт, позволяющим по изменению геострофического ветра определить средний горизонтальный температурный градиент в пограничном слое [4]. Последнее слагаемое может быть рассчитано при известном значении w на AT_{850} и в предположении, что в пограничном слое w линейно меняется с высотой.

Таким образом, все слагаемые уравнения (3) либо определяются непосредственно по материалам измерений, либо могут быть рассчитаны.

Как известно, соотношение между различными видами притоков тепла в атмосфере существенно меняется с высотой. В пограничном слое при отсутствии конденсации водяного пара основной вклад в теплосодержание в летний период вносят лучистый и турбулентный теплообмен, в свободной атмосфере — лучистый и адвективный. Роль адвективных и конвективных притоков тепла в пограничном слое атмосферы практически не исследовалась. Некоторые результаты таких расчетов для всего пограничного слоя по материалам экспедиции КЭНЭКС-70 и КЭНЭКС-71 будут рассмотрены ниже.

За пограничный слой принимался слой атмосферы, в котором имеют место колебания температуры воздуха, обусловленные суточным ходом поглощенной подстилающей поверхностью солнечной радиации. Анализ данных наблюдений [5] показал, что высота распространения суточных колебаний температуры для дневных условий равна ~ 3000 м, для ночных ~ 500 м. На верхней границе пограничного слоя турбулентный поток тепла можно с достаточной точностью положить равным нулю. В этом случае приток тепла, обусловленный турбулентной теплопроводностью, определяется величиной турбулентного потока тепла, измеренного на уровне подстилающей поверхности. Лучистый приток тепла в указанном слое определяется по данным непосредственных наблюдений. Как показали выполненные оценки в [4], вклад конвективных притоков тепла может быть существенным при *w*, равном на верхней границе пограничного слоя примерно нескольким см/с. В период проведения экспериментальных работ величины *w*, обусловленные макромасштабными процессами, были невелики.

Чтобы исключить влияние мезомасштабных вертикальных токов, обусловленных наличием термиков, во всех расчетах использовались характеристики, осредненные за период 30—60 мин. Следует также иметь в виду, что при наличии мезомасштабных вертикальных токов величина $\frac{\partial \Theta}{\partial z}$ близка к нулю, и вклад конвективного слагаемого в этих случаях также будет незначительным.

Рис. 1. Дневной ход составляющих баланса тепла в слое 0—3 км. Уральск, 4/VII 1971 г.

Приток тепла, обусловленный адвекцией воздушных масс, в целом для пограничного слоя в период проведения наблюдений не превышал 0,1 кал/(см² мин) и в большинстве случаев составлял 0,03—0,05 кал/(см² мин), так как горизонтальные температурные градиенты в этот период не превышали 1°/100 км. Это позволяет в дневное время пренебречь адвективным притоком тепла по сравнению с лучистым и турбулентным.

Таким образом, над однородной подстилающей поверхностью при отсутствии адвекции изменение теплосодержания некоторого слоя будет определяться разностью лучистых и турбулентных потоков тепла на границах слоя.

О замыкании баланса тепла в слое 0—3 км можно судить на основании рис. 1, на котором приводится дневной ход изменения теплосодержания (ΔQ), притоков тепла за счет поглощения коротковолновой (ΔS) и длинноволновой (ΔF) радиации [6], турбулентного потока тепла у земли (P_0) по материалам структурных измерений ИФА [3], а также суммарного поступления в рассматриваемый слой ($\Delta S + \Delta F + \Delta P$).

Как видно из рисунка, величина ΔQ и суммарный приток тепла в слое 0—3 км довольно хорошо согласуются между собой. Хорошее согласование указанных величин отмечалось и в Репетеке в дневные часы 25/Х 1970 г. (рис. 2), где величина P_0 дается по материалам непосредственных измерений, выполненных прибором Б. А. Айзенштата.

Рис. 2. Дневной ход составляющих баланса тепла в слое 0—3 км. Репетек, 25/Х 1970 г.

Как показал анализ данных наблюдений [6], при отсутствии облачности величины ΔS и ΔE в околополуденные часы меняются незначительно. В связи с этим измеренные в 12 ч значения ΔS и $\Delta E \downarrow$ были использованы для расчета суммарного притока тепла в период 12—14 ч. Указанные допущения создают, естественно, дополнительные погрешности. Поэтому рис. 2 приводится с целью иллюстрации необходимости более тщательной отработки методики наблюдений в условиях горизонтально неоднородной подстилающей поверхности.

В утренние часы в Репетеке расхождения довольно большие. Как показал анализ данных, указанные расхождения в значительной степени вызваны ошибками в измеренных значениях ΔF в утренние и предполуденные часы, обусловленными местоположе-

нием приборов, измеряющих восходящее излучение у земли. Наблюдения за составляющими радиационного баланса на уровне *z* = 1,5 м производились на искусственно выравненной площадке [2]. Наземные наблюдения [7] стыковались затем с данными вертолетных [8] и самолетных измерений [9], выполнявшихся над естественной поверхностью, представляющей собой грядово-барханную пустыню. В утренние часы при малых высотах солнца за счет быстрого прогревания южных склонов температура подстилающей поверхности окружающей площадку местности оказалась значительно выше, чем температура поверхности выравненной площадки. Это прежде всего сказалось на величине E^{\uparrow} . Сопоставление $E \uparrow$, измеренного на высоте z = 1.5, с соответствующими величинами, измеренными с помощью вертолета на z=25 м, показало. что в утренние часы по измерениям в слое 1,5—25 м наблюдалось увеличение Е † с высотой вместо характерного для таких условий резкого убывания $E \uparrow в$ приземном слое. Это привело к занижению величины ΔE , а следовательно, и ΔF в рассматриваемом слое в утренние часы. С увеличением высоты солнца различия между температурой поверхности выравненной площадки и окружающей площадку местности уменьшаются. Эти особенности проявляются в указанные часы и в профиле температуры. Указанные различия могут также несколько сказаться и на величине ΔP и ΔS .

Анализ полученных материалов показал: а) в балансе тепла в пограничном слое в дневные часы значительный вклад вносит как коротковолновая, так и длинноволновая радиация, б) вклад лучистых притоков сравним с вкладом турбулентного притока тепла в целом для пограничного слоя, а иногда и превышает его, в) в дневные часы за счет лучистого и турбулентного теплообмена пограничный слой нагревается, в ночные часы (как показывают аналогичные расчеты) охлаждается, т. е. оба фактора дополняют друг друга. Отметим, что такое представление (в целом для пограничного слоя) у ряда авторов уже утвердилось в последнее время.

Представляет интерес рассмотреть влияние указанных факторов не только в целом для пограничного слоя, но и по частям. Результаты таких расчетов даются в табл. 1, где приводятся значения ΔQ , ΔS , ΔF и ΔP (рассчитанного как остаточный член) для различных слоев и для двух моментов времени, когда замыкается баланс тепла в слое 0—3000 м (см. рис. 1).

Из приведенных данных следует: а) соотношение ΔS и ΔF в различных слоях неодинаково. Так, в слое 0—500 м наибольший вклад в нагревание воздуха вносит длинноволновая радиация, в слое 500—2000 м — коротковолновая радиация, а в слое 1000— 3000 м нагревание за счет коротковолновой радиации компенсируется радиационным выхолаживанием атмосферы; б) соотношение между ΔS и ΔF несколько изменяется во времени, но неизменным остается существенное радиационное нагревание нижнего 500-метрового слоя в дневные часы (при сильно нагретой поверхности почвы), превосходящее по абсолютной величине в послепо-

Таблица 1

Величина тепловых притоков в кал/(см² мин) и изменений температуры воздуха в °C в слоях воздуха различной толщины

	Толщина слоя, м							
Приток тепла	0—500	500-1000	10003000	0—500	500—1000	10003000		
v	Уральс	к, 4 июля 19	971 г., 14 ч	Репетек,	25 октября	і 1970 г. <u>,</u> 14 ч		
${}^{\Delta Q}_{\Delta T_Q}$	$\substack{0,15\\0,68}$	0,15 0,70	0,53 0,68	0,15 0,65	0,11 0,48	0,38 0,48		
$\Delta S \\ \Delta T_S$	0,13 0,58	0,19 0,89	0,08 0,10	0,20 0,86	0,04 0,18	0,05- 0,06		
${}^{\Delta F}_{\Delta T_{F}}$	$0,20 \\ 0,85$	$-0,02 \\ -0,08$	$-0,04 \\ -0,05$	0,12 0,52	0,00 0,00	$-0,05 \\ -0,06$		
${\Delta P \over \Delta T_P}$	-0,18 -0,80	$-0,02 \\ -0,08$	0,49 0,63	-0,17 -0,73	$0,06 \\ 0,27$	0,38 0,48		

луденные часы действительные изменения температуры воздуха. Вычисленные как остаточный член на основании уравнения (3) значения $P_0 - P_z$ в полуденные и послеполуденные часы в слое 0—500 м отрицательны, т. е. в указанные часы за счет турбулентного теплообмена 500-метровый слой в целом охлаждается.

О величине расхождений между радиационным нагреванием (в ночные часы охлаждением) и наблюденными изменениями температуры можно судить на основании работы [10], в которой сопоставляются суточный ход фактических изменений температуры слоя 1—8 м и радиационные изменения температуры в том же слое, обусловленные поглощением длинноволновой радиации (см. табл. 2), а также вертикальный профиль фактического и радиационного изменения температуры. Из сопоставления следует, что радиационные изменения температуры ночью несколько более фактических, а днем превосходят их в несколько раз, причем максимальные расхождения отмечаются в околополуденные часы.

Имеющиеся данные убедительно показывают, что если в утренние часы приземный слой нагревается как за счет лучистого, так и за счет турбулентного теплообмена [11], то в дневные часы в нижних слоях существенное нагревание воздуха за счет лучистого теплообмена компенсируется охлаждением воздуха за счет турбулентной теплоотдачи (турбулентный поток тепла растет с высотой). В ночные часы (ближе к восходу солнца) за счет турбулентного теплообмена происходит нагревание приземного слоя воздуха. По оценкам, выполненным в [4 и 12], увеличение турбулентного потока тепла с высотой (по абсолютной величине) происходит в слое 100—200 м.

Отмеченное увеличение турбулентного потока тепла с высотой может объяснить, почему в приземном слое температура перестает меняться при значительной величине радиационного баланса и

турбулентного потока тепла и начинает уменьшаться при существенно положительных значениях указанных величин (рис. 3).

Приведенные данные характеризуют баланс тепла в пограничном слое атмосферы в дневные часы. Как указывалось в [1], основная часть наблюдений выполнялась днем. В ночные часы в экспедиции КЭНЭКС-71 выполнено только две серии. Результаты предварительного анализа ночных наблюдений были использованы в данной статье. Малая изменчивость потоков тепла с высотой в ночное время требует более тщательного анализа точности на-

Рис. 3. Временной ход изменения температуры воздуха в слое 0—100 м (1) и в слое 0—2 м (2), а также турбулентного потока тепла (3) и радиационного баланса (4) 4/VII 1971 г.

блюдений радиационных потоков и, кроме того, учета адвективных и конвективных потоков тепла. В связи с этим количественные оценки потоков тепла по данным ночных серий наблюдений будут даны дополнительно.

ЛИТЕРАТУРА

- 1. Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71. См. настоящий сборник.
- Кондратьев К. Я. и др. Программа Каракумской экспедиции. Методика наблюдений. — Труды ГГО, 1971, вып. 276, с. 5—16.
- 3. Леготина С. И., Орленко Л. Р. Тепловой баланс подстилающей поверхности в период экспедиции КЭНЭКС-71. — См. настоящий сборник.
- Орленко Л. Р. О термическом равновесии в пограничном слое атмосферы. В кн.: «Равновесный градиент температуры». Л., Гидрометеоиздат, 1967, с. 46—67.
- 5. Лазарева Н. А. и др. Профили метеорологических элементов по материзлам наблюдений. — См. настоящий сборник.
- 6. Елисеев А. А. и др. Профили радиационных потоков по материалам наблюдений. — См. настоящий сборник.

- 7. Труды ГГО, 1972, вып. 276. Приложение, с. 224-231, 239-245.
- 8. Малевский Малевич С. П., Шехтер Ф. Н. Потоки длинноволновой радиации в пограничном слое атмосферы. — Труды ГГО, 1972. вып. 276. c. 119—124.
- 9. Прокофьев М. А., Тер-Маркарянц Н. Е. Актинометрические измерения в свободной атмосфере в экспедиции КЭНЭКС-70. — Труды ГГО. 1972. вып. 276, с. 43-61.
- 10. Елисеев А. А. Результаты экспериментального определения радиационного притока тепла в приземном слое. — См. настоящий сборник.
- 11. Орленко Л. Р. Анализ экспериментального материала по суточному ходу
- температуры. Труды ГГО, 1955, вып. 53, с. 14—25. 12. Elliott W. P. The height variation of vertical heat flux near Q. G. Roy. Met. Soc. 90, № 385, 1964. ground.

К. Я. КОНДРАТЬЕВ, В. Ф. ЖВАЛЕВ, М. А. ПРОКОФЬЕВ, Н. Е. ТЕР-МАРКАРЯНЦ

ОПЫТ ОСУЩЕСТВЛЕНИЯ ПОЛНОГО РАДИАЦИОННОГО ЭКСПЕРИМЕНТА

Как известно, численное моделирование общей циркуляции атмосферы, составляющее одну из главных задач ПИГАП, наталкивается на серьезные трудности, обусловленные отсутствием адекватных схем параметризации радиационных процессов (см., например, [18]). Создание приближенных, но надежных схем возможно лишь при условии их серьезной экспериментальной проверки. Подобная проверка осуществима лишь при наличии комплекса экспериментальных данных, включающих результаты измерений различных радиационных характеристик (потоки излучения, альбедо подстилающей поверхности и т. п.) и всех параметров атмосферы, определяющих перенос излучения (характеристики стратификации и состава атмосферы, аэрозоля и др.). Комплексная программа экспериментальных исследований, имеющих целью решения такого рода задачи, получила название Полного радиационного эксперимента (ПРЭ).

Важное значение ПРЭ отмечалось неоднократно (см., например, [13]). Однако лишь выполнение обширной программы Комплексного энергетического эксперимента (КЭНЭКС) в экспедициях 1970 и 1971 гг. [12, 14, 15] позволило впервые осуществить Полный радиационный эксперимент при безоблачном небе. В программу радиационного эксперимента входили измерения составляющих радиационного баланса на уровне подстилающей поверхности и на различных уровнях в атмосфере, интегральных и спектральных потоков длинноволновой и коротковолновой радиации (с помощью самолетов, вертолета, актинометрических радиозондов), углового распределения интенсивностей восходящего и нисходящего коротковолнового и длинноволнового излучения.

Полный радиационный эксперимент сопровождался наземными и самолетными измерениями содержания аэрозоля в атмосфере (концентрация, распределение частиц по размерам, химический состав) и оценкой комплексного показателя преломления частиц аэрозоля, а также комплексом одновременных метеорологических измерений и аэрологических зондирований [16, 14].

Цель настоящей статьи состоит в том, чтобы на примере двух случаев осуществления ПРЭ в условиях безоблачной атмосферы (25/Х 1970 г. и 16/VII 1971 г.) в различных физико-географических условиях выполнить анализ закономерностей наблюдаемых вертикальных профилей радиационных потоков и лучистых притоков тепла и их связи с распределениями аэрозоля и метеорологических параметров атмосферы. При этом мы ограничимся здесь обсуждением данных актинометрических измерений, поскольку результаты спектральных измерений рассмотрены отдельно [9].

На рис. 1 представлены данные о вертикальных профилях составляющих радиационного баланса (радиационных потоков), концентрации аэрозоля, температуры и влажности за 25/Х 1970 г. (см. описание условий наблюдений в [3]).

а) Потоки коротковолновой радиации: суммарной Q (1), отраженной R (2) и длинноволновой радиации: нисходящей $E\downarrow$ (3) и восходящей $E\uparrow$ (4); радиационные изменения температуры $\frac{\partial T}{\partial t}$ за счет коротковолновой радиации (5), длинноволновой радиации (6) и суммарный эффект (7). I — измеренные величины, II — рассчитанные. G) Вертикальные профили концентрации аэрозоля n (8) температуры воздуха t (9) и относительной влажности (10).

Методика проведения измерений и обработки их результатов подробно рассматривается в работах [9, 17]. По имеющимся оценкам, относительная ошибка единичного измерения потока коротковолновой радиации в стационарных условиях составляет не более 3%, потока длинноволновой радиации 4%. Однако получаемые величины радиационных потоков несут в себе определенную случайную ошибку, связанную со спецификой самолетных измерений. В связи с этим точность приводимых величин потоков оценивается в 8—10%.

По вертикальным профилям полного, коротковолнового и длинноволнового радиационных балансов рассчитаны радиационные

1/23*

...

изменения температуры для различных слоев атмосферы. Полученные вертикальные профили радиационных изменений температуры представлены на рис. 1, 2.

Нижний 300-метровый слой характеризуется величиной радиационного изменения температуры, равной 1,36°С · ч⁻¹. В слое от 300 м до 1300 м величина притока излучения резко уменьшается по сравнению с нижележащим слоем и радиационное изменение температуры уменьшается до 0,11 °С · ч⁻¹.

В нижнем 300-метровом слое существенный вклад в общий лучистый приток тепла вносит нагревание за счет длинноволновой радиации, которое распространяется и на слой 300—1300 м. Подобное «длинноволновое» нагревание в приземном слое [10] и пограничном слое является достаточно характерным явлением при сильном перегреве подстилающей поверхности по отношению к воздуху. Выше 1300 м наблюдается, как обычно, выхолаживание за счет длинноволновой составляющей лучистого притока, характеризующееся величинами 0,03—0,04 °С · ч⁻¹.

В слое 1300-2850 м имеет место максимальная величина выхолаживания (-0,04°С·ч-1). Следует обратить внимание на тот факт. что в рассматриваемом случае в этом слое нахо-ДИТСЯ максимум относительной влажности воздуха, расположенный пол слоем локальной изотермии на высоте около 2000 м [16].

Для вертикального профиля коротковолновой составляющей лучистого притока тепла наблюдаются следующие особенности. Величина радиационного нагревания в нижнем слое атмосферы (0-300 м) составляет $0.46^{\circ}\text{C} \cdot \text{ч}^{-1}$ и резко уменьшается в слое 300—1300 м до 0.05°С ч⁻¹. Однако выше (1300---2850 м) радиационное нагревание значительно возрастает (до $0,13^{\circ}C \cdot v^{-1}$). Над нагревания этим слоем величины монотонно **уменьшаются**. достигая значений около 0,06°C·ч⁻¹. По-видимому, увеличение поглощения коротковолновой радиации в слое 1300-2850 м обусловлено повышенной концентрацией аэрозоля. 25/Х 1970 г. измерения содержания аэрозоля произволились лишь на границах, но не внутри этого слоя. При близких метеорологических ситуациях в другие дни увеличение концентрации аэрозоля наблюдалось как раз в рассматриваемом слое атмосферы.

Измерения радиационных потоков на различных уровнях во время экспедиции КЭНЭКС-70 производились путем длительных зондировок, продолжавшихся 3—3,5 ч. Поэтому данные о потоках радиации на нижнем и верхнем уровнях получались существенно разнесенными по времени, что вызывало необходимость приведения данных измерений коротковолновых потоков к одной высоте Солнца с использованием методики В. Г. Кастрова [8, 19] и не позволяло получить временной изменчивости радиационных притоков тепла в атмосфере.

Первый опыт осуществления ПРЭ в 1970 г. в Средней Азии позволил в 1971 г. при проведении повторного эксперимента в районе Уральска скорректировать методику выполнения измерений
радиационных потоков таким образом, чтобы располагать данными о временной изменчивости потоков [14].

Самолетные зондирования выполнялись посредством нескольких последовательных подъемов и спусков с «площадками» на одних и тех же высотах в разные моменты времени. Это дало возможность построить кривые временно́го хода измеряемых величин на разных высотах, и тем самым располагать мгновенными вертикальными профилями радиационных потоков в атмосфере в любой момент времени.

В качестве иллюстрации полученных результатов на рис. 2 изображены вертикальные профили составляющих радиационного.

Рис. 2. Полный радиационный эксперимент, 16 июля 1971 г. Анката, 12 ч 15 мин (местное время). Усл. обозначения см. рис. 1.

баланса, общего лучистого притока тепла (радиационных изменений температуры), температуры, влажности и аэрозоля за 16/VII 1971 г. в 12 ч 15 мин. В отличие от предыдущего случая за 25/Х 1970 г., в данном случае отмечались некоторые особенности стратификации атмосферы: концентрация аэрозоля имела локальный максимум вблизи 1 км, а относительная влажность увеличивалась с высотой в слое 0—3 км и была почти вдвое больше, чем в Репетеке; концентрация аэрозоля на всех высотах была в несколько раз меньше (а у земной поверхности почти на порядок величины).

Во всем зондируемом слое атмосферы 16/VII 71 г. наблюдалось общее радиационное нагревание, характеризующееся уменьшением радиационных изменений температуры в диапазоне высот от приземного слоя до 6 км. При этом радиационное нагревание уменьшалось от слоя к слою достаточно плавно в отличие от случая пустыни (Репетек), где нагревание резко уменьшалось от слоя 0—300 м к слою 300—1300 м. По-видимому, это различие в вертикальном профиле радиационного нагревания в слое 0—1000 м можно отнести за счет существенных различий в стратификации аэрозоля в пограничном слое атмосферы, химическом составе и распределении частиц аэрозоля по размерам [9], а также за счет погрешностей измерений.

До высоты 2 км обе компоненты лучистого притока тепла имели одинаковый знак (нагревание). Выше 2 км длинноволновая радиация обусловила выхолаживание атмосферы, а величина общего нагревания, осуществляемого за счет коротковолновой радиации, была невелика (радиационные изменения температуры составляли около 0,05°C · ч⁻¹).

В обоих рассматриваемых случаях обращает на себя внимание наличие корреляции местоположений слоя максимума относительной влажности и лерехода к радиационному выхолаживанию за счет длинноволновой радиации (слой 2—6 км).

Вертикальный профиль радиационных изменений температуры за счет коротковолновой радиации свидетельствует об увеличении значений $\left(\frac{\partial T}{\partial t}\right)_{\kappa}^{paa}$ в слое 0,5—1,0 км по сравнению с ниже- и вышерасположенными слоями. Такой рост радиационного нагревания за счет коротковолновой радиации в большинстве случаев обусловлен наличием слоя повышенной концентрации аэрозоля.

Натурный эксперимент (КЭНЭКС) проводился в основном в условиях безоблачной погоды и над районами с относительно однородной подстилающей поверхностью, т. е. в таких условиях, которые могут быть наиболее просто реализованы в численном эксперименте по вычислению составляющих радиационного баланса. Результаты подобных вычислений могут быть сравнены с опытом благодаря комплексности эксперимента, который сопровождается, как уже отмечалось, большим объемом сопутствующих метеорологических, актинометрических и других измерений.

Ниже излагаются некоторые результаты сравнения расчетных и измеренных вертикальных профилей радиационных потоков.

При проведении расчетов интегральных восходящих и нисходящих потоков длинноволновой радиации нами использовалась схема, описанная в работе Р. Л. Кагана [7]. Функции пропускания взяты по К. Я. Кондратьеву и Х. Ю. Нийлиск [11]. Детали методики расчетов описаны в работах [6, 7, 2]. Вычисление радиационных потоков производилось для тех же уровней, на которых выполнялись измерения. Поскольку качественный анализ данных измерений не показал существенного влияния аэрозоля на перенос длинноволновой радиации, этот фактор не учитывался.

Рассчитанные профили длинноволновых потоков представлены на рис. 1, 2 для сопоставления с аналогичными измеренными величинами.

Для сравнения измеренных величин потоков коротковолновой радиации выполнены расчеты суммарной и отраженной радиации на различных уровнях в атмосфере. В расчетной схеме потоков коротковолновой радиации использовались формулы, предложенные в [4, 20, 21], и методические разработки Л. Р. Дмитриевой-Арраго [5].

Как видно из рис. 1 и 2, расчетные и измеренные вертикальные профили восходящего потока длинноволновой радиации согласуются достаточно хорошо. Потоки нисходящей радиации воспроизводятся расчетной схемой значительно хуже (с систематическим преуменьшением) особенно в интервале высот 2-6 км, где расхождения с экспериментом достигают 50%. Численная схема переноса длинноволновой радиации хорошо работает лишь при вычислении противоизлучения атмосферы на уровень подстилающей поверхности. Достаточно хорошо согласуются с измеренными потоки коротковолновой радиации, рассчитанные по данным для 25/X 1970 г. (Репетек). Максимальная ошибка расчета составляет около 8%. Значительно большие расхождения вычисленных И коротковолновой измеренных потоков радиации отмечаются 16/VII 1971 г. (Уральск). Максимальные различия составляют от 10% для суммарной радиации до 50% для отраженной ралиании.

В схеме расчета потоков коротковолновой радиации принято во внимание ослабление (и рассеяние), но не учитывается поглощение аэрозолем. С этим, по-видимому, связано прежде всего отклонение вычисленных радиационных потоков от измеренных. Известную роль могли играть также расхождения между принятыми в расчетах параметрами и их фактически наблюдавшимися величинами (индикатриса рассеяния, зависимость альбедо подстилающей поверхности от длины волны и некоторые другие). Оценки вклада аэрозоля в коротковолновый приток тепла, обусловленные аэрозольным поглощением, будут приведены ниже.

В программу полного радиационного эксперимента, помимо актинометрических измерений, входили спектральные измерения потоков коротковолновой радиации, что дало возможность: 1) оценить величину поглощения аэрозолем в слое атмосферы 300— 8000 м по данным спектральных измерений; 2) провести взаимный контроль результатов спектральных и интегральных измерений потоков коротковолновой радиации. Методика спектральных измерений и соответствующие результаты для области спектра 0,3— 3 мкм описаны в работах [1, 9].

По данным спектральных измерений потоков коротковолновой радиации за 25/Х 1970 г. (Репетек), поглощение аэрозолем в слое 300—8000 м составляет 0,095 кал · см⁻² · мин⁻¹. В то же время расхождение между рассчитанным лучистым притоком тепла к слою 300—8000 м н измеренным при помощи актинометрических приборов равно 0,03 кал · см⁻² · мин⁻¹. Это расхождение может быть объяснено в основном неучетом поглощения аэрозолем в численной схеме (табл. 1). Таким образом, «остаточное» поглощение характеризует вклад аэрозоля в лучистый приток тепла за счет коротковолновой радиации. Для всего слоя атмосферы 0—8 км «остаточное» поглощение составляет 0,08 кал · см⁻² · мин⁻¹.

Сопоставление величин радиационных притоков тепла, полу-

		ка	л.см ⁻² .ми	ин-1		
Данные	Нм	Вк	ΔB_{κ}	$\begin{vmatrix} \delta B = \\ = \Delta B_1 - \\ - \Delta B_2 \end{vmatrix}$		
	25/Х 1970 г.,	12 ч 00 м	ин			
Измеренные	300	0,75		1		
	8000	0,94	0,19	0.00		
Ра ссчит анные	300	0,72		0,03		
	8000	0.88	0,16			
Измеренные	0	0,69	0.95]		
	8000	0,94	0,20	0.00		
Рассчитанные	0	0,71	0.17	0,08		
	8000	0,88	0,17			
	16/VII 1971 г.,	12 ч 15 м	мин			
Измеренные	500	0,96	0.00	1		
	5800	1,26	0,30	0.00		
Рассчитанные	500	1,03	0.10	0,20		
77	5800	1,13	0,10			
Измеренные	0	0,90	0.36			
	5800	1,26		0.25		
Рассчитанные	0	1,02	0.11	0,20		
	5800	1,13	0,11	1		

Сопоставление рассчитанных и измеренных величин радиационных притоков в атмосфере

ченных по данным измерений, и расчетов для района Уральска (табл. 1), приводит к значительно бо́льшим расхождениям, превышающим соответствующие величины для района пустыни (0,20 кал.см⁻².мин⁻¹). Как видно, радиационный эффект аэроволя существенно больше, чем в районе пустыни, несмотря на то что счетная концентрация аэрозоля в этом случае почти вдвое меньше.

Такой парадоксальный, на первый взгляд, результат можно, однако, объяснить, если учесть различия в микроструктуре (распределении частиц аэрозоля по размерам) в рассматриваемых двух случаях. В условиях пустыни частиц аэрозоля с $r = 0.35 \div$ $\div 0.50$ мкм значительно меньше, чем в районе Уральска. Крупные частицы являются, по-видимому, более эффективными в поглощении. Кроме того, следует учесть существенную разницу в вы-

сотах Солнца в рассмотренных примерах ($h_{\odot} = 38.9^{\circ}$ для Репетека; $h_{\odot} = 58,9^{\circ}$ для Уральска.

Для адекватного объяснения полученных результатов необходимы детальные расчеты потоков коротковолновой радиации с учетом микроструктуры и комплексного показателя преломления аэрозольных частиц.

Сформулируем в заключение основные выводы, полученные в результате проведения Полного радиационного эксперимента.

1. В безоблачной атмосфере в околополуденные часы во всем слое атмосферы до высот 6-8 км наблюдается общее (суммарное) радиационное нагревание. Максимальные величины нагревания (0,8—1,4°С/ч) имеют место в нижних 300—500-метровых слоях атмосферы. За счет длинноволновой радиации происходит нагревание атмосферы вплоть до высот 1,5-2 км, выще во всех случаях наблюдается радиационное выхолаживание.

2. Вертикальный профиль коротковолновой составляющей лучистого притока тепла отчетливо коррелирует с вертикальными профилями концентрации аэрозоля и относительной влажности (наблюдается увеличение радиационного нагревания в слоях атмосферы, где происходит увеличение содержания аэрозоля).

По данным рассматриваемых измерений величины притока тепла за счет поглощения коротковолновой радиации аэрозолем варьируют в пределах 0,05-0,20 кал · см-2 · мин-1.

3. Обнаружена качественная связь радиационных притоков тепла за счет коротковолновой радиации и микроструктуры аэрозоля (распределения частиц аэрозоля по размерам).

4. Пренебрежение поглощением аэрозолем в численной схеме расчета потоков коротковолновой радиации может приводить к ошибкам в определении лучистых притоков тепла, достигающим 50-60%.

Как уже отмечалось ранее [4], существенный вклад аэрозоля в поглощение вызывает необходимость разработки надежной методики параметризации аэрозольного поглощения в «радиационных блоках» численных моделей общей циркуляции атмосферы.

5. Осуществление Полного радиационного эксперимента позволило проводить взаимный контроль измерений при помощи результатов, полученных несколькими независимыми методами.

ЛИТЕРАТУРА

- 1. Васильев О. Б., Гришечкин В. С., Михайлов В. В. Экспериментальные исследования спектрального лучистого притока тепла в свободной атмосфере. — Труды ГГО, 1972, вып. 276, с. 84—88. 2. Виноградова И. П. и др. Радиационные потоки и притоки тепла в сво-
- бодной атмосфере. См. настоящий сборник. 3. Гусева Л. Н. и др. Климатические характеристики и метеорологические
- условия в период экспедиции. Труды ГГО, 1972, вып. 276, с. 17-24.
- 4. Дмитриева-Арраго Л. Р. и др. О схеме расчета потоков коротковолновой радиации в атмосфере. — Метеорология и гидрология, 1970, № 8, c. 16-22.

- 5. Дмитриева-Арраго Л. Р., Самойлова Л. В. К расчету коротковолновой радиации в схеме общей циркуляции атмосферы. — Изв. АН СССР. Физика атмосферы и океана. 1970, т. 6, № 1, с. 29—36.
- 6. Ж в а л е в В. Ф. О методах расчетов потоков длинноволновой радиации в атмосфере с помощью электронных вычислительных машин. — Труды ГГО, 1967, вып. 203, с. 49—57.
- 7. Каган Р. Л. О расчете потоков теплового излучения в безоблачной атмосфере. — Труды ГГО, 1965, вып. 174, с. 158—174.
- 8. Кастров В. Г. Измерения поглощения солнечной радиации в свободной атмосфере до 3—5 км. Труды ЦАО, 1952, вып. 8, с. 3—27.
- 9. Кондратьев К. Я. и др. Некоторые результаты исследований по пропрамме Комплексного энергетического эксперимента (1970—1972 гг.). Метеорология и гидрология, 1972. № 11, стр. 3—13.
- 10. Кондратьев А. Я. Лучистый теплообмен в атмосфере. Л., Гидрометеоиздат, 1956, с. 420.
- 11. Kondratiev K. Ya., Niilisk H. I. The new radiation chart. Geofisica pura e applicata. 1961. vol. 49, p.p. 197-244.
- 12. Кондратьев К. Я. и др. Предварительные результаты первой экспедиции по программе Комплексного энергетического эксперимента (КЭНЭКС-70). Бюллетень ВМО, 1971, т. 20, № 3, с. 192—201.
- 13. Kondratiev K. Ya. Presidentical Address Global Atmospheric Research Programme (GARP) and radiation factors of weather and Climate. Radiation including satellite techniques Proceedings of the WMO/IUGG Symposium held im Bergen, August, 1968. WMO, Geneva, 1970, No 248, Tp. 136, pp. XXIII-XXXII.
- 14. Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71. См. настоящий сборник.
- Комплексный энергетический эксперимент (КЭНЭКС-70). Труды ГГО, 1972, вып. 276, с. 279.
- 16. Лазарева Н. А. и др. Профили метеорологических элементов по материалам наблюдений. — См. настоящий сборник.
- Прокофьев М. А., Тер-Маркарянц Н. Е. Актинометрические измерения в свободной атмосфере в экспедиции КЭНЭКС-70. Труды ГГО, 1972, вып. 276, с. 43—61.
- Report of the Sixth Session of the loint organizing Committee. Toronto, 20-25 October, 1971, WMO, Publication, Geneva, 1971.
- Фарапонова Г. П., Кастров В. Г. Актинометрические наблюдения в нижней тропосфере над Кызылкумами (апрель—май 1951). — Труды ЦАО, 1954, вып. 13, с. 27—37.
 Шифрин К. С., Авасте О. А. Потоки коротковолновой радиации в без-
- 20. Шифрин К. С., Авасте О. А. Потоки коротковолновой радиации в безоблачной атмосфере. — В кн.: «Исследования по физике атмосферы», Тарту, 1960, № 2, с. 23—37.
- Шифрин К. С., Пятовская Н. П. Поле коротковолновой радиации над типичными подстилающими поверхностями. — Труды ГГО, 1964, вып. 166, с. 3—23.

И. П. ВИНОГРАДОВА, В. Ф. ЖВАЛЕВ, М. А. ПРОКОФЬЕВ, Н. Е. ТЕР-МАРКАРЯНЦ, Н. И. ФЕДОРОВА

РАДИАЦИОННЫЕ ПОТОКИ И ПРИТОКИ ТЕПЛА В СВОБОДНОЙ АТМОСФЕРЕ

Одной из основных задач Комплексного энергетического эксперимента является получение информации о радиационных потоках и притоках тепла в различных спектральных участках в реальных атмосферных условиях с целью выявления основных факторов, определяющих тепловой режим и динамику атмосферы [7].

Интегральные актинометрические наблюдения, проводимые с борта самолета в свободной атмосфере, позволяют получить вертикальные профили потоков и притоков радиации в диапазоне 0,3—3,0 и 3—30 мкм, их временной ход и пространственную изменчивость. Наблюдения такого рода ведутся давно. Однако в настоящее время лишь в экспедициях по программе КЭНЭКС осуществлен комплексный подход к задаче, при котором измерения интегральных радиационных потоков представляют только часть общей широкой программы, решающей вопросы энергетики атмосферы.

Основополагающими работами в области самолетных актинометрических наблюдений считаются работы Г. В. Кастрова [4, 5]. Им совместно с Г. П. Фарапоновой предложена эмпирическая формула, позволяющая для случая наблюдений в свободной безоблачной атмосфере решить проблему приведения коротковолновых потоков к единому моменту времени [10]. Однако границы применимости этой формулы весьма узки: она может использоваться только для описания поведения со временем коротковолновых потоков в безоблачной атмосфере, при высоком Солнце, вблизи местного полдня.

Возможности использования этой методики обсуждаются в статьях [2, 8]. В работе [2] описывается изменение методики наблюдений, позволяющее отказаться от применения формулы Кастрова и получить временной ход рассматриваемых характеристик, оценить конкретные особенности изменения радиационного поля во времени и пространстве.

В работе [8] результаты интегральных актинометрических наблюдений рассматриваются, прежде всего, как некий критерий, с помощью которого можно оценить надежность полученных спектральных данных, которые сами по себе дают более детальную, информативную картину радиационных процессов. Таким образом, интегральные актинометрические наблюдения позволяют получить важные результаты по энергетике атмосферы прежде всего при их совместном анализе с данными одновременных измерений других характеристик атмосферы: концентрации и распределения аэрозоля по высоте и размерам, спектральных характеристик и др.

В настоящей статье обсуждаются результаты актинометрических наблюдений, закономерности поведения интегральных радиационных потоков в атмосфере при использовании данных сопутствующих измерений (прежде всего влажности и концентрации аэрозоля), сравниваются между собой результаты двух уже проведенных по программе КЭНЭКС экспедиций.

Как указано в работе [6], основной задачей экспедиции КЭНЭКС-70 являлась отработка методических вопросов, связанных с проведением комплексных наблюдений по обширной программе. Вместе с тем был получен большой объем достаточно качественных данных, в частности, по интегральным потокам радиации в свободной атмосфере, что позволило сделать целый ряд выводов [8, 9].

В экспедиции КЭНЭКС-71 были получены данные, позволившие сделать определенные методические выводы в отношении самолетных актинометрических наблюдений, сформулированные в [2]. Эти особенности связаны в основном с инерционными свойствами радиационных термоэлементов, употребляемых для измерений интегральных потоков радиации.

Результаты актинометрических наблюдений в свободной атмосфере в экспедиции КЭНЭКС-70 приведены в работе [9]. Кратко сформулируем основные выводы, полученные непосредственно из анализа материалов наблюдений интегральных потоков радиации в КЭНЭКС-70. Прежде всего, следует отметить, что по сравнению с КЭНЭКС-71 наблюдения проводились в значительно более устойчивых условиях, практически при полном отсутствии облачности. При сильной замутненности в безоблачных условиях отмечались высокие скорости радиационного выхолаживания за счет длинноволновой радиации в нижних слоях атмосферы, причем в ряде случаев этот максимум был связан непосредственно с приземным слоем, а иногда оказывался «приподнятым» до высоты 1000—1500 м, что указывает на его связь с существованием слоистой структуры атмосферного аэрозоля. Отмечены случаи появления вторичных максимумов радиационного выхолаживания в средней тропосфере, наличие которых объясняется предположением о двухслойной структуре аэрозоля, что согласуется с предлагаемой в [11] моделью взаимодействия радиации и аэрозольных слоев в атмосфере.

По данным наблюдений коротковолновой радиации отмечено прежде всего интенсивное нагревание нижнего слоя, причем скорость этого нагревания резко падает с увеличением высоты. В средней, а особенно верхней тропосфере радиационное нагревание за счет коротковолновой радиации выражено слабо. В ряде случаев, соответствующих появлению вторичных максимумов выхолаживания длинноволновым излучением в средней тропосфере, отмечено появление вторичных максимумов нагревания коротковолновой радиации на тех же высотах. Этот эффект приписывается появлению вторичных слоев аэрозоля.

Общая оценка теплового эффекта радиационного обмена в свободной атмосфере в условиях КЭНЭКС-70 сводится к тому, что в дневное время, за исключением приземного слоя, при слабой замутненности атмосферы происходило ее медленное нагревание со средней скоростью около 0,07°С/ч, а при сильной замутненности знак эффекта менялся и происходило еще более медленное выхолаживание со скоростью до 0,02°С/ч.

В ряде случаев отмечено нагревание приземного слоя за счет длинноволнового обмена; при этом предполагается, что этот эффект также может быть связан в некоторых условиях со слоистой вертикальной структурой аэрозоля.

В настоящее время еще приходится часто ограничиваться качественными рассуждениями в вопросе связи профилей радиационных потоков и притоков тепла с профилем аэрозоля, а тем более с микроструктурой аэрозольных частиц. Это вызвано, с одной стороны, недостаточным количеством данных для получения статистически надежной картины связей этих характеристик, а с другой — отсутствием достаточно гибкой и полной математической модели, которая бы позволила строго количественно описать структуру радиационного поля при известных основных парамеграх.

Анализ результатов наблюдений в экспедиции КЭНЭКС-71 показывает прежде всего, что по сравнению с условиями КЭНЭКС-70 получены значительно большие величины скоростей радиационного изменения температуры воздуха, значительно большие величины поглощенной коротковолновой и длинноволновой радиации. Так, в околополуденные часы 4 июля 1971 г. поглощение коротковолновой радиации в слое 500-4000 м достигало, по данным самолетных измерений, 0,341 кал · см-2 · мин-1. Вместе с тем наибольшая величина поглощенной радиации в соответствующем слое для Репетека составила 0,131 кал · см-2 · мин-1 (измерения 25 октября 1970 г.). Отчасти это различие связано с тем, что измерения производились при разных высотах Солнца. Так, во время измерений в Репетеке высота Солнца не превосходила 38,9°, в то время как для Уральска соответствующая величина составила 61,7°. При этом, однако, отношение синусов соответствующих углов составляет 1,24, а отношение поглощенной радиации для указанных случаев составляет 2,6. Таким образом, эта разница в поглощении связана не только с различием в значениях потоков за счет разных высот Солнца, но и с существенными различиями в атмосферных условиях.

Совершенно иной характер носила в условиях КЭНЭКС-71 трансформация потоков длинноволновой радиации в свободной

атмосфере [2] по сравнению с условиями над пустыней. Прежде всего следует отметить значительно бо́льшие величины восходящих потоков в нижних слоях атмосферы. Это связано, по всей вероятности, с мощным прогреванием подстилающей поверхности за счет поглощения коротковолновой радиации. В условиях степи существенно больше величины поглощенной радиации, причем это увеличение прослеживается до верхней границы зондируемого слоя. Влияние подстилающей поверхности, как отмечается в большом числе случаев, достаточно резко выражено и распространяется в дневные часы до высот порядка 1000, а иногда и 2000 м.

Вышележащие слои атмосферы охлаждаются за счет длинноволнового излучения со скоростями порядка 0,1° С/ч. В то же время скорость нагревания нижних слоев длинноволновым излучением составляет 0,6—0,8° С/ч. Таким образом, в зависимости от конкретных условий, которые могут меняться ото дня ко дню, весь зондируемый слой в целом может либо медленно охлаждаться длинноволновым излучением (нижние слои тем не менее будут испытывать интенсивное нагревание), либо будет происходить нагревание всего слоя за счет длинноволнового обмена, причем скорость такого нагрева может достигать 0,8—1,0° С/ч.

С учетом эффекта коротковолнового обмена следует сделать общий вывод: по результатам экспедиции КЭНЭКС-71 оказывается, что летом в околополуденные часы в условиях степи наблюдается суммарное нагревание слоя атмосферы до высот порядка 4000—6000 м за счет радиационного обмена со скоростями до 0,6--0,9° С · ч⁻¹.

В ряде случаев данные значительно искажала кучевая облачность, при развитии которой во время зондирования иногда приходилось отказываться от продолжения наблюдений или после предварительной обработки полученного материала — от рассмотрения его в дальнейшем анализе.

Наиболее качественными с этой точки зрения (в отношении актинометрических наблюдений) представляются зондирования атмосферы 4—5, 12, 13, 16—17 и 18 июля. В качестве примера на рис. 1 приводится полученный по материалам полета 16—17 июля временной ход составляющих радиационного баланса для различных слоев атмосферы. Из рисунка видно, что в целом нагревание достигает максимума в околополуденные часы. Наблюдается мощное нагревание за счет длинноволнового обмена, причем основной вклад в этот эффект вносит нижний 500-метровый слой, что, очевидно, связано с прогревом подстилающей поверхности. Выше 2000 м происходит охлаждение атмосферы вследствие длинноволнового обмена, однако в целом атмосфера днем в околополуденные часы нагревается, а в ночное время охлаждается тоже в результате длинноволнового обмена. Этот эффект, по наблюдениям, слабеет в предутренние часы.

Если рассматривать притоки коротковолновой радиации по слоям, то видно, что в целом для слоев 500—1000 и 1000—2000 м они близки. Интересно, что для слоя 1000—2000 м нагревание

длинноволновым обменом наблюдается только в непосредственной близости от полудня, а затем сменяется выхолаживанием.

Одновременно с измерениями радиационных потоков производились измерения метеорологических параметров атмосферы (температуры, влажности воздуха, температуры подстилающей поверхности), что дало возможность провести численный эксперимент по расчету потоков длинноволновой и коротковолновой радиации на различных уровнях в атмосфере. Проведение численного эксперимента в свою очередь позволило проверить (в сопоставлении с результатами измерений) на значительном числе случаев реальную точность схем расчета радиационных потоков в атмосфере.

Рис. 1. Временной ход коротковолнового (0,3—3 мкм) (а) и длинноволнового (3—30 мкм) (б) радиационных притоков тепла для различных слоев атмосферы. КЭНЭКС-71, 16 июля 1971 г.

1) 0-500 м, 2) 500-1000 м, 3) 1000-2000 м, 4) 2000-5800 м,

Потоки длинноволновой радиации рассчитывались на ЭВМ с использованием методики Р. Л. Кагана [3], в которой применена функция пропускания, построенная К. Я. Кондратьевым и Х. Ю. Нийлиск. Излучение подстилающей поверхности рассчитывалось с учетом ее излучательной способности δ . Граничное условие на верхней границе атмосферы $F_{z=\infty} = 0$ реализовалось для высот 20—25 км, хотя сопоставлялись в дальнейшем лишь результаты до 6—8 км (верхний уровень самолетного зондирования). Потоки коротковолновой радиации рассчитывались с использованием методики, предложенной в [1].

В расчеты потоков коротковолновой и длинноволновой радиации по материалам экспедиции КЭНЭКС-70 включены и такие случаи, когда самолетное зондирование выполнялось над районом пустыни (западнее Дарган-Аты) в 200 км от точки наземных измерений (Репетек) [6].

Специфика обработки результатов измерений в экспедиции КЭНЭКС-71 [2] позволила получить мгновенный вертикальный разрез радиационных потоков в атмосфере и в связи с этим существенно сократить объем расчетов по сравнению с КЭНЭКС-70.

Рассчитанные потоки длинноволновой радиации сопоставлялись с аналогичными величинами, измеренными с самолета-лаборатории на соответствующих уровнях в атмосфере в те же моменты времени.

Рис. 2. Вертикальные профили относительных ошибок расчета длинноволновых потоков (3—30 мкм) восходящей радиации (1) и нисходящей радиации (2). а) КЭНЭКС-70, б) КЭНЭКС-71. Число случаев 12.

Для того чтобы оценить точность воспроизведения значений радиационных потоков на различных уровнях в атмосфере с помощью использованных схем расчета, все величины расхождений расчетных и измеренных потоков осреднялись по всем имеющимся случаям. На рис. 2 представлены вертикальные изменения относительных ошибок расчета потоков длинноволновой радиации.

Для экспедиции КЭНЭКС-70 средние величины относительных ошибок (для восходящего потока) мало меняются с высотой и составляют величину около 10%. Максимальные отклонения величин ошибок от случая к случаю также невелики, в пределах $\pm 5-6\%$. Значительно бо́льшие относительные ошибки отмечаются для нисходящей радиации. На высотах 6—8 км ошибки численного эксперимента составляют 50% и более и значительно отличаются от случая к случаю. С достаточной степенью точности воспроизводится поток нисходящего излучения лишь на уровень подстилающей поверхности, где средняя ошибка расчета составляет 5—6%. Следует при этом указать, что из рассмотрения исключены были случаи резко отличающиеся от основного семейства кривых по вертикальным профилям потоков, т. е. случаи, когда во время зондирования отмечалось образование облачности.

Из анализа кривых 2 на рис. 2 а и б следует, что средние величины ошибок для F_{\uparrow} , в КЭНЭКС-71 несколько меньше, чем в КЭНЭКС-70, но более сушественно меняются с высотой. Это, по-видимому, связано с заметной неоднородностью условий (радиационные характеристики подстилающей поверхности и атмосферные условия) по сравнению с КЭНЭКС-70. Понятным становится при этом и расположение максимума профиля ошибок: он приходится на уровень, соответствующий высоте формирования кучевых облаков (максимальные ошибки в 6—7% наблюдаются

Рис. 3. Вертикальные профили относительных ошибок расчета коротковолновых потоков (0,3—3 мкм) суммарной радиации (1) и отраженной радиации (2). а) КЭНЭКС-70, б) КЭНЭКС-71. Число случаев 15.

на высоте 2,5—3 км). На этом уровне отмечаются и бо́льшие отклонения ошибок от средней, что может быть связано также и с особенностями программы самолетных наблюдений. В большинстве случаев она строилась так, что на «промежуточной» высоте (около 2 км) проводилось на одну площадку меньше, чем на крайних высотах зондировки. Таким образом, интерполяция между результатами наблюдений на соседних по времени площадках, соответствующих данной высоте, оказывалась здесь грубее, чем на других.

Для уровня подстилающей поверхности наблюдается отрицательная величина среднего относительного отклонения расчетных и экспериментальных значений потока восходящего длинноволнового излучения. Величина отрицательной ошибки невелика — около 5%. Смену знака ошибки можно объяснить пестротой подстилающей поверхности (в радиационном смысле) при осреднении потоков с самолета по горизонтали и некоторой нерепрезентативностью при этом наземной актинометрической площалки.

Величины потоков суммарной коротковолновой (рис. 3) радиации с помощью численной схемы воспроизводятся достаточно хорошо, относительные ошибки расчета не превышают 8%, в среднем составляя 4—5%. Наибольшие отклонения ошибок от средних для КЭНЭКС-71 отмечаются для высот около 2 км, для КЭНЭКС-70 для высот 1,3-2,8 км. В то же время в том и другом случаях для этих высот наблюдаются максимальные ошибки численной схемы при расчете отраженной радиации (45-50%). По наблюдениям за вертикальными профилями концентрации аэрозоля на высотах от 1,3 до 2,5 км зарегистрированы слои повышенной его концентрации. Неучет же поглощения аэрозолем в численной схеме, повидимому, и дает такой профиль ошибок расчета. При этом следует еще учитывать и ошибки, возникающие за счет некоторых неоднородностей подстилающей поверхности по альбедо.

Для того чтобы получить более конкретные выводы о влиянии аэрозоля на перенос коротковолновой радиации в атмосфере, необходима значительно большая статистика материалов экспедиционных наблюдений.

ЛИТЕРАТУРА

- 1. Дмитриева-Арраго Л. Р., Самойлова Л. В. К расчету коротковолновой радиации в схеме общей циркуляции атмосферы. — Изв. АН СССР. Физика атмосферы и океана. 1970, т. 6, № 1, с. 29-36.
- 2. Елисеев А. А. и др. Профили радиационных потоков по материалам наблюдений. — См. настоящий сборник.
- 3. Каган Р. Л. О расчете потоков теплового излучения в безоблачной атмосфере. — Труды ГГО, 1965, вып. 174, с. 158—174.
- Кастров В. Г. Измерения поглощения солнечной радиации в свободной атмосфере до 3-5 км. Труды ЦАО, 1952, вып. 8, с. 3—27.
 Кастров В. Г. Поглощение солнечной радиации в нижней тропосфере. —
- Труды ЦАО, 1959, вып. 32, с. 73-83.
- 6. Кондратьев К. Я., и др. Предварительные результаты первой экспедиции по программе Комплексного энергетического эксперимента (КЭНЭКС-70).-Метеорология и гидрология, 1971, № 6, с. 48-56.
- 7. Кондратьев К. Я. и др. Комплексный энергетический эксперимент (КЭНЭКС). Метеорология и гидрология, 1970, № 11, с. 51—57.
- 8. К. Я. Кондратьев и др. Некоторые результаты исследований по программе комплексного энергетического эксперимента (1970-1972 гг.). - Метеорология и гидрология, 1972, № 11, стр. 3—13.
- 9. Прокофьев М. А., Тер-Маркарянц Н. Е. Результаты актинометрических измерений в свободной атмосфере в экспедиции КЭНЭКС-70. ---
- Труды ГГО, 1972, вып. 276, с. 43—61. 10. Фарапонова Т. П., Кастров В. Г. Актинометрические измерения 10. Фарапонова Т. П., Кастров В. Г. Актинометрические измерения в нижней тропосфере над Кызыл-Кумами. — Труды ЦАО, 1954, № 13, c. 27---37.
- 11. Фейгельсон Е. М. Лучистый теплообмен и облака. Л., Гидрометеоиздат, 1970. c. 230.

В. И. ДМОХОВСКИЙ, В. А. ИВАНОВ

МЕТОДИКА САМОЛЕТНЫХ АЭРОЗОЛЬНЫХ ИЗМЕРЕНИИ

Самолетные измерения тропосферного аэрозоля были начаты на кафедре физики атмосферы ЛГУ в 1968 г. и проводились с самолета Ли-2 в экспедициях 1968—1970 гг. по программе, описанной в [1]. В 1970 г. самолет-лаборатория Ил-18 был оборудован специальным комплексом аппаратуры А-1, предназначенной для взятия аэрозольных проб до высот порядка 9000 м. При создании комплекса А-1 учитывались особенности самолета Ил-18, а также наличие на борту обширного комплекса метеорологических, спектральных и актинометрических приборов, что дало возможность получить наиболее обширную информацию об атмосферных аэрозолях и выявить связь аэрозолей с другими параметрами атмосферы.

До этого в Советском Союзе самолетные исследования аэрозоля проводились А. З. Махарашвили и А. Г. Балабуевым (серия измерений в районе г. Тбилиси) [2, 3], В. Г. Хоргуани и Г. В. Степановым [4, 5]. В США аналогичные измерения проводились И. Блифордом (штат Небраска и Тихоокеанское побережье Северной Америки) [6, 7] и В. Торгесоном [8]. Эти исследователи в основном использовали однокаскадные импакторы, так как их интересовали данные об ограниченной области спектра аэрозолей.

К настоящему времени аэрозольные измерения с самолета ИЛ-18 проводились в экспедициях КЭНЭКС-70 и 71, по программе «Метеор» и программе исследования облаков.

Полеты по разным программам позволили получить интересные результаты и большой материал относительно методики взятия проб и обработки результатов.

В данной статье приводятся характеристики аппаратуры, описаны методика измерений и методика обработки данных.

Самолетный комплекс аэрозольной аппаратуры А-1 предназначен для исследования оптически активных частии, т. е. аэрозолей, имеющих размеры 0,25 мкм $\leq d \leq 10$ мкм (частицы Ми), методом взятия проб. Из-за малой концентрации исследуемых частиц и из методических соображений брать пробы частиц в этом диапазоне размеров наиболее целесообразно импакторной ловушкой. В комплексе А-1 использован однокаскадный импактор дискрет-

ного действия, специально разработанный для самолетных наблюдений. Пробы осаждаются на подложку, которая для предотвращения сдувания частиц струей воздуха покрывается тонким слоем силиконового масла. Прибор оборудован механизмом прерывистого перемещения. При взятии пробы пластина (подложка) неподвижна. После взятия пробы пластина смещается на определенный шаг. Каждая проба имеет вид пятна диаметром около 1,0 мм. На одну пластину может быть взято до 40 проб. В случае необходимости импактор оборудуется механизмом непрерывного перемещения подложки. Тогда проба получается в виде дорожки.

Фильтровый заборник, входящий в комплекс, служит для взятия аэрозольных проб с целью определения химического состава аэрозолей и исследования аэрозолей под электронным микроскопом до размера порядка 0,1 мкм. Фильтровый заборник снаряжается кассетой, имеющей 12 фильтров из материала ФПП-15-1,8.

Для получения репрезентативных данных необходим забор такого количества аэрозолей, чтобы число осажденных из воздуха частиц значительно превышало число фоновых [9].

$$\frac{\psi n V_{\min}}{S} > N_{\phi}, \tag{1}$$

где V_{\min} — минимальный объем воздуха, необходимый для получения репрезентативной пробы; n — ориентировочная концентрация аэрозолей в исследуемой среде (принимаем за n концентрацию, полученную Юнге для данной высоты); S — площадь аэрозольной пробы; ψ — эффективность захвата частиц; N_{ϕ} — число фоновых частиц, приходящихся на площадь пробы.

Объем воздуха, прошедшего через импактор, равен

$$V = S' vt, \tag{2}$$

где *t* — время, *S'* — сечение заборного устройства, *v* — скорость потока в аспирационном устройстве.

Исходя из этих данных определяем минимальное время t_{\min} , необходимое для взятия пробы,

$$t_{\min} > \frac{N_{\Phi}S}{\psi n S' v}, \qquad (3)$$

где V выбирается из условия изокинетичности забора проб [10].

Эффективность захвата частиц для импактора складывается из следующих факторов [11]:

$$\psi = \psi_1 \psi_2 \psi_3, \tag{4}$$

где ψ_1 — коэффициент аспирации, ψ_2 — коэффициент, дающий потерю в коммуникациях прибора, ψ_3 — эффективность осаждения частиц на подложку. Коэффициент аспирации аэрозоля ψ_1 будет меняться в зависимости от скорости движения самолета и изменения вязкости воздушной среды [10]. Расчеты аэрозольных потерь за счет осаждения в коммуникациях показывают, что для частиц

с $d \leq 10$ мкм они не больше 5%. Градуировочная кривая прибора представлена на рис. 1.

Исходя из этих данных по формуле (3) было определено минимально необходимое время для взятия проб на различных высотах.

Эффективность захвата частиц для фильтровой ловушки и минимальное время для взятия пробы на фильтр определялись аналогично. С учетом полученных данных время взятия пробы для импактора составляло 30 с до высот 5500 м и 60 с для высот от 5500 до 8000 м.

Оптимальное время для взятия пробы фильтровым устройством на любой высоте составляло 20 мин. Измерения включали в себя работы по следующим программам:

1) забор проб импактором при непрерывном равномерном подъеме самолета с минимальной до максимальной высоты;

2) совместная работа фильтрового заборника и импактора при полетах по программе КЭНЭКС [12] (на площадках измерений);

3) работа всего аэрозольного комплекса при горизонтальных полетах и при полетах по трассе (программа «Метеор»).

Вертикальное зондирование атмосферы производилось при скорости подъема само-

кривая импактора.

лета 4—5 м/с. Выбранное время 30 с, необходимое для забора репрезентативной аэрозольной пробы, дало возможность получить в результате одного забора пробы осредненную концентрацию аэрозоля в слое примерно 150 м (до 5500 м) и в слое примерно 300 м (выше 5900 м). Непрерывная работа прибора позволила получить в течение зондирования (около 20 мин) до 30 проб.

При работе на площадках бралось от 2 до 4 проб на каждой высоте; концентрация при обработке определялась как среднее.

Время нахождения самолета на площадке позволяло взять всего одну пробу фильтровым заборником. При полете по трассе серия из трех измерений производилась каждые 20 мин. При резком изменении характера подстилающей поверхности забор проб производился чаще. При взятии проб фиксировались высота самолета, скорость подъема, температура воздуха, а также состояние облачности, наличие дымки и характер подстилающей поверхности.

Пластины с пробами хранятся в герметически закрывающихся контейнерах, фильтры — в запаивающихся полиэтиленовых капсулах.

Полученные материалы обрабатывались в лабораторных условиях. Данные о распределении частиц по размерам получены путем визуальной обработки проб на микроскопе МБИ-11 или путем обработки их микрофотографий. Для получения информации о частицах с $d \leq 0,1$ мкм применялся электронный микроскоп УЭМВ = 100.

Суммарная ошибка проведенных измерений, складывающаяся из погрешностей прибора и ошибок при счете, составляет 20% [9, 11].

В заключение авторы благодарят Л. С. Ивлева за ряд полезных советов и замечаний.

ЛИТЕРАТУРА

- 1. Ивлев Л. В., Дмоховский В. И. Экспериментальные методы исследования атмосферного аэрозоля. — Проблемы физики атмосферы, 1970. № 8. c. 28-39.
- 2. Махарашвили А. З. Некоторые вопросы исследований аэрозоля в нижних слоях атмосферы. — Труды ИГ АН ГрузССР, 1967, № 1, с. 198—204.
- 3. Балабуев А. Г., Махарашвили А. З. К вопросу об исследовании аэрозолей в свободной атмосфере с помощью самолета. — Сообшения АН ГрузССР, 1968, № 3, с. 639—644.
- 4. Хоргуани В. Г., Степанов Г. В., Саркисов С. Л. Наземный и самолетный конденсационные импакторные ловушки для исследования аэрозолей. — Изв. АН СССР. Физика атмосферы и океана, 1970, № 7, c. 740-743.
- 5. Хоргуани В. Г., Степанов Г. В. Некоторые результаты исследований естественных аэрозолей в свободной атмосфере. - Сборник Х Всесоюзной конференции по актуальным вопросам испарения горения и газовой ди-
- намики дисперсных систем. Одесса, 1970, с. 10—11. 6. Irving H., Blifford, Ir., Lynn D. Ringer. The Size and Number Distribution of Aerosols in the Continental Troposphere J. of Atm. Sci., 1969, vol. 26, p. 716. 7. Irving H. Blifford, Jr. Tropospheric Aerosols. J. Geophys. Res., 1970,
- vol. 75, No. 15, pp. 3099-3103.
- 8. Torgeson W. L., Stern S. C. An Aircraft Impactor for Determining the Size Distributions of Tropospheric Aerosols. J. Appl. Meteorol., 1966, vol. 5, No. 2, pp. 205–210.
- 9. И в л е в Л. С. и др. Экспериментальные методы исследования атмосферного аэрозоля. Методы забора и анализа проб. — Проблемы физики атмосферы, 1968, № 6, c. 63—77.
- 10. Дмоховский В. И. и др. Самолетные измерения вертикальной структуры атмосферного аэрозоля по программе Комплексного энергетического эксперимента. — Труды ГГО, 1972, вып. 276, с. 103—108. 11. И в л е в Л. С. Эффективность осаждения аэрозольных частиц на плоскую
- подложку. Проблемы физики атмосферы, 1967, № 5, с. 245—253.
- 12. Кондратьев К. Я. и др. Программа экспедиции КЭНЭКС-71 См. настоящий сборник.

ПРИЛОЖЕНИЯ

МАТЕРИАЛЫ НАБЛЮДЕНИЙ УРАЛЬСКОЙ ЭКСПЕДИЦИИ

Принятые обозначения

- *h*⊙ высота солнца (градусы).
- \tilde{Q} суммарная радиация (кал/см² · мин).
- R отраженная радиация (кал/см² · мин).
- S прямая радиация на перпендикулярную поверхность (кал/см² · мин).
- В_к баланс коротковолновой радиации (кал/см² · мин).
- Е[↑] восходящий поток длинноволнового излучения (кал/см² × × мин).
- E_{\downarrow} нисходящий поток длинноволнового излучения (кал/см² \times Мин).
- $E_{\mathfrak{o}\mathfrak{o}}$ эффективное излучение (кал/см² · мин).
 - *H* высота над уровнем земли (м).
 - *p* давление (мб).
 - t температура (°C).
 - *q* удельная влажность (г/кг).
 - V скорость ветра (м/с).
 - *d* направление ветра (градусы).
 - Vg скорость геострофического ветра (м/с).
 - *d_g* направление геострофического ветра (градусы).
- $\frac{\partial p}{\partial x}$ и $\frac{\partial \bar{T}}{\partial x}$ составляющие горизонтального барического (мб/100 км). и температурного (°С/100 км) градиентов по оси X.
- $\frac{\partial p}{\partial y}$ и $\frac{\partial T}{\partial y}$ составляющие горизонтального барического (мб/100 км)

и температурного (°С/100 км) градиентов по оси У (ось Х направлена на восток, ось У — на север).

Примечание. В таблицах всюду указано местное время, отличающееся от московского на 2 часа, от истинного солнечного — на 1 ч 34 мин ($t_{\rm mcr} < < t_{\rm Mecth}$).

ПРИЛОЖЕНИЕ 1

Результаты	наземных и	самолетных	актинометрических	наблюлений **
1 cognoraro	naochinbin n	Cumonernoix	aninnomerphycenna	паолюдении

Bpe-					102	кал/	см ² м	ин		
мя, ч и мин	^h O	Облачность	H	S	Q	R	E_{\downarrow}	E_{\uparrow}	B_{κ}	Eэф
			27/VI	1971 г.						
9 45	38,3	0/0 сл. Си	1,5*	103	81	14	24	16	67	i —
10 15	43,1	0/0 сл. Си	1,5*	112	94	14		40	80	
İ			2850*	_	107	19	53 36	60 54	88 94	18
10 45	47,5	0/0 сл. Си	$1,5^{*}$	117	$\frac{133}{102}$	17 16	28	46	116 86	18
			500 7200*	-	$\begin{array}{c} 116\\ 142 \end{array}$	19 17	53 31	60 46	$\begin{array}{c} 97\\125\end{array}$	7 15
11 15	51.7		1,5 500*	-	$108 \\ 126$	16	<u></u> 54	<u> </u>	92 106	6
	,-		2850* 7200*	—	140	17	39	56	132	17
11 45	55,2		1,5	_	126	18	50		108	
10.15	F0 0	111 6	7200*	100	154	17	34 34	47	139	13
12 15	58,0	1/1 Cu	$1,5^{*}$ 500*	122	122 138	18 21	53	60	104 117	7
12 45	60,1	2/2 Cu	$7200 \\ 1,5^*$	122	161 106	17	34	47	144 [.] 87	$\frac{13}{-}$
			$500 \\ 7200*$	_	$\frac{140}{165}$	20 17	53 32	$62 \\ 46$	$\begin{array}{c} 120 \\ 148 \end{array}$	9 14
$14 \ 15 \\ 14 \ 45$	$1,0 \\ 5,2$	9/9 Cu 9/9 Cu	$1,5^*$ 1.5*	70 103	$103 \\ 112$	16 21	_	_	87 91	
16 15 16 45	48,8 44 5	6/6 Cu 6/6 Cu	1,5*	121 69	116		_	-	96 57	_
10 10	11,0	070 Gu	29/VI	1971 г.	05	12	1	I — I	01	
10 15	43,0	1/1 Си, сл. Ас, Сі	1,5*	Π0	91	17			74	
$10 \ 45 \ 12 \ 15 \ 10 \ 45$	47,4 58,5	$\frac{2}{1}$ Cu, Ac, Ci $\frac{8}{2}$ Ac, Ci, Cu	$1,5^{*}$ $1,5^{*}$	81	92 109	19	_	_	90	_
12 45	60,5	6/3 Ci, Ac	1,5*	35	70	16		-	54	
10 15 1	43 0 1	10/0 Ci	- 30/VI ⊨1 5* i	1971 г. 80 I	80	15		i I	65 1	_
$10 \ 45$ 10 15	47,4	10/0 Ci	1,5*	84 69	86 104	16	48	68 74	70	20
$12 \ 13 \ 12 \ 45$	60,7	10/0 Сі, сл. Си 10/0 Сі, сл. Си	1,5*	72	104	10 19	30 49	72	85	$\frac{24}{23}$
·	•		. , 1/VII	' 1971 г.						
9 45	12 1	210 C:	7200*	116	<u> </u>		23	48	76	25_{20}
10 19	40,1	2/0 CI	500*		93 106	22	51	64	84	13

* Измеренные значения (точное время измерений отличается от времени разреза не более чем на 15 мин). ** Методика наблюдений и обработки дается в статье А. А. Елисеева и др. «Профили радиационных потоков по материалам наблюдений». — См. настоящий сборник.

Bpe-	1				102	кал/	см ² м	ин		
мя, ч и мин	^h O	Облачность	Н	S	Q	R	E_{\downarrow}	E_{\uparrow}	Bĸ	Еэф
10 45	47,2	0/0 сл. Сі	2850* 7200* 1,5 500		113 132 101 110	20 17 19 23	$ \begin{array}{c} 40 \\ 26 \\ 44 \\ 52 \\ 22 \end{array} $	59 49 76 66	93 115 82 87	19 23 32 14
11 15	51,4		7200* 1,5 500*		$140 \\ 108 \\ 115 \\ 140$	17 -24	26 45 53	49 82 67	123 91	23 37 14
11 45	55,0		1,5 500 7200*		149		26 45 53	50 82 68	131	24 37 15
12 15	57,9	0/0 сл. Си	1,5* 500*	144	$150 \\ 190 \\ \\ 162 \\$	$\begin{array}{c} 19\\22\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-$	45 53 27	82 69 50	139	23 37 16 23
12 45	59,6	0/0 сл. Си	$1,5_{*}$ 500 7200	124 —	$102 \\ 123 \\ 166$	$\frac{20}{22}$	46 54 28	83 69 51	$142 \\ 101 \\ \\ 146$	20 37 15 23
13 15	61,6		1,5 2850 7200*	-	126 126		46 43 28	84 58 51	140	25 38 15 23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62,2 60,9 59,3 48,7 44,3	2/2 Cu 4/4 Cu 6/6 Cu 6/6 Cu	1200° 500^{*} $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$		109 110 129 104 85		54 47 49 50 50	68 84 83 81 79	$ 149 \overline{89} 107 87 68 $	23 14 17 34 31 29
			2/VII	1971 г.						
9 45	37,9	0/0	1,5* 7200*	109	81 126		47	74	_	27
10 15	42,5	0/0	1,5* 500 2850*	114	88 110	$\frac{18}{20}$	47 53 46	76 63 59	$\frac{70}{90}$	29 [,] 10 13
10 45	46,5	0/0 сл. Си	7200 1,5* 500*	116	133 98 	18 19 19 10	34 47 52	52 79 63	$115 \\ 79 \\$	18 32 11
11 15	51,3		7200 1,5 500		$141 \\ 103 \\ 150$	18 19 10	32 47 51	52 80 63	$123 \\ 84 \\ 120$	20 33 12
11 45	54,5		7200* 1,5 500*		150	$\frac{18}{19}$	30 48 50	52 82 63	$132 \\ 89 \\$	22. 34. 13.
12 15	58,0	1/1 Cu	7200 1,5* 500	97	156	$\frac{19}{20}$	48 53	83 64	137 93	20 35, 11
12 45	60,3	1/1 Cu	1,5*	117	100	$\frac{10}{19}$	30 49 55	86 64	$132 \\ 98 \\ -141 \\ 141 \\ -141$	22: 37 9,
13 15	61,5		1200 1,5 500			22	52 50 56	86 65	141	36 10
13 45	61,6		200* 500* 2850*		104	23	57 57 45	68 59	141 —	10. 11 14
$\begin{array}{c} 14 \hspace{0.1cm} 15 \\ 14 \hspace{0.1cm} 45 \end{array}$	60,9 59,0	6/6 Cu 7/7 Cu	$1,5^*$ 1,5*	81 110	95 132	19 24	52 52	86 87	76 108	34 35

93.

Bpe-				-	102	кал/с	см ² м	ин		
мя, ч и мин	^h ⊙	Облачность	Н	S	Q	R	E_{\downarrow}	E_{\uparrow}	Вк	Еэф
$\begin{array}{c} 16 \\ 16 \\ 16 \\ 45 \end{array}$	48,7 44,3	7/7 Cu 7/7 Cu	1,5* 1,5*	108 91	89 82	20 17	50 51	84 80	69 65	34 29
			4/VII	1971 г.						
$\begin{array}{ccc} 10 & 15 \\ 10 & 45 \\ 12 & 15 \end{array}$	42,6 47,0 57,7	0/0 0/0 1/0 Сі, сл. Си	$ \begin{array}{c c} 1,5^*\\ 1,5^*\\ 1,5^*\\ 500^*\\ 4000 \end{array} $	115 116 128	89 99 121 142	18 19 20 22	49 49 48 48	80 83 88 72	$71 \\ 80 \\ 101 \\ 120$	31 34 40 24
12 45	60,0	1/0 Сі, сл. Си	$ \begin{array}{r} 4000 \\ 1,5^{*} \\ 500 \\ 1000^{*} \\ 2000 \end{array} $	128	100 124 143 158 160	$ \begin{array}{c} 21 \\ 20 \\ 23 \\ 21 \\ 20 \end{array} $	$ \begin{array}{r} 30 \\ 48 \\ 50 \\ 46 \\ 42 \end{array} $	62 90 73 71 68	$145 \\ 104 \\ 120 \\ 137 \\ 140$	28 42 23 25 26
13 15	61,5		$\begin{array}{c} 4000 \\ 1,5 \\ 500 \\ 1000 \\ 2000 \end{array}$		167 126 144 158	$ \begin{array}{c} 21 \\ 22 \\ 24 \\ 22 \\ 20 \\$	$ \begin{array}{r} 30 \\ 48 \\ 50 \\ 46 \\ 42 \end{array} $	61 90 73 71	146 104 120 136	$ \begin{array}{r} 31 \\ 42 \\ 23 \\ 25 \\ 27 \end{array} $
13 45	61,7		4000* 1,5 500* 1000*		$160 \\ 168 \\ 126 \\ 145 \\ 158 $	20 20 23 25 22	42 31 49 51 47	61 91 74 72	140 148 103 120 136 136	27 30 42 23 25
14 15	60,6	1/0 Ci	2000 4000 1,5* 500 1000	127 	$160 \\ 167 \\ 125 \\ 145 \\ 157 \\ 157 \\ 160 \\ 157 \\ 157 \\ 160 \\ 100 $	$20 \\ 20 \\ 23 \\ 25 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22$	42 31 50 51 48	69 61 92 74 71	$ \begin{array}{r} 140 \\ 147 \\ 102 \\ 120 \\ 145 \\ 145 \\ \end{array} $	27 30 42 23 23
14 45	58,8	1/0 Ci	2000^{*} 4000 $1,5^{*}$ 500 1000 2000	1 <u>27</u>	160 166 123 138 154 159	20 20 23 25 21	41 31 50 51 48 41	69 61 94 75 71	140 146 100 113 133 128	28 30 44 24 23
15 15	56,3		4000^{*} 1,5 500 1000^{*} 2000		$158 \\ 164 \\ 118 \\ \\ 152 \\ 156 $	$20 \\ 20 \\ 22 \\ \\ 21 \\ 20 \\ \\ 20 \\ \\ 21 \\ 20 \\ \\ 20 \\ \\ \\ 20 \\ \\$	41 31 50 51 48 42	69 61 93 75 70 69	138 144 96 131 136	28 30 43 24 22 27
15 45	52,3		4000 1,5 2000*		$ \begin{array}{r} 162 \\ 113 \\ 152 \\ 150 \end{array} $	19 21 20	31 50 42	61 92 68	$143 \\ 92 \\ 132 \\ 140 \\$	30 42 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48,4 43,9 39,8 35,7 24,0 16,7	1/0 Ci 1/0 Ci 1/0 Ci 2/0 Ci 3/0 Ci, Cs 10/0 Ci, Cs 10/0 Ci, As	4000^{*} $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$	$ \begin{array}{r} 122 \\ 121 \\ $	159 108 101 92 83 28 27 	$ \begin{array}{r} 19 \\ 21 \\ 19 \\ 18 \\ 16 \\ 7 \\ 6 \\ \end{array} $	$31 \\ 50 \\ 50 \\ 50 \\ 50 \\ 51 \\ 52 \\ 51 \\ 51$	61 91 89 88 85 74 73 66	$ \begin{array}{r} 140 \\ 87 \\ 82 \\ 74 \\ 67 \\ 21 \\ 21 \\ \end{array} $	$30 \\ 41 \\ 39 \\ 38 \\ 35 \\ 23 \\ 21 \\ 15$
21 15		$\left \overline{10}\right /0$ Ci, Ac, As	1,5*	. —			51	65		14
22 15		$\left \overline{10} \right / 0$ Ci, Ac, As	1,5*				55	64		9
22 45		$\left \overline{\underline{10}}\right /0$ Ac, As	1,5*				54	63		9

•94

Bpe-					102	кал/с	см ² м	ин		
мя, ч и мин	^h O	Облачность	H	S	Q	R	E	E_{\uparrow}	B _K	Еэф
			4—5/VI	I 1971	r.					
0 15		$\left \overline{10} \right / 0$ Ci, Ac	1,5*	—	_	_	49	60		11
0 45		10/0 Ci, Ac	1,5*		—		49	60	—	11
1 15			$500 \\ 1000 \\ 2000 \\ 4000^* \\ 1,5 \\ 500^* \\ 1000$				$51 \\ 46 \\ 43 \\ 23 \\ 48 \\ 50 \\ 45$	57 55 52 46 58 56 54		6 11 9 23 10 6 9
1 45			2000 4000 1,5 500 1000* 2000*				42 23 48 49 45 42	51 47 58 55 54 51		9 24 10 6 9 9
2 15		0/0	4000 1,5	_			23 47	47 58 55	_	24- 11
2 45		0/0	$\begin{array}{c} 500\\ 1000\\ 2000\\ 4000^{*}\\ 1,5^{*}\\ 500^{*}\\ 1000^{*}\\ 2000 \end{array}$				49 45 42 24 47 49 45 42	53 54 51 48 57 55 53 50		9 9 24 10 6 8 8
3 15			4000 1,5 500	 			24 47 50	48 57 55		24 10 5
3 45			$1000 \\ 2000* \\ 4000* \\ 1,5 \\ 500* \\ 1000 \\ 2000$				46 42 24 47 50 47 43	54 51 47 57 55 54 51		8 9 23 10 5 7 8
4 15		10/0 As	4000 1,5* 500 1000*				25 48 51 47	48 57 56 54		23. 9 5. 7
4 45		9/0 Ci, As	2000* 4000 1,5* 500 1000 2000				45 27 50 52 48 45	52 49 57 56 54 53		$ \begin{array}{c} 7 \\ 22 \\ 7 \\ 4 \\ 6 \\ 8 \\ 8 \\ 22 \\ 7 \\ 4 \\ 6 \\ 8 \\ $
6 15		10/10 Sc, As	4000*			_	28 54	50 59	_	22 5
645		$10/\overline{10}$ Sc, As	1,5*				54	60		6
						1				

Bpe-			[102	кал/	см ² м	ин		
мя, ч и мин	^h O	Облачность	H	S	Q	R	E_{\downarrow}	E_{\uparrow}	Вк	Еэф
			10/VII	1971	г.					
$\begin{array}{ccc} 10 & 15 \\ 10 & 45 \\ 12 & 15 \\ 12 & 45 \end{array}$	$\begin{array}{c} 42,3\\ 46,7\\ 57,6\\ 59,8 \end{array}$	0/0 сл. Ас 0/0 сл. Ас 0/0 сл. Си, Ас 5/4 Ас, Си	1,5* 1,5* 1,5* 1,5* 1,5*	101 104 106 72	86 95 114 116	$ \begin{array}{c} 15 \\ 18 \\ 22 \\ 21 \end{array} $	49 50 51 53	$\begin{array}{c} 73\\\\ 84\\ 83 \end{array}$	71 77 92 75	$\begin{array}{c} 24\\\\ 33\\ 30 \end{array}$
	I	I	11/VII	1971	і г.			1	I	I
$\begin{array}{c} 9 & 45 \\ 10 & 15 \\ 10 & 45 \end{array}$	$37,6 \\ 42,3 \\ 46,7$	0/0 сл. Ас 2/0 Ас, сл. Си 9/3 Ас, Си	1,5* 1,5* 1,5*	98 104 84	76 88 97	14 16 17	47 46 50	65 66 68	62 72 80	18 20 18
			12/VII	1971	r.					
10 15	41,6	0/0	$1,5^{*}$ 4000*	108	86 130	$ 17 \\ 21 $	48	72 52	69 109	$ \begin{array}{c} 24 \\ 19 \end{array} $
10 45	46,1	1/1	6000* 1,5* 500*	109	96 102	$ - \frac{18}{18} \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$	29 49 50	50 75 63	$\begin{bmatrix} - \\ 78 \\ 82 \\ 117 \end{bmatrix}$	21 26 13
11 15	50,2	2/2	4000 1,5 500		139 99 117 199	22 17 21	33 49 52 45	52 76 65 60	82 96	19 27 13
			2000*		122		40	55	122	15
11 45	53,6	2/2	1,5 500 1000		102 131		50 51 46	77 66 62	86 108	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60,4 58,5 48,6 44,6 30,9 25,8	10/9 Cb, Cu, Ac 10/8 Cb, Sc, Ac 10/5 Sc, Ac, Cu 10/5 Sc, Ac, Cu 10/9 Sc, Cb, Ac 10/8 Sc, Cb, Ac 1/1 Cu 8/8 Cu	$\begin{array}{c} 4000*\\ 1,5*$	$\begin{array}{c} 0 \\ 0 \\ 20 \\ 12 \\ 2 \\ 76 \\ \\ \end{array}$	$ \begin{array}{r} 154 \\ 29 \\ 28 \\ 72 \\ 52 \\ 31 \\ 73 \\ \\ \\ \end{array} $	$ \begin{array}{c} 25 \\ 4 \\ 5 \\ 12 \\ 9 \\ 5 \\ 14 \\ \\ \\ \\ \end{array} $	34 59 59 59 58 59 56 49 50	52 69 69 74 73 69 74 58 59	129 25 23 60 43 26 59 —	$ \begin{array}{r} 18 \\ 10 \\ 10 \\ 15 \\ 15 \\ 10 \\ 18 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \end{array} $
			13/VII	1971 1	r.					
$\begin{array}{c} 0 & 15 \\ 0 & 45 \\ 1 & 15 \\ 9 & 45 \\ 10 & 15 \\ 10 & 45 \end{array}$	37,1 40,7 45,6	8/8 Sc 0/0 сл. Cu 0/0 0/0 0/0 0/0	$1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ $1,5^{*}$ 500^{*} 2850^{*} 7200	108 109 113 	$ \begin{array}{c}$	$ \begin{array}{c} - \\ - \\ 16 \\ 17 \\ 18 \\ 21 \\ - \\ 18 \\ 18 \end{array} $	$52 \\ 47 \\ 46 \\ -48 \\ 49 \\ 50 \\ 42 \\ 26 \\ -26 \\$	$59 \\ 57 \\ 56 \\ -73 \\ 75 \\ 64 \\ 55 \\ 46 \\ 46 \\ $		$ \begin{array}{c} 7 \\ 10 \\ 10 \\ -25 \\ 26 \\ 14 \\ 13 \\ 20 \\ \end{array} $
11 15 11 45	48,4 52,5	· · ·	1,5 500 7200* 1,5 500* 7200		102 113 156 108 118 159	19 22 19 20 23 19	49 50 25 50 50 25	76 65 46 79 66 47	83 91 137 88 95 140	27 15 21 29 16 22

Bpe-]				102	кал/	см ² м	ин		
мя, ч и мин	^h O	Облачность	Н	S	Q	R	E_{\downarrow}	E_{\uparrow}	B _K	Еэф
12 15	56,6	1/1 Cu	1,5* 500	117 —	114 123	22 23	50 51	82 67	92 100	$32 \\ 16 \\ 22 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 3$
$\begin{array}{ccc} 14 & 15 \\ 14 & 45 \\ 16 & 45 \end{array}$	60,4 58,5 44,6	8/8 Cu 9/9 Cu, Cb 9/9 Cu, Cb	$1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$	89 44 41	162 105 77 73	20 18 10 11	26 54 56 60	48 82 80 69	142 87 67 62	22 28 24 9
			15/VII	1971 г	٦.					
$\begin{array}{cccc} 9 & 45 \\ 10 & 15 \\ 10 & 45 \\ 12 & 15 \\ 12 & 45 \\ 14 & 15 \\ 14 & 45 \end{array}$	36,7 41,6 45,9 56,6 59,1 59,9 58,3	10/5 Cu, Ci 10/2 Sc, Ac, Cu 10/1 Cs, As, Cu 10/3 As, Cs, Cu 10/7 As, Cs, Cu 10/6 Cb, As, Cu	$\begin{array}{c} 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \end{array}$	29 72 45 40 12 0 0	47 81 62 95 73 43 65	10 16 13 18 14 8 11	56 55 56 59 60 62 61	71 77 75 83 79 74 77	37 65 49 77 59 35 54	15 22 19 24 19 12 16
			16/VII	1971 i	7.					
$\begin{array}{c}9&45\\10&15\end{array}$	37,4 41,3	2/0 Ас, сл. Sc 2/0 Ас, сл. Sc	$1,5^*$ $1,5^*$	82 89	72 88	15	54	76 80	57	22 26
10 45	45,1	1/0 Ас, сл. Sc	1,5* 500*	97	93 104	18 22	53	83 69	102 75 82	30 15
11 15	40,2		5800 1,5 500 1000*		127 98 110 114	20 19 22 20	31 54 54 53	53 86 70 64	107 79 88 94	$ \begin{array}{c} 22 \\ 32 \\ 16 \\ 11 \end{array} $
11 45	51,7		5800 1,5 500 1000		133 104 114 120	21 20 23 20	31 54 53 52 50	53 89 70 65	112 84 91 100	22 35 17 13
12 15	56,1	1/0 Ас, сл. Си	2000 5800 1,5* 500 1000	107 	124 139 111 120 124	$ \begin{array}{c} 10 \\ 21 \\ 21 \\ 24 \\ 21 \\ 10 \\$	32 54 53 52	52 91 71 66	$ \begin{array}{c} 100 \\ 118 \\ 90 \\ 96 \\ 103 \\ 103 \end{array} $	11 20 37 18 14
12 45	58,7	1/1 Си, сл. Ас	2000 5800* 1,5* 500* 1000	97 97 —	128 143 113 124 130	19 22 21 24 24 22	50 32 55 53 52	52 92 72 67	$ \begin{array}{r} 109 \\ 121 \\ 92 \\ 100 \\ 108 \end{array} $	11 20 37 19 15
13 15	59,7		$ \begin{array}{c c} 2000 \\ 5800 \\ 1,5^{*} \\ 500 \\ 1000 \end{array} $		$ \begin{array}{c c} 134 \\ 145 \\ 118 \\ 126 \\ 134 \\ \end{array} $	$ \begin{array}{c} 20 \\ 22 \\ 21 \\ 24 \\ 22 \end{array} $	50 32 54 53 52	62 53 93 72 67	114 123 96 102 112	12 21 39 19 15
13 45	59,8		2000* 5800 1,5 500 2000 5800*		138 147 121 129 139 146	$\begin{vmatrix} 21 \\ 23 \\ 22 \\ 24 \\ 20 \\ 24 \end{vmatrix}$	50 32 54 53 50 32	62 53 94 72 62 53	117 124 99 105 119	$ \begin{array}{c c} 12\\ 21\\ 40\\ 19\\ 12\\ 21 \end{array} $
			5800*		139	20	32 30	53	122	21

				102	кал/	см ² м	ин		
^h ⊙	Облачность		S	Q	R	E_{\downarrow}	E_{\uparrow}	Bĸ	E _{эф}
59,6	2/2 Си, сл. Ас	1,5 500*	112	122 128	23 24	53 53	93 72 52	99 104	40 19
58,0 48,2 43,7 30,0 25,2 11,7 7,3 —	2/2 Cu, cπ. Ac 2/2 Cu, cπ. Ac, Ci 3/2 Cu, Ac, Ci 8/2 Ci, Cu 5/2 Ci, Cu, Ac 4/2 Sc, Cu, Ac 3/1 Sc, Cu, Ci 8/1 Ci, Sc 7/1 Ci, Sc	5800 1,5*	$ \begin{array}{r} 109 \\ 106 \\ 103 \\ 87 \\ 80 \\ 32 \\ 23 \\ $	$ \begin{array}{r} 144 \\ 119 \\ 102 \\ 99 \\ 64 \\ 52 \\ 16 \\ 11 \\ -$	$ \begin{array}{c} 23\\ 22\\ 20\\ 19\\ 13\\ 11\\ 4\\ 3\\\\\\ \end{array} $	52 55 59 58 54 55 55 54 52 52	53 93 90 90 84 80 71 68 62 61	$ \begin{array}{c} 121\\ 97\\ 82\\ 80\\ 51\\ 41\\ 12\\ 8\\\\\\\\ \end{array} $	$21 \\ 38 \\ 31 \\ 32 \\ 30 \\ 25 \\ 16 \\ 14 \\ 10 \\ 9$
		17/VII	1971	r.					
	5/2 Sc, Cl 0/0 сл. Sc	1,5* 1,5* 500 1000 2000				50 50 52 47 40	60 60 58 55 51		10 10 6 8 11
-		5800* 1,5 500* 1000 2000				$23 \\ 50 \\ 52 \\ 47 \\ 40 \\ 22$	$47 \\ 59 \\ 58 \\ 55 \\ 52 \\ 46 $		24 9 6 8 12
		5800 1,5 500 1000 2000*				23 50 52 47 41	40 58 57 55 52		23 8 5 8 11
	0/0	1,5* 500 1000 2000 5800				49 52 47 41 23	58 56 55 53 45		23 9 4 8 12 22
	0/0	1,5* 500* 1000 2000 5800				$50 \\ 52 \\ 47 \\ 41 \\ 22$	$58 \\ 56 \\ 56 \\ 53 \\ 45$		
		1,5 500 1000* 2000 5800				$ \begin{array}{r} 49 \\ 52 \\ 47 \\ 41 \\ 22 \end{array} $	$58 \\ 57 \\ 56 \\ 53 \\ 45$		
		1,5 500 1000 2000* 5800				$ \begin{array}{r} 49 \\ 52 \\ 47 \\ 41 \\ 22 \end{array} $	$58 \\ 57 \\ 56 \\ 53 \\ 44$		9 5 9 12 22
	1/0 Ci	1,5* 500 1000 2000				49 51 47 41	58 57 56 52		
	h_{\odot} 59,6 58,0 48,2 43,7 30,0 25,2 11,7 7,3	 <i>h</i>_☉ 59,6 2/2 Си, сл. Ас 58,0 2/2 Си, сл. Ас 2/2 Си, сл. Ас, Сі 30,0 8/2 Сі, Си 25,2 5/2 Сі, Си, Ас 11,7 3/1 Sc, Cu, Ci 8/1 Сі, Sc 7/1 Сі, Sc 5/2 Sc, Cl 0/0 0/0 0/0 1/0 Сі	№ Облачность Н 59,6 2/2 Си, сл. Ас 1,5* 58,0 2/2 Си, сл. Ас 1,5* 48,2 2/2 Си, сл. Ас, Сі 1,5* 43,7 3/2 Си, Ас, Сі 1,5* 30,0 8/2 Сі, Си Ас, Сі 1,5* 25,2 5/2 Сі, Си, Ас 1,5* 11,7 4/2 Sc, Си, Сі 1,5* 7,3 3/1 Sc, Cu, Ci 1,5* 8/1 Ci, Sc 1,5* 7/1 Ci, Sc 1,5* 5/2 Sc, CI 1,5* 0/0 сл. Sc 1,5 500* 1000 2000 5800* 1000 2000 2000 5800* 1,5 500 1000 2000 5800 1,5 0/0 1,5* 0/0 1,5* 500 1000 2000 5800* 0/0 1,5* 1,5 500 1000 2000 58	№ Облачность <i>H S</i> 59,6 2/2 Си, сл. Ас 2/2 Си, сл. Ас 43,7 1,5* 30,0 112 500* 58,0 2/2 Си, сл. Ас 43,7 1,5* 30,0 109 8/2 Ci, Cu 1,5* 103 1,5* 109 48,2 2/2 Си, сл. Ас 43,7 3/2 Cu, Ac, Ci 1,5* 1,5* 103 1,5* 103 1,5* 25,2 5/2 Ci, Cu, Ac 7,3 1,5c 8/1 Ci, Sc 1,5* 7,3 21 8/1 Ci, Sc 1,5* 1,5* 21 200 7,7 3/1 Sc, Cu, Ci 1,5* 1,5* 7/1 Ci, Sc 1,5* 1,5* 21 700 сл. Sc 1,5* 1,5* 21 700 сл. Sc 5/2 Sc, Cl 0/0 сл. Sc 1,5* 1,5* 200 1000 2000 2000 2000 2	$h_{\odot} \qquad 0блачность \qquad H \qquad S \qquad Q$ 59,6 2/2 Си, сл. Ас 58,0 2/2 Си, сл. Ас 48,2 2/2 Си, сл. Ас 43,7 3/2 Си, Ас, Ссі 1,5* 109 119 48,2 2/2 Си, сл. Ас, Сі 43,7 3/2 Си, Ас, Сі 1,5* 87 64 25,2 5/2 Сі, Си, Ас 1,5* 87 64 25,2 5/2 Сі, Си, Ас 1,5* 32 16 7,3 3/1 Sc, Си, Сі 1,5* 23 11 - 7/1 Сі, Sc 5/2 Sc, Cl 0/0 сл. Sc 5/2 Sc, Cl 1,5*	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h_{\bigcirc} Облачность H S Q R E 59,6 2/2 Си, сл. Ac 500 - 128 24 53 560 - 128 24 53 560 - 128 24 53 560 - 128 24 53 560 - 128 24 53 580 - 144 23 32 580 - 144 23 32 58 6 - 15 10 - 15 1 - 15 - 1	$h_{\odot} \qquad 06лачность \qquad H \qquad S \qquad Q \qquad R \qquad E_{\downarrow} \qquad E_{\uparrow} \\ \hline 59,6 \qquad 2/2 \ Cu, c.r. \ Ac \qquad 1.3^{\circ} \qquad 112 \qquad 122 \qquad 23 \qquad 53 \qquad 93 \\ \hline 58,0 \qquad 2/2 \ Cu, c.r. \ Ac \qquad 1.5^{\circ} \qquad 100 \qquad -128 \qquad 24 \qquad 53 \qquad 72 \\ \hline 5800 \qquad -144 \qquad 23 \qquad 32 \qquad 53 \\ \hline 48.2 \qquad 2/2 \ Cu, c.r. \ Ac, Ci \qquad 1.5^{\circ} \qquad 100 \qquad 102 20 \qquad 59 \qquad 90 \\ \hline 43.7 3/2 \ Cu, Ac, Ci \qquad 1.5^{\circ} \qquad 106 \qquad 102 \qquad 20 \qquad 59 \qquad 90 \\ \hline 43.7 3/2 \ Cu, Ac, Ci \qquad 1.5^{\circ} \qquad 106 \qquad 102 \qquad 20 \qquad 59 \qquad 90 \\ \hline 43.7 3/2 \ Cu, Ac, Ci \qquad 1.5^{\circ} \qquad 80 \qquad 52 \qquad 11 \qquad 55 \qquad 80 \\ \hline 11.7 4/2 \ Sc, Cu, Ci \qquad 1.5^{\circ} \qquad 80 \qquad 52 \qquad 11 \qquad 55 \qquad 80 \\ \hline 11.7 4/2 \ Sc, Cu, Ci \qquad 1.5^{\circ} \qquad 80 \qquad 52 \qquad 11 \qquad 55 \qquad 80 \\ \hline 11.7 4/2 \ Sc, Cu, Ci \qquad 1.5^{\circ} \qquad 23 \qquad 16 \qquad 4 \qquad 55 \qquad 71 \\ \hline 7/3 \ 3/1 \ Sc, Cu, Ci \qquad 1.5^{\circ} \qquad - \qquad - \qquad 52 \qquad 61 \\ \hline 7/1 \ Ci, \ Sc \qquad 1.5^{\circ} \qquad - \qquad - \qquad - \qquad 52 \qquad 61 \\ \hline 7/1 \ Ci, \ Sc \qquad 1.5^{\circ} \qquad - \qquad - \qquad - \qquad 50 \qquad 60 \\ \hline 500 \qquad - \qquad - \qquad - \qquad 40 \qquad 51 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 51 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 51 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 51 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 51 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 58 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 0/0 \qquad 1.5^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 40 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 40 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 41 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 41 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000 \qquad - \qquad - \qquad - \qquad 41 \qquad 52 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000^{\circ} \ - \qquad - \qquad - \qquad 42 \qquad 45 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 52 \qquad 56 \\ \hline 1000^{\circ} \ - \qquad - \qquad - \qquad - \qquad 42 \qquad 55 \\ 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 42 \qquad 55 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 42 \qquad 55 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 42 \qquad 55 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 42 \qquad 55 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad - \qquad 42 \qquad 55 \\ \hline 500^{\circ} \ - \qquad - \qquad - \qquad 42 \qquad 55 \\ 500^{\circ} \ - \qquad - \qquad$	$ \begin{split} \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Bpe-		_			102	кал/	СМ ² М	иин		
мя, ч и мин		Облачность	H	S	Q	R		E_{\uparrow}	Bĸ	E _{эφ}
4 45 5 15 6 15 6 45	4,9 9,0	8/0 Ci 9/0 Ci, сл. Sc 8/0 Ci, сл. Sc	$1,5^{*} \\ 500^{*} \\ 1000^{*} \\ 2000^{*} \\ 5800 \\ 1,5^{*} \\ 1,5^{$	 19 34			49 51 47 40 21 49 50 51	$57 \\ 57 \\ 56 \\ 52 \\ 44 \\ 58 \\ 58 \\ 60$	 4 7	8 6 9 12 23 9 8 9
			1 8/VII	1971 1	г.					i.
8 45 9 15 9 45 10 15	27,1 31,8 40,6	$\frac{ \overline{10} }{6}$ Ac, Cu, Sc 9/6 Ac, Cu, Sc 4/1 Ac, Cu, Ci	$1,5^{*} \\ 1,5^{*} \\ 1,5^{*} \\ 5800^{*} \\ 1,5^{*} \\ 500 \\ 1000^{*} \\ 1000^{*} \\ 1,5^{*} \\ 500 \\ 1000^{*} \\ 10$	55 47 101 	$ \begin{array}{c} 42 \\ 48 \\ \\ 82 \\ \\ \\ \\ \\ \\ \\ \\ -$	7 11 	56 57 56 31 56 59 53	71 73 77 52 82 71 66	35 37 65 	$ \begin{array}{r} 15 \\ 16 \\ 21 \\ 21 \\ 26 \\ 12 \\ 13 \end{array} $
10 45	44,7	3/2 Ac, Cu	$2000 \\ 5800 \\ 1,5* \\ 500 \\ 1000 \\ 2000* \\ 5800$	104	92 — —		49 32 56 59 53 49 33	60 52 85 73 68 61 52	74	11 20 29 14 15 12
11 15 11 45	48,9 52,4		1,5 500* 1000 2000 5800 1,5 500 1000*				$56 \\ 60 \\ 54 \\ 49 \\ 33 \\ 56 \\ 60$	88 75 70 63 52 91 77		$ \begin{array}{r} 13 \\ 32 \\ 15 \\ 16 \\ 14 \\ 19 \\ 35 \\ 17 \\ 17 \\ \end{array} $
12 15	56,1	1/0 Ac	$ \begin{array}{r} 1000^{*} \\ 2000^{*} \\ 5800 \\ 1,5^{*} \\ 500 \\ 1000 \\ 2000 \\ \end{array} $	108 —			54 49 33 57 61 54 50	$71 \\ 64 \\ 52 \\ 93 \\ 78 \\ 73 \\ 65$	90 	17 15 19 36 17 19
12 45	57,7	2/1 Ac, Cu	5800* 1,5* 500 1000 2000 5800	109 — — —			33 58 61 55 50 32	52 96 80 76 67 52	94 — —	19 38 19 21 17 20
101 Marcala			19/VII	1971 1	г.					
$\begin{array}{c} 9 \ 45 \\ 10 \ 15 \\ 10 \ 45 \\ 12 \ 15 \\ 12 \ 45 \\ 14 \ 15 \end{array}$	$ \begin{array}{r} 36,3 \\ 41,1 \\ 45,3 \\ 56,0 \\ 58,5 \\ 59,1 \end{array} $	10/0 Ci, Ac, Cc 10/0 Ci, Cc, Ac 10/0 Ci, Cc, Ac 10/1 Ci, Cs, Cu 10/1 Ci, Cs, Cu 10/1 Ci, Cs, Cu 10/8 Cu, Ac	1,5* 1,5* 1,5* 1,5* 1,5* 1,5*	77 72 54 85 83 52	73 81 74 101 101 86	$ \begin{array}{r} 15 \\ 17 \\ 17 \\ 22 \\ 21 \\ 14 \\ \end{array} $	58 58 60 60 59 65	80 82 84 92 92 88	58 64 57 79 80 72	22 24 24 32 33 23

Bpe-					102	кал/	см ² м	ин		
мя, ч и мин	^h ⊙	Облачность	Н	S	Q	R	E↓	E_{\uparrow}	Bĸ	Еэф
$\begin{array}{ccc} 14 & 45 \\ 16 & 15 \\ 16 & 45 \end{array}$	57,3 47,5 43,4	10/8 Cu, Cb, Ac, Ci 10/5 Cb, Cu, Ac 10/8 Cb, Ac, Ci	1,5* 1,5* 1,5*	$\frac{33}{47}$	66 56 58	16 12 13	63 65 66	82 77 82	50 44 45	19 12 16
			20/VII	1971 1	r.					
9 45 10 15 10 45 12 15 12 45	36,3 40,9 44,8 56,0 58,3	8/3 Ac, Sc, Ci 7/4 Ac, Sc, Ci 9/2 Ac, Sc 7/0 Ac, сл. Ci 10/2 Ac, Ci, Cu	$1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$	98 41 24 109 72	82 74 76 119 109	$17 \\ 17 \\ 14 \\ 22 \\ 20$	57 61 62 58 61	80 82 82 92 90	65 57 62 97 89	23 21 20 34 29
			21/VII	1971 1						
9 45 10 15 10 45 12 15 12 45 14 15 14 45	36,0 40,6 44,9 55,7 57,9 58,5	8/5 Sc, Ci, Ac 9/5 Sc, Ac, Ci 9/3 Ac, Ci, Sc 7/2 Ac, Ci, Cu 4/1 Ci, Cu 7/2 Ac, Ci, Cu 10/4 Ci, Cb, Cu	$1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$	59 5 10 100 106 99 84	62 42 63 124 117 125 101	$ \begin{array}{r} 13 \\ 8 \\ 12 \\ 24 \\ 23 \\ 23 \\ 21 \end{array} $	$58 \\ 60 \\ 62 \\ 61 \\ 60 \\ 60 \\ 62$	76 74 77 91 93 97 97	49 34 51 100 94 102 80	18 14 15 30 33 37 35
16 15	47.3	$\frac{10}{10}$ /6 Cu. Cb. Ci	1.5*	37	46	9	63	84	37	21
16 45	43,2	$\left \overline{10} \right / 7$ Cu, Cb, Ci	1,5*	68	64	10	65	86	54	21
			22/VII	1971	г.					
9 45 10 15 10 45 12 15 12 45 14 15 14 45	36,0 40,7 44,9 55,7 57,9 58,4 57,1	0/0 сл. Ас 0/0 сл. Ас 0/0 сл. Ас 0/0 0/0 сл. Си 9/9 Си 9/9 Си	$1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$ $1,5^*$	91 100 103 108 109 109 77	72 82 91 111 116 134 111	15 17 18 22 22 26 20	56 57 58 60 61 64 65	79 84 87 95 97 101 97	57 65 72 89 94 108 91	23 27 29 35 36 37 32
			23/VII	1971 1	Γ.					
$\begin{array}{c} 8 & 45 \\ 9 & 15 \\ 10 & 15 \\ 10 & 45 \\ 12 & 15 \\ 12 & 45 \\ 14 & 15 \\ 14 & 45 \\ 16 & 15 \\ 16 & 45 \end{array}$	26,4 31,2 40,1 44,6 55,4 57,7 58,6 56,9 46,9 42,8		1,5** 1,55** 1,55** 1,55** 1,55** 1,55** 1,55* 1,55* 1,55* 1,55*	$92 \\ 97 \\ 104 \\ 108 \\ 109 \\ 106 \\ 110 \\ 75 \\ 69$	47 61 84 93 112 115 114 117 79 84	$12 \\ 14 \\ 17 \\ 19 \\ 22 \\ 23 \\ 23 \\ 23 \\ 15 \\ 16$	$54 \\ 56 \\ 57 \\ 59 \\ 59 \\ 60 \\ 61 \\ 63 \\ 0$	74 78 84 94 95 99 96 91 89	35 47 67 74 90 92 91 94 64 68	20 22 28 31 35 36 39 36 30 26

ПРИЛОЖЕНИЕ 2

профили температуры и удельной влажности воздуха. Коноко – и	Профили	температуры	И	уде ль ной	влажности	воздуха ¹ .	$K \ni H \ni K C = 7$
--	---------	-------------	---	-------------------	-----------	------------------------	-----------------------

Нм	<i>р</i> мб	t °C	q г/кг	Нм	<i>р</i> мб	t_°C	q г/кг	
0,1 0,25 0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1008 1008 1007 1007 1005 1002	21,3 20,9 20,7 20,6 20,2 19,8	7,5 7,4 7,3 7,3 7,0 6,6	
1,0 2,0		19,5	7,4 7,1		12-	–13 ч	3ч	
4,0 8,0 11,1	— —	18,7 18,3 18,2		$0,1 \\ 0,25 \\ 0,5$	1008 1008 1008	25,8 24,9 24,2	$\frac{-}{7,1}$	
$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0 \\ 11,1$		-13 ч 22,6 21,8 21,3 20,8 20,3 19,9 19,5 19,4	7,8 7,3 6,9 6,5 —	1,02,04,08,011,12550100150200	1008 1008 1008 1007 1007 1005 1002 996 991 985	23,7 23,2 22,8 22,5 22,3 22,0 21,7 21,3 20,8 20,3	6,8 6,7 6,6 6,4 6,4 6,3 6,4 6,4 6,4 6,4 6,3	
	14-	—15ч		300 400	973 962	19,3 18,5	5,7 5,6	
0,1 0.25	_	23,3 22,5	7.4		30)/VI	• •	
0,5 1.0	_	21,9 21,4	7,0		10–	–11 ч		
2,0 4,0 8,0 11,1	 16-	21,0 20,6 20,2 20,1 —17 ч	6,5 — — —	$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4 0$	1009 1009 1009 1009 1009 1009	24,223,623,222,822,422,422,1	7,5 7,2 7,0 6,8 6,7	
$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0 \\ 11,1$		23,8 22,9 22,4 21,9 21,5 21,1 20,7 20,6	7,0 6,6 6,3 6,2 —	8,0 11,1 25 50 100 150 200 300	1008 1008 1006 1003 997 991 986 974	21,8 21,7 21,6 21,4 21,0 20,4 20,0 19,0	6,7 6,7 6,9 6,9 6,9 6,9 6,7 6,7 6,6	
	29)/VII		12—13 ч				
$0,1 \\ 0,25 \\ 0,5 \\ 1,0$	10- 1008 1008 1008 1008	—11 ч 23,4 22,7 22,1 21,7	8,0 7,7 7,5	$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0$	1009 1009 1009 1009 1009	26,7 25,9 25,3 24,8 24,3	$\overline{7,2}$ 6,9 6,8 6,7	

¹ Методика наблюдений и обработки описана в статье Н. А. Лазаревой и др. «Профили метеорологических элементов по материалам измерений». — См. настоящий сборник.

Нм	<i>р</i> мб	t °C	q г/кг	Нм	<i>р</i> мб	t °℃	<i>q</i> г/кг
4,0 8,0 11,1 25 50 100 150 200 300	1009 1008 1008 1006 1003 998 992 986 975	23,9 23,5 23,4 23,1 22,8 22,4 22,0 21,5 20,6		$\begin{array}{r} 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000 \end{array}$	979 968 956 929 901 875 850 800 753 708 624	21,3 20,6 19,8 17,5 15,2 13,0 10,7 6,0 4,6 2,7	7,0 7,0 6,6 6,5 6,3 6,0 5,5 4,1 2,4
	17 10—	-11 ч		4000	2/	VII	1,0
0,1	1014	25,5 24 6	7.5		10—	-11 ч	
0,25 1,0 2,0 4,0 8,0 11,1	1014 1014 1014 1013 1013 1013	24,0 23,4 22,9 22,4 22,0 21,8	7,4 7,3 7,2	$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0$	1015 1015 1015 1015 1014 1014 1014	27,7 26,8 26,2 25,5 24,9 24,5 24,1	7,9 7,7 7,6 7,5 7,5 7,4
	12—	-13 ч		$\begin{array}{c}11,1\\25\end{array}$	$\begin{array}{c} 1014 \\ 1012 \end{array}$	24,1 · 24,6	7,4 7,3
$0,1 \\ 0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0$	1014 1014 1014 1014 1014 1013 1013	28,2 26,9 25,2 24,5 23,9 23,6	7,4 7,2 7,2 7,1	$50\\100\\150\\200\\300\\400$	1009 1004 998 992 981 970	24,5 23,7 23,0 22,5 21,7 20,9	7,3 7,4 7,4 7,4 7,3 7,2
11,1	1013	23,5	-	0.1	12 1015	-13ч 30.0	
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1 \end{array}$	14- 1014 1014 1014 1014 1013 1013 1013	-15 ч 29,3 28,0 27,1 26,3 25,6 25,0 24,5 24,4	7,4 7,2 7,1 7,1 	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0 \\ 11,1 \\ 25 \\ 50 \\ 100$	$1015 \\ 1015 \\ 1015 \\ 1014 \\ 1014 \\ 1014 \\ 1014 \\ 1012 \\ 1009 \\ 1004$	28,7 27,9 27,2 26,7 26,2 25,8 25,7 25,4 24,9 24,2	7,2 7,2 7,1 7,1 7,1 7,1 7,1 7,1 7,2 7,2
0,1	-16 1014	-17ч 29,6	_	$\begin{array}{c} 150 \\ 200 \end{array}$	998 992	23,7 23,3	7,2 7,2
$0,25 \\ 0,5 \\ 1.0$	1014 1014	28,5 27,7	7,4 7,3	300 400	981 970	$\substack{22,3\\21,4}$	7,2 7,2
2,0	1014 1014 1012	21,0 26,3	7,2 7,1	01	14 1014	-15ч 1313	I
4,0 8,0 11,1 25 50 100 150 200	1013 1013 1013 1011 1008 1002 997 991	23,8 25,2 25,1 24,4 23,7 23,0 22,5 22,1	7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,0	0,25 0,5 1,0 2,0 4,0 8,0 11,1	1014 1014 1014 1014 1013 1013 1013	30,1 29,2 28,3 27,7 27,2 26,8 26,7	7,2 7,1 7,1 7,0 7,0 7,0 7,0 7,0

Нм	рмб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>ф</i> г/кг
25 50 100 150 200 300	1011 1008 1003 997 991 980	26,2 25,8 25,1 24,6 24,2 23,2	6,9 7,0 7,0 6,9 6,8 6,7	1500 2000 2500 3000 4000	844 796 749 705 622	13,8 9,9 6,2 3,4 0,0	4,7 4,2 3,3 2,3 0,6
400	969	22,1	6,7	0.1	12-	-13 4 35.3	(
	16-	—17 ч		0,25	1008	34,2	5,1
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ \end{array}$	$\begin{array}{c} 1014\\ 1014\\ 1014\\ 1014\\ 1013\\ 1013\\ 1013\\ 1013\\ 1013\\ 1011\\ 1008\\ 1002\\ 997\\ 991\\ 980\\ 969\\ 956\\ 9956\\ 956\\ 956\\ 956\\ 850\\ 800\\ 754\\ 708\\ \end{array}$	$\begin{array}{c} 31,1\\ 30,1\\ 29,4\\ 28,7\\ 28,1\\ 27,6\\ 27,2\\ 27,0\\ 26,5\\ 26,1\\ 25,7\\ 23,8\\ 22,8\\ 21,8\\ 22,8\\ 21,8\\ 19,0\\ 17,1\\ 15,2\\ 13,0\\ 8,6\\ 4,4\\ 3,8 \end{array}$	-7,99 6,98 6,88 6,67,90 6,99 6,88 6,67,90 6,99 6,421 0,568 6,5,68 6,5,68	$\begin{array}{c} 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1008\\ 1008\\ 1008\\ 1008\\ 1007\\ 1007\\ 1005\\ 1002\\ 997\\ 991\\ 985\\ 974\\ 963\\ 948\\ 921\\ 895\\ 869\\ 844\\ 796\\ 749\\ 705\\ 622\\ 14- \end{array}$	33,4 32,8 32,0 31,5 31,1 30,9 30,7 29,1 28,7 28,1 27,2 20,6 17,9 15,3 10,9 15,3 10,9 -15 ч	5,1 5,0,0 5,0,9,9,9,9,9,9,9,9,9,9,9,8,8,8,8,8,8,8,8
4000	. 625	—1,6	1,9	0,1	1007	37,2	5.0
	4,	/VII		0,25	1007	35,1	5,0
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250 \end{array}$	10- 1008 1008 1008 1008 1008 1008 1007 1007 1007 1005 1002 997 991 986 974 963 950 922 895 870	-11 ч 31,5 30,7 30,1 29,6 29,1 28,7 28,4 28,2 27,7 27,3 26,6 25,9 25,3 24,2 23,3 22,4 20,1 17,9 15,9	-5,4,4,3,2,1,1,9,7,8,9,9,7,5,2,6,2,0,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500 3000 4000 2500 3000 4000 2500 2000 3000 4000 2500 3000 4000 2500 2000 3000 2000 2000 2000 3000 4000 1500 2000 2000 3000 4000 1500 2000 1000 1250 10000 1250 10000 12500 2000 2000 3000 4000 12500 2000	$\begin{array}{c} 1007 \\ 1007 \\ 1006 \\ 1006 \\ 1004 \\ 1001 \\ 995 \\ 990 \\ 984 \\ 974 \\ 963 \\ 947 \\ 963 \\ 947 \\ 920 \\ 894 \\ 869 \\ 869 \\ 864 \\ 749 \\ 749 \\ 705 \\ 622 \end{array}$	34,4 33,7 32,6 32,0 31,5 31,0 30,6 30,3 29,5 28,7 27,7 24,8 22,2 19,6 12,6 8,2 17,6 8,2 4,3 0 0	5,09,99,98,76,65,44,9,21,08,7,48,32,10,8,7,4,8,32,2,2,2,10,8,7,4,8,3,2,2,2,2,10,8,7,4,8,3,2,2,2,10,10,10,10,10,10,10,10,10,10,10,10,10,

· · · · · · · · · · · · · · · · · · ·							
Нм	<i>р</i> мб	t °C	<i>q</i> г/кг	Нм	рмб	t °C	q г/кг
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000 \end{array}$	16- 1006 1006 1006 1006 1006 1005 1005 1005 1003 1001 995 990 984 973 962 946 919 894 868 844 796	-17 ч 37,4 36,2 35,6 34,9 34,4 34,0 33,7 33,6 33,4 33,0 32,6 32,2 32,0 31,1 30,2 29,1 30,2 29,1 26,3 23,7 21,2 18,9 13,9	-2,2,1,1,0,9,8,8,6,5,4,4,5,5,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3	$\begin{array}{c} 1,0\\ 2,0\\ 4,0\\ 8,0\\ 111,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1004\\ 1004\\ 1004\\ 1003\\ 1003\\ 1001\\ 999\\ 993\\ 988\\ 982\\ 971\\ 958\\ 945\\ 919\\ 894\\ 868\\ 844\\ 796\\ 749\\ 705\\ 622\\ \end{array}$	28,9 29,0 29,2 29,6 29,9 31,1 31,5 31,4 31,1 30,9 30,2 29,3 28,3 26,0 23,7 21,5 18,9 14,0 9,1 4,8 -1,0	5,4 5,4 5,5,5 5,5,5 5,5,5,5 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
$2500 \\ 3000 \\ 4000$	$749 \\ 705 \\ 622$	9,0 4,8 -0,1	$ \begin{array}{c} 3,0\\ 2,5\\ 1,5 \end{array} $	$0,1 \\ 0,25 \\ 0,5$	1004 1004 1004	25,9 26,0 26,1	$\begin{bmatrix} -6,3\\ 6,3 \end{bmatrix}$
	19–	—20 ч		0,5	1004	26,1	6,3
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 1000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 0000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 000\\ 1250\\ 1500\\ 1000\\ 1250\\ 1000\\ 1000\\ 1250\\ 100\\ 1000\\ $	$ \begin{vmatrix} 1004 \\ 1004 \\ 1004 \\ 1004 \\ 1004 \\ 1003 \\ 1003 \\ 1001 \\ 999 \\ 993 \\ 988 \\ 982 \\ 971 \\ 960 \\ 945 \\ 919 \\ 894 \\ 868 \\ 848 \\ 868 \\ 848 \\ 868 \\ 848 \\ 868 \\ 848 \\ 868 \\ 848 \\ 868 \\ 868 \\ 848 \\ 868 \\$	$\begin{array}{c} 34,4\\ 34,2\\ 34,1\\ 33,9\\ 33,7\\ 33,3\\ 33,2\\ 33,3\\ 33,2\\ 33,1\\ 33,0\\ 32,8\\ 32,6\\ 32,4\\ 31,7\\ 30,9\\ 29,9\\ 27,1\\ 24,4\\ 21,9\\ 19,3\\ 14,2\\ 11,9\\ 19,3\\ 14,2\\ 11,9\\ 19,3\\ 14,2\\ 11,9\\ 19,3\\ 14,2\\ 11,9\\ 19,3\\ 14,2\\ 11,9\\ 11,2\\$	$-\frac{4,6}{4,5}$	2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1250 1500 2000 2500 3000 4000 2500 3000 400 500 750 1000 1250 2000	$\begin{array}{c} 1004\\ 1004\\ 1003\\ 1003\\ 1001\\ 998\\ 993\\ 987\\ 982\\ 970\\ 955\\ 945\\ 919\\ 894\\ 868\\ 844\\ 798\\ 749\\ 705\\ 622\\ \end{array}$	$ \begin{array}{c} 26,3\\ 26,6\\ 26,9\\ 27,1\\ 27,6\\ 28,1\\ 28,4\\ 28,6\\ 28,6\\ 28,6\\ 28,5\\ 27,2\\ 25,2\\ 23,1\\ 20,9\\ 18,4\\ 13,8\\ 9,0\\ 4,7\\ -1,6\\ \end{array} $	$\begin{array}{c} 6,3\\ 6,4\\ 6,4\\ 6,4\\ 6,4\\ 6,1\\ 6,0\\ 5,6\\ 5,6\\ 5,6\\ 5,2\\ 5,0\\ 4,7\\ 4,2\\ 4,1\\ 4,2\\ 4,1\\ 2,6\end{array}$
2000 2500 3000	796 749 705	14,2 9,0 4.8	3,5 3,4 3.2		5/	VII	
4000	622	—0,Š	2,3		0-	-1 4 1 91 9	1
20	ч 30 мин	— 21 ч 30	О мин	$0,1 \\ 0,25$	1004	21,2	6,9
$0,1 \\ 0,25 \\ 0,5$	1004 1004 1004	$ \begin{array}{c} 28,4 \\ 28,6 \\ 28,7 \end{array} $	5,4 5,4 5,4	$ \begin{array}{c} 0,5 \\ 1,0 \\ 2,0 \end{array} $	1004 1004 1004	21,4 21,5 21,7	6,9 6,9 6,9

·							
Нм	<i>р</i> мб	t °C	<i>q</i> г/кг	<i>Н</i> . м	<i>р</i> мб	t°C	<i>q</i> г/кг
$\begin{array}{c} 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500 \end{array}$	$\begin{array}{c} 1004\\ 1003\\ 1003\\ 1001\\ 998\\ 992\\ 987\\ 982\\ 970\\ 954\\ 954\\ 918\\ 893\\ 866\\ 843\\ 794\\ 748\\ \end{array}$	$\begin{array}{c} 22,1\\ 22,8\\ 23,4\\ 25,1\\ 26,7\\ 28,2\\ 28,5\\ 28,4\\ 27,3\\ 26,5\\ 24,6\\ 22,5\\ 20,3\\ 17,9\\ 13,5\\ 8,8 \end{array}$	$\begin{array}{c} 7,1\\ 7,56\\ 8,9\\ 7,30\\ 7,30\\ 7,3\\ 7,0\\ 6,2\\ 5,3\\ 4,6\\ 4,2\\ 4,1\\ 4,0\\ 4,1\\ 4,0\\ \end{array}$	$\begin{array}{c} 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000 \end{array}$	$\begin{array}{c} 1000\\ 998\\ 991\\ 986\\ 980\\ 968\\ 953\\ 942\\ 916\\ 891\\ 865\\ 841\\ 791\\ 745\\ 701\\ 619\\ \end{array}$	$\begin{array}{c} 21,0\\ 24,1\\ 28,0\\ 28,2\\ 27,9\\ 27,2\\ 26,6\\ 25,8\\ 23,7\\ 21,6\\ 19,4\\ 17,2\\ 12,8\\ 8,4\\ 4,1\\ -2,0\\ \end{array}$	6,8 6,3 5,3,7 4,3 4,1 4,0 4,0 3,9 3,9 3,9 3,5 1,6
$\begin{array}{c} 3000\\ 4000 \end{array}$	704 620	$ ^{4,5}_{-1,9}$	3,8	0,1	4 1003	-5ч 16,9	
	2-	-3ч		0,25 0,5	1003 1003	17,0 17,1	6,4 6,4
$egin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500 \end{array}$	$\begin{array}{c} 1003\\ 1003\\ 1003\\ 1003\\ 1003\\ 1003\\ 1002\\ 1002\\ 1002\\ 1000\\ 998\\ 992\\ 987\\ 981\\ 970\\ 954\\ 943\\ 916\\ 892\\ 865\\ 841\\ 792\\ 746 \end{array}$	$ \begin{array}{c} 18,3\\ 18,4\\ 18,4\\ 18,4\\ 18,6\\ 19,2\\ 20,0\\ 20,7\\ 23,0\\ 26,3\\ 28,3\\ 28,4\\ 28,2\\ 27,5\\ 26,9\\ 26,1\\ 24,0\\ 21,9\\ 19,6\\ 17,4\\ 13,0\\ 8,6 \end{array} $	$\begin{array}{c} -\\ 6,9\\ 6,9\\ 7,0\\ 7,1\\ 7,3\\ 7,3\\ 7,3\\ 6,6\\ 5,2\\ 5,6\\ 5,2\\ 5,6\\ 4,5\\ 4,5\\ 4,5\\ 4,2\\ 4,1\\ 4,0\\ 3,7\end{array}$	$\begin{array}{c} 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$		17,2 17,3 17,6 18,1 18,5 20,1 23,0 26,9 27,4 27,4 27,4 27,4 27,4 27,4 27,4 27,4	6,556,66,23,66,77,7,76,4,95
3000 4000	702 620	4,2 -2,0	3,2	$0,1 \\ 0,25$	1002 1002	$19,6 \\ 19,6$	6,5
0,10,250,51,02,04,08,011,1	3- 1003 1003 1003 1003 1003 1003 1002 1002	-4 ч 17,8 17,8 17,8 17,8 17,9 18,1 18,5 19,1 19,6	6,6 6,6 6,6 6,7 6,8 6,9	$\begin{array}{c} 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ \end{array}$	1002 1002 1002 1002 1001 1001 999 997 990 984	19,7 19,7 19,7 19,7 19,7 19,8 19,8 20,0 21,5 23,4	6,5 6,5 6,5 6,5 6,5 6,4 5,7 4,8

	Нм	рмб	t °C	<i>q</i> г/кг	Нм	рмб	t °C	<i>q</i> г/кг
	$\begin{array}{c} 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000 \end{array}$	979 967 953 942 915 890 864 840 790 744 700 618	24,9 25,3 25,3 24,7 23,0 21,0 18,8 16,8 12,7 8,2 4,0 2,3	4,4 3,5 3,2 3,2 3,2 3,1 3,1 3,0 2,7 1,5	$\begin{array}{c} 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	955 944 916 890 864 839 791 744 699 616	22,4 21,3 18,8 16,7 14,4 12,0 7,8 3,4 -0,4 -5,1	6,8 6,7 6,4 6,3 6,1 5,6 4,8 4,4 3,8 3,4
		10	/VI1	ý		, 10—	11 ч	
		10—	-11 ч		0,1	1007	25,4	
	0,1 0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1250 1500 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 4000 2500 3000 2500 3000 3000 3000 2500 3000	$\begin{array}{c} 1003\\ 1003\\ 1003\\ 1003\\ 1003\\ 1003\\ 1002\\ 1002\\ 1002\\ 1002\\ 1002\\ 997\\ 992\\ 986\\ 981\\ 969\\ 985\\ 944\\ 916\\ 890\\ 864\\ 839\\ 791\\ 744\\ 699\\ 616\\ \end{array}$	$\begin{array}{c} 11 \\ 28,9 \\ 28,0 \\ 27,5 \\ 26,9 \\ 26,4 \\ 26,0 \\ 25,6 \\ 25,4 \\ 24,9 \\ 24,5 \\ 23,9 \\ 23,5 \\ 23,0 \\ 22,2 \\ 21,4 \\ 20,5 \\ 16,5 \\ 14,5 \\ 16,5 \\ 14,5 \\ 12,4 \\ 8,4 \\ 4,5 \\ 0,8 \\ -4,8 \end{array}$	8,0 7,8 7,8 7,8 7,8 7,8 7,8 7,6 7,5 7,5 7,2 0,9 7,5 6,5 6,5 5,6 6,5 5,6 1,5 2 3,2	0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500 3000 4000	$\begin{array}{c} 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1006\\ 1006\\ 1004\\ 1001\\ 995\\ 990\\ 984\\ 972\\ 963\\ 947\\ 919\\ 893\\ 867\\ 841\\ 792\\ 745\\ 700\\ 619\\ 12- \end{array}$	24,4 23,7 23,1 22,6 22,4 22,4 22,3 22,2 21,9 21,2 20,6 20,1 19,1 18,2 17,2 15,0 12,8 10,9 9,0 5,6 2,4 -0,6 -4,6 13 u	8,97,76,66,54,29,86,42,11,9,3,80,50,8,5,42,9,86,42,11,9,3,80,5,0,8,5,0,5,0,8,5,0,5,0,8,5,0,5,0,8,0,5,0,0,5,0,0,0,0
		12—	13 ч		$\begin{array}{c} 0,1\\ 0,25 \end{array}$	$\begin{array}{c} 1006 \\ 1006 \end{array}$	27,4 26,6	8,6
•	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ \end{array}$	$\begin{array}{c} 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1002 \\ 1002 \\ 1000 \\ 997 \\ 997 \\ 992 \\ 986 \\ 981 \\ 969 \end{array}$	$\begin{array}{c} 32,0\\ 30,8\\ 30,2\\ 29,5\\ 28,9\\ 28,9\\ 27,8\\ 27,5\\ 26,7\\ 26,1\\ 25,2\\ 24,7\\ 24,3\\ 23,3\\ 23,3\\ \end{array}$	7,7 7,6 7,6 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,2 7,1 7,0 7,0 6,9	$\begin{array}{c} 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ \end{array}$	$\begin{array}{c} 1006\\ 1006\\ 1006\\ 1005\\ 1005\\ 1005\\ 1003\\ 1001\\ 996\\ 990\\ 984\\ 973\\ 963\\ 947\\ \end{array}$	$\begin{array}{c} 26,0\\ 25,4\\ 24,9\\ 24,7\\ 24,6\\ 24,6\\ 24,6\\ 24,6\\ 24,6\\ 24,6\\ 23,8\\ 23,1\\ 22,7\\ 21,6\\ 20,4\\ 19,2\\ \end{array}$	8,5 8,4 8,3 8,3 8,2 8,2 8,2 10 9,6 7,5 7,4

		,						
Нм	рмб	t °C	<i>q</i> г/кг	Нм	рмб	t°C	<i>q</i> г/кг	
750 1000 1250 1500 2000	919 893 867 841 792	$ \begin{array}{c c} 16,6\\ 14,3\\ 12,0\\ 9,9\\ 5,8 \end{array} $	7,2 7,0 6,6 6,2 5,8	2000 2500 3000 4000	792 745 701 618	6,4 2,9 0,0 4,8	7,6 6,4 5,4 4,2	
$2500 \\ 3000 \\ 4000$	745 700 619	2,6 -0,4 -4,6	5,2 4,6 3,3		13 9ч30м	/VII ин — 10 ч		
	. 14–	-15 ч		0,1	1007	24,9	· 1	
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1250\\ 1250\\ 12500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\left \begin{array}{c} 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1005\\ 1005\\ 1005\\ 1003\\ 1000\\ 995\\ 990\\ 984\\ 972\\ 963\\ 947\\ 920\\ 894\\ 868\\ 841\\ 792\\ 745\\ 792\\ 745\\ 702\\ 618\end{array}\right.$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} - \\ 8,54\\ 8,44\\ 8,44\\ 8,44\\ 8,44\\ 8,44\\ 8,44\\ 8,21\\ 7,76\\ 7,10\\ 6,88\\ 5,0\\ 5,0\\ 5,0\\ 5,0\\ 5,0\\ 5,0\\ 5,0\\ 5,0$	0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 3000 4000 2500 3000 4000 3000 4000 2500 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 300 3000	$\begin{array}{c} 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1006\\ 1006\\ 1006\\ 1004\\ 1001\\ 995\\ 989\\ 984\\ 972\\ 961\\ 950\\ 923\\ 896\\ 870\\ 844\\ 794\\ 747\\ 702\\ 619\\ \end{array}$	$\begin{array}{c} 24,4\\ 23,9\\ 23,4\\ 22,9\\ 22,5\\ 22,2\\ 22,0\\ 21,6\\ 21,2\\ 20,7\\ 20,1\\ 19,7\\ 18,9\\ 18,3\\ 17,5\\ 15,2\\ 13,5\\ 9,9\\ 6,2\\ 2,4\\ -1,0\\ -5,3\end{array}$		
	16–	-17 ч	0,0	0.1	10-	-11 ч	•	
$egin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500 \end{array}$	1006 1006 1006 1006 1006 1005 1005 1005	$ \begin{array}{c} 28,2\\ 27,4\\ 27,0\\ 26,5\\ 26,1\\ 25,8\\ 25,5\\ 25,4\\ 25,0\\ 24,8\\ 24,4\\ 24,0\\ 23,6\\ 22,4\\ 21,2\\ 20,1\\ 17,4\\ 15,0\\ 12,6\\ 10,5\\ \end{array} $	8,8 8,6 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2000\\ \end{array}$	$\begin{array}{c} 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1006 \\ 1006 \\ 1006 \\ 1004 \\ 1001 \\ 995 \\ 989 \\ 984 \\ 972 \\ 961 \\ 950 \\ 923 \\ 896 \\ 870 \\ 870 \\ 870 \\ 8794 \\ \end{array}$	$\begin{smallmatrix} 20,2\\25,5\\25,5\\25,5\\23,4\\23,9\\23,4\\23,2\\23,2\\23,2\\22,6\\22,3\\21,6\\19,9\\19,2\\18,4\\16,0\\19,9\\19,2\\18,4\\16,0\\12,0\\12,0\\10,4\\6,6\end{smallmatrix}$	$\begin{array}{c} & & & \\ & 8,0 \\ & 7,9 \\ & 7,8 \\ & 7,8 \\ & 7,8 \\ & 7,7 \\ & 7,7 \\ & 7,7 \\ & 7,5 \\ & 7,3 \\ & 7,2 \\ & 7,1 \\ & 6,6 \\ & 6,4 \\ & 6,6 \\ & 5,6 \\ & 5,2 \\ & 4,6 \end{array}$	

Нм	<i>р</i> мб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>q</i> г/кг
2500 3000 4000	747 702 619	2,6 0,8 5,4	$ \begin{array}{ c c} 4,1\\ 3,6\\ 2,8 \end{array} $	0,1			
	12—	-13 ч		0,25 0,5	1010	29,9	7,7
0,1 0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500 3000 4000	$\begin{bmatrix} 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1006\\ 1006\\ 1006\\ 1004\\ 1001\\ 995\\ 989\\ 984\\ 972\\ 962\\ 950\\ 984\\ 972\\ 962\\ 950\\ 924\\ 896\\ 870\\ 844\\ 795\\ 747\\ 702\\ 619\\ \end{bmatrix}$	$\begin{array}{c} 30,0\\ 29,0\\ 28,2\\ 27,4\\ 26,7\\ 26,0\\ 25,6\\ 25,4\\ 25,2\\ 24,6\\ 24,0\\ 23,4\\ 23,0\\ 22,0\\ 21,2\\ 20,3\\ 17,6\\ 15,3\\ 13,2\\ 11,2\\ 7,2\\ 3,2\\0,3\\ -5,6\end{array}$	- 8,99 7,87 7,66 7,55 7,54 3,286 6,40 6,41 4,386 4,6366 4,638	0,1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500 3000 4000 4000 500 750 3000 4000 1500 2500 3000 3000 4000 0,1 0,25 500 0,1 0,25 500 0,1 0,25 0 0,1 0 0,1 0 0 100 0,1 0 100 100 0,1 0 1000 10000 1000 1000 10000 10000 1000 10	$ \begin{array}{c} 1010 \\ 1010 \\ 1009 \\ 1009 \\ 1009 \\ 1007 \\ 1004 \\ 998 \\ 992 \\ 987 \\ 976 \\ 964 \\ 952 \\ 925 \\ 899 \\ 873 \\ 848 \\ 799 \\ 752 \\ 707 \\ 623 \\ 12- \\ 1009 \\ 1009 \\ 1009 \end{array} $	29,1 28,8 28,4 28,0 27,9 27,8 28,0 27,8 27,6 27,6 27,6 27,6 27,6 27,6 27,6 27,6	7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,7 6,7 6,2 6,0 6,0 6,1 5,3 4,6 3,1
	14—	-15 ч		0,5 1	1009 1009	33,2 32,7	6,0 6,0
0,1 0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2000 2000	$ \begin{array}{c} 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1007 \\ 1006 \\ 1006 \\ 1006 \\ 1004 \\ 1001 \\ 995 \\ 989 \\ 984 \\ 973 \\ 962 \\ 950 \\ 924 \\ 897 \\ 871 \\ 845 \\ 796 \\ 871 \\ 845 \\ 796 \\$	$ \begin{array}{c} 31,2\\ 30,2\\ 29,6\\ 28,9\\ 28,2\\ 27,7\\ 27,2\\ 27,1\\ 26,8\\ 26,4\\ 25,6\\ 24,4\\ 23,4\\ 22,4\\ 21,4\\ 19,0\\ 16,5\\ 14,2\\ 11,7\\ 7,6\\ 7,6\\ 7\end{array} $	7,4 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3 7,3	$\begin{array}{c} 2\\ 4\\ 8\\ 11, 1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1006\\ 1003\\ 998\\ 992\\ 987\\ 976\\ 964\\ 952\\ 925\\ 899\\ 9752\\ 899\\ 973\\ 848\\ 799\\ 752\\ 707\\ 623\\ 14- \end{array}$	32,2 31,6 31,2 30,8 30,6 30,0 29,4 29,0 28,0 27,0 26,0 23,2 20,6 18,3 16,0 11,2 7,2 3,0 -5,2 -15 y	6,00 5,98 5,88 5,66 5,666 5,666 5,666 5,666 5,666 5,884 4,1 3,1 5,844 4,1 3,1 5,100 5,10
2500 3000 4000	748 703 619	$ \begin{array}{c} 3,1 \\ 0,2 \\ -5,7 \end{array} $	4,4 4,0 2,4	$0,1 \\ 0,25 \\ 0,5$	1009 1009 1009	33,4 32,8 32,5	6,6 6,4
. <u> </u>						· · · · · · · · · · · · · · · · · · ·	······
---	--	--	--	--	--	---	---
Нм	рмб	t ℃	<i>q</i> г/кг	Нм	рмб	t°C	<i>q</i> г/кг
$ \begin{array}{c} 1\\2\\4\\8\\11,1\\25\\50\\100\\150\\200\\300\\400\\500\\750\\1000\\1250\\1500\\2000\\2500\\3000\\400\end{array} $	$\begin{array}{c} 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1007\\ 1005\\ 1002\\ 996\\ 991\\ 985\\ 974\\ 962\\ 952\\ 925\\ 899\\ 873\\ 848\\ 798\\ 752\\ 707\\ 707\end{array}$	$\begin{array}{c} 32,2\\ 31,8\\ 31,6\\ 31,3\\ 31,2\\ 30,9\\ 30,5\\ 30,0\\ 29,4\\ 28,8\\ 27,6\\ 26,5\\ 25,4\\ 22,9\\ 20,4\\ 18,2\\ 16,0\\ 11,4\\ 7,2\\ 3,2\\ \end{array}$	6,44200,865455554321830	$\begin{array}{r} 4,0\\ 8,0\\ 111,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1011\\ 1010\\ 1010\\ 1008\\ 1005\\ 1000\\ 994\\ 989\\ 978\\ 967\\ 953\\ 926\\ 900\\ 874\\ 849\\ 800\\ 753\\ 709\\ 625\\ \end{array}$	$\begin{array}{c} 30,4\\ 29,9\\ 29,7\\ 29,0\\ 28,4\\ 27,6\\ 27,1\\ 26,7\\ 25,8\\ 25,0\\ 24,1\\ 21,8\\ 19,6\\ 17,3\\ 14,7\\ 10,4\\ 6,8\\ 3,4\\ -2,4\\ \end{array}$	$\begin{array}{c} 7,0\\ 6,75\\ 6,75\\ 6,72\\ 6,11\\ 6,11\\ 6,11\\ 6,11\\ 6,10\\ 6,0\\ 5,16\\ 4,1\\ 6,1\\ 6,0\\ 5,16\\ 4,1\\ 4,6\end{array}$
4000	024	[—4,8	3,1	0.1	14	- ро ч 1 : - 26 - 4	
	10-	-11 ч		0,25	1011	30,4 34,7 337	5,8
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 2500\end{array}$	$\begin{array}{c} 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1011\\ 1011\\ 1009\\ 1006\\ 1000\\ 995\\ 989\\ 978\\ 966\\ 953\\ 926\\ 953\\ 926\\ 900\\ 874\\ 849\\ 800\\ 753\\ \end{array}$	$\begin{array}{c} 29,9\\ 29,1\\ 28,6\\ 28,1\\ 27,7\\ 27,3\\ 27,0\\ 26,9\\ 26,7\\ 26,4\\ 26,1\\ 25,9\\ 25,7\\ 25,7\\ 25,7\\ 25,2\\ 23,8\\ 21,5\\ 19,4\\ 17,1\\ 10,5\\ 6,7\end{array}$	- 5,4,4,4,5,7,8,9,1,3,3,3,1,8,4,6,0,5,1,2,6,5,2,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,4,6,0,5,4,6,0,5,1,2,6,5,4,6,0,5,1,2,6,5,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1	$\begin{array}{c} 0,3\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1011\\ 1011\\ 1011\\ 1011\\ 1010\\ 1008\\ 1005\\ 1000\\ 994\\ 989\\ 977\\ 968\\ 953\\ 926\\ 900\\ 874\\ 849\\ 800\\ 753\\ 709\\ 625\\ \end{array}$	32,8 32,2 31,6 31,2 31,1 31,0 30,6 29,9 29,2 28,6 27,6 26,5 25,4 20,2 17,6 15,2 10,7 7,0 3,4 -2,4	0 8 8 8 8 8 8 8 8 8 8 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
$\begin{array}{c} 3500 \\ 4000 \end{array}$	709 625	3,4 -2,4	4,1 2,6		16-	—17 ч	•
0,1 0,25 0,5 1,0 2,0	12– 1011 1011 1011 1011 1011	-13 ч 33,8 32,6 31,9 31,4 30,9	7,4 7,3 7,2 7,1	0,10,250,51,02,04,08,011,1	1011 1011 1011 1011 1011 1011 1010 1010	36,4 34,9 33,9 33,2 32,7 32,2 31,8 31,7	$ \begin{array}{r} 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,1 \\ 6,0 \\ 6,0 \\ \end{array} $

4 Заказ № 294

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Нм	р мб	t °C	<i>q</i> г/кг	Нм	рмб	t ℃	<i>q</i> г/кг
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c} 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500 \end{array}$	1008 1005 1000 994 989 977 968 953 926 900 874 849 800 753	$\begin{array}{c} 31,5\\31,3\\30,7\\29,4\\28,2\\27,3\\26,4\\23,9\\21,0\\18,4\\15,9\\11,2\\7,2\end{array}$	5,865432222211155,5555,55555,55555555555555555	$\begin{array}{c} 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000 \end{array}$	994 988 977 965 926 926 900 874 849 800 753 709 625	$\begin{array}{c} 29,9\\ 29,4\\ 28,3\\ 27,6\\ 26,5\\ 24,2\\ 21,5\\ 19,0\\ 17,0\\ 12,7\\ 7,7\\ 3,2\\ -3,0 \end{array}$	5,5,3,3,2,3,3,4,3,8 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3000 4000	709 625	3,4 -2,4	4,1 2,6	0.1	22-	-23 ч	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10000	18–	–19 ч	,	0,1 0,25	1009	23,8 24,0	7,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\end{array}$	$\begin{array}{c} 1010\\ 1010\\ 1010\\ 1010\\ 1010\\ 1009\\ 1009\\ 1007\\ 1005\\ 999\\ 994\\ 988\\ 977\\ 965\\ 9953\\ 926\\ 900\\ 874\\ 849\\ 800\\ 753\\ \end{array}$	$ \begin{array}{c} 34,9\\ 34,0\\ 33,5\\ 33,0\\ 32,6\\ 32,2\\ 32,0\\ 31,9\\ 31,7\\ 31,4\\ 30,8\\ 30,2\\ 29,6\\ 28,5\\ 27,7\\ 27,0\\ 24,4\\ 21,3\\ 18,7\\ 16,6\\ 12,1\\ 7,4 \end{array} $	-999999986321111000128	$\begin{array}{c} 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1006\\ 1003\\ 998\\ 998\\ 998\\ 998\\ 998\\ 998\\ 998\\ 99$	$\begin{array}{c} 24,4\\ 24,7\\ 25,2\\ 25,8\\ 26,6\\ 27,0\\ 28,1\\ 28,8\\ 28,9\\ 28,7\\ 28,4\\ 27,7\\ 26,9\\ 25,8\\ 23,5\\ 19,4\\ 17,2\\ 12,9\\ 7,9\\ 3,2\\ -3,2\\ -3,2\\ \end{array}$	7,4 7,5 7,6 8,0 8,1 9,2 9,0 8,2 7,3 8,2 7,3 6,4 6,4 5,5 5,0 4,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3000 4000	709 625	$3,3 \\ -2,6$	4,3 3,0		17 0—	/VII -1 ч	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50 \end{array}$	20- 1010 1010 1010 1010 1010 1009 1009 10	-21 ч 31,1 31,0 31,0 31,0 31,0 31,1 31,1 31,1 31,1 31,0 30,8	$ \begin{array}{r} 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ \end{array} $	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\end{array}$	1011 1011 1011 1011 1011 1011 1010 1008 1005 1000 994	21,6 21,7 21,8 22,0 22,3 22,6 23,2 23,7 25,6 27,7 28,3 28,2	8,6 8,7 8,8 8,9 9,0 9,1 9,3 9,4 8,8 8,2 8,0

Н м	р мб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>q</i> г/кг
300 400 500 750	977 964 953 926	27,2 26,4 25,5 23,4	7,6 7,5 7,3 7,0	1000 1250 1500 2000	900 874 849 800	21,6 19,6 17,3 12,8	6,5 6,5 6,3 6,0
$ 1000 \\ 1250 \\ 1500 \\ 2000 \\ 2500 $	874 849 800	19,3 17,2 12,9	6,8 6,6 6,5 6,2	2500 3000 4000	753 709 625	7,7 3,1 -2,4 -2,4	5,5 5,1 4,1
3000	709	3,2	5,5	0.1	4 1 1010	-5ч ! 178	· 1
4000	1 025 2-	ј — 3,0 —3 ч	4,1	$0,25 \\ 0,5$	1010 1010	17,9	9,1 9,0
0,1 0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1250 1250 2000 2000	$\begin{array}{c} 2-\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 998\\ 998\\ 998\\ 998\\ 998\\ 998\\ 995\\ 998\\ 995\\ 9964\\ 975\\ 964\\ 849\\ 800\\ 753\\ 700\\ \end{array}$	-5 4 18,4 18,5 18,6 18,8 19,9 20,3 21,7 24,4 27,2 27,3 27,0 26,5 25,8 23,8 21,6 17,4 12,9 8,0 19,9 20,3 21,7 24,4 27,5 27,3 27,0 26,5 25,8 21,6 19,6 19,9 20,3 21,7 21,8 2	9,0012467812852097543151		$\begin{array}{c} 1010\\ 1010\\ 1010\\ 1009\\ 1009\\ 1009\\ 1007\\ 1004\\ 998\\ 992\\ 987\\ 975\\ 964\\ 953\\ 925\\ 900\\ 874\\ 849\\ 800\\ 753\\ 709\\ 625\\ 6-\end{array}$	18,1 18,2 18,4 18,7 19,0 22,1 24,8 27,1 27,2 27,0 26,6 26,1 25,5 21,3 19,3 17,1 12,8 7,6 3,1 -2,3	9,0099,0099,0099,0099,0099,0099,0099,0
4000	625	-2,6	4,1	$0,1 \\ 0,25$	1010 1010	17,8 17,8	8,7
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300 \end{array}$	3- 1010 1010 1010 1010 1010 1009 1009 100	-4 q 18,7 18,8 18,8 18,9 19,1 19,3 19,7 19,9 21,9 24,5 27,2 27,3 27,1 26,7	9,0 9,0 9,1 9,2 9,4 9,5 9,5 8,9 7,4 7,1	$\begin{array}{c} 0,5\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\end{array}$	1010 1010 1010 1009 1009 1009 1007 1004 998 992 987 975 964 953 925	17,7 17,7 17,8 18,2 18,8 19,2 22,8 24,5 25,7 25,7 25,7 25,2 23,4	,788901234328389 999934328389 9999988389 9999999999999999999999
400 500 750	964 953 925	$ \begin{array}{c c} 20,7 \\ 26,4 \\ 25,7 \\ 23,7 \end{array} $	7,1 7,0 6,8 6,7	1000 1200 1500 2000	900 874 849 800	$ \begin{array}{c} 21,0\\ 18,9\\ 16,8\\ 12.2 \end{array} $	$ \begin{array}{c} 6,5 \\ 6,4 \\ 6,3 \\ 5,9 \\ \end{array} $

4*

			_				
Нм	рмб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>q</i> г/кг
2500 3000 4000	753 709 625	7,5 3,2 -2,2	5,5 5,2 4,2	0.1	10-	11 ч I 34 5	
•	18	/VI1	•	0,25	1012	33,4	9,8
:	9 ч9	ч 30 мин.		0,5 1,0	1012	32,8	9,9
	$\begin{array}{c} 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1011\\ 1011\\ 1009\\ 1006\\ 1001\\ 995\\ 990\\ 979\\ 968\\ 957\\ 930\\ 904\\ 878\\ 852\\ 803\\ 754\end{array}$	30,0 29,5 29,1 28,8 28,4 28,1 27,7 27,6 27,1 26,6 26,9 27,2 27,3 26,8 26,0 23,7 21,5 19,1 16,9 12,8 27,2 27,3 26,8 26,0 23,7 21,5 19,1 16,9 12,8 23,2 23,2 23,2 24,2 25,2 25,2 25,2 25,2 25,2 25,2 25,2 25,2 25,2 25,2 27,3 26,6 26,0 23,7 21,5 19,1 16,9 22,2 27,2 27,3 26,8 23,7 21,5 19,1 16,9 22,2 27,2 27,3 26,2 27,2 27,3 26,8 23,7 21,5 19,1 16,9 22,2 27,2 25,2 25,2 27,2 27,3 26,2 27,2 27,3 26,2 27,2 27,3 26,2 27,2 27,3 26,2 27,2 27,3 26,2 23,7 21,5 19,1 16,9 22,2 27,2 27,3 25,2 27,2 27,3 25,2 27,5 19,1 16,9 12,8 25,2 27,2 27,3 25,2 27,2 27,3 27,5 19,1 16,9 12,8 27,2 27,2 27,3 27,5 19,1 16,9 12,8 27,2 27,2 27,2 27,2 27,3 27,5	$\begin{array}{c} \hline 10,7\\ 10,6\\ 10,6\\ 10,6\\ 10,5\\ 10,5\\ 10,4\\ 10,0\\ 9,5\\ 9,0\\ 8,2\\ 7,5\\ 6,9\\ 6,6\\ 5,7\\ 5,5\\ 4\\ 3,0\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	$\begin{array}{c} 2\\ 4\\ 8\\ 111,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1012\\ 1012\\ 1010\\ 1010\\ 1008\\ 1006\\ 1001\\ 995\\ 990\\ 979\\ 968\\ 957\\ 930\\ 904\\ 878\\ 852\\ 803\\ 754\\ 710\\ 628\\ \end{array}$	$\begin{array}{c} 31,8\\ 31,3\\ 30,9\\ 30,7\\ 30,1\\ 29,7\\ 29,2\\ 28,7\\ 28,4\\ 27,6\\ 27,0\\ 26,2\\ 23,9\\ 21,6\\ 19,4\\ 17,2\\ 13,0\\ 9,5\\ 6,4\\ 0,0\\ \end{array}$	$10,0 \\ 9,8 \\ 9,6 \\ 9,9,1 \\ 8,8 \\ 8,6 \\ 8,3 \\ 7,0 \\ 6,0 \\ 5,6 \\ 4,3 \\ 7,6 \\ 5,5 \\ 4,8 \\ 4,7 \\ 3,7 \\ 100 \\ 1$
2500 3000 4000	710 628	6,3 0.0	4,4		12-	-13 ч	
1000	9ч30	мин—10 ч		0.1	1 1011	37,5	·
0,1 0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1200 2000 2000 2500 200	$\begin{array}{c} 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1012\\ 1011\\ 1011\\ 1011\\ 1009\\ 1006\\ 1001\\ 995\\ 990\\ 979\\ 968\\ 957\\ 930\\ 904\\ 878\\ 852\\ 803\\ 754\\ 710\\ 628 \end{array}$	$\begin{array}{c} 32,4\\ 31,4\\ 30,8\\ 30,4\\ 30,1\\ 29,7\\ 29,2\\ 29,0\\ 28,4\\ 28,0\\ 27,7\\ 27,7\\ 27,7\\ 27,7\\ 27,7\\ 27,6\\ 27,4\\ 26,8\\ 26,0\\ 23,7\\ 21,5\\ 19,1\\ 16,9\\ 12,8\\ 9,3\\ 6,3\\ 0,0\\ \end{array}$	$\begin{array}{c} -\\ 10,5\\ 10,5\\ 10,5\\ 10,5\\ 10,4\\ 10,2\\ 10,1\\ 9,7\\ 9,4\\ 8,9\\ 8,5\\ 8,2\\ 7,6\\ 6,6\\ 5,5\\ 5,5\\ 5,4\\ 4,9\\ 4,4\\ 3,7 \end{array}$	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1011\\ 1011\\ 1011\\ 1011\\ 1011\\ 1010\\ 1010\\ 1008\\ 1006\\ 1000\\ 995\\ 989\\ 978\\ 967\\ 952\\ 926\\ 900\\ 874\\ 850\\ 801\\ 754\\ 710\\ 628\\ \end{array}$	36,5 35,8 35,2 34,8 34,3 33,7 33,3 32,8 32,2 31,3 30,6 29,8 26,4 24,2 22,0 20,0 15,4 11,0 6,6 0,0	8,0 8,0 8,0 8,0 8,0 7,8 7,6 7,4 7,7,9 6,87 6,65,4 2,0 5,38 4,7 3,7

Нм	р мб	t°C	<i>q</i> г/кг	Нм	<i>р</i> мб	t°C	<i>q</i> г/кг
- di.	19)/V1I			14	-15 ч	
$egin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 2500\\ 3000\\ 4000 \end{array}$	$\begin{array}{c} 10-\\ 1010\\ 1010\\ 1010\\ 1010\\ 1010\\ 1009\\ 1009\\ 1009\\ 1007\\ 1005\\ 999\\ 993\\ 988\\ 977\\ 967\\ 953\\ 926\\ 900\\ 874\\ 850\\ 801\\ 754\\ 850\\ 801\\ 754\\ 801\\ 754\\ 801\\ 754\\ 857\\ 801\\ 754\\ 801\\ 754\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 754\\ 801\\ 801\\ 801\\ 801\\ 801\\ 801\\ 801\\ 801$	-11 4 34,4 32,6 32,6 32,0 31,4 31,0 30,6 30,6 30,3 29,9 28,5 27,6 26,8 26,2 24,6 20,6 18,7 14,6 10,4 6,5 4	-9,09,98,88,88,88,88,88,88,88,88,88,88,88,88	0,1 0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1000 1250 2000 3000 4000 25000 200 2000	$\begin{array}{c} 1010\\ 1010\\ 1010\\ 1010\\ 1010\\ 1010\\ 1009\\ 1009\\ 1009\\ 1007\\ 1004\\ 998\\ 993\\ 988\\ 977\\ 967\\ 953\\ 926\\ 900\\ 875\\ 850\\ 801\\ 755\\ 710\\ 627\\ 16-1\\ 1009\\ \end{array}$	36,4 35,4 34,8 34,2 33,0 33,5 33,3 33,2 33,0 32,6 31,1 31,6 31,1 30,2 29,2 28,2 20,8 18,7 14,4 10,4 6,2 -1,4 -17 4	$\overline{7,6}$ 7,6 7,6 7,5 7,4 7,4 7,4 7,4 7,4 7,4 7,4 7,4 7,4 7,4
0,1 0,25 0,5 1 2 4 8 11,1 25	12- 1010 1010 1010 1010 1010 1009 1009	-13 ч 37,6 36,2 35,4 34,7 34,1 33,6 33,2 33,1 227	8,0 8,0 7,9 7,8 7,7 7,7	0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300	$1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1008 \\ 1008 \\ 1006 \\ 1003 \\ 998 \\ 992 \\ 986 \\ 976$	$\begin{array}{c} 33,8\\ 33,4\\ 33,0\\ 32,7\\ 32,4\\ 32,2\\ 32,1\\ 31,9\\ 31,6\\ 31,1\\ 30,6\\ 30,1\\ 29,2 \end{array}$	8,5 8,2 7,8 7,8 7,7 7,7 7,7 7,7 7,7 7,7 7,6 7,6
25 50 100 150 200 400 500 750 1000 1250 1500 2000 2500 -3000 4000	$\begin{array}{c} 1007\\ 1004\\ 999\\ 993\\ 988\\ 977\\ 967\\ 953\\ 926\\ 900\\ 874\\ 850\\ 801\\ 754\\ 710\\ 627\\ \end{array}$	$\begin{array}{c} 32,7\\ 32,3\\ 31,8\\ 31,4\\ 31,1\\ 30,2\\ 29,0\\ 28,0\\ 25,5\\ 23,1\\ 20,8\\ 18,8\\ 14,6\\ 10,4\\ 6,4\\ 6,4\\ -1,4\\ \end{array}$	7,6 7,4 7,3 7,2 7,1 7,2 7,1 6,8 6,6 6,6 6,5 6,4 6,14 5,8 6,5 4,5 3,5	$\begin{array}{c} 400\\ 500\\ 750\\ 1000\\ 1250\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	964 953 926 900 875 850 801 755 710 627 20 10- 1010 1010	28,1 27,2 24,7 22,2 20,1 18,2 14,2 10,2 6,1 -1,4 /VII -11 4 35,0 34,2	7,6 7,5 7,4 7,2 7,1 7,0 6,6 6,3 6,0 3,9 9,0

-								
_	Нм	рмб	t °C	q г/кг	Нм	р мб	t °C	q г/кг
	$0,5 \\ 1,0 \\ 2,0 \\ 4,0 \\ 8,0 \\ 11,1 \\ 25 \\ 50 \\ 100 \\ 150 \\ 200 \\ 300$	1010 1010 1009 1009 1009 1007 1004 998 992 987 976	33,6 33,1 32,6 32,2 31,9 31,8 31,8 31,8 31,8 31,7 31,5 31,1 30,1	9,0 9,0 9,0 9,1 9,2 9,5 9,5 9,1 8,7 8,3 7.7	$\begin{array}{c} 300 \\ 400 \\ 500 \\ 750 \\ 1000 \\ 1250 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 4000 \end{array}$	975 965 953 926 900 874 849 800 753 709 627	$\begin{array}{c} 28,1\\ 27,2\\ 26,4\\ 24,1\\ 21,7\\ 19,6\\ 17,4\\ 13,1\\ 9,0\\ 4,7\\3,5\\ \end{array}$	8,8 7,9 7,4 6,3 6,1 5,8 5,3 4,6 3,9 3,7
	400	965	29,1	7,3	4	10-	-11 ч	
	0,1 0,25 0,5 1,0 2,0 4,0 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500	$\begin{array}{c} 12-\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1008\\ 1006\\ 1003\\ 998\\ 993\\ 993\\ 993\\ 993\\ 997\\ 976\\ 965\\ 953\\ 925\\ 900\\ 874\\ 849\\ 800\\ 754 \end{array}$	-13 \mathbf{y} 39,0 37,8 37,0 36,2 35,6 35,0 34,4 34,1 33,5 33,1 32,4 31,9 31,4 30,6 29,3 27,9 25,0 22,3 19,8 17,4 13,1 8,4	-99998866, 59666, 596666, 596666, 596666, 596666, 5966666, 596666, 596666666, 596666666666	0,1 0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2500 3000 4000	$\begin{array}{c} 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 997\\ 992\\ 986\\ 975\\ 965\\ 953\\ 926\\ 900\\ 874\\ 849\\ 800\\ 753\\ 709\\ 627\\ \end{array}$	$\begin{array}{c} 33,7\\ 33,3\\ 33,0\\ 32,7\\ 32,4\\ 32,1\\ 31,8\\ 31,6\\ 31,2\\ 30,6\\ 29,8\\ 29,2\\ 28,8\\ 28,1\\ 27,3\\ 26,4\\ 24,2\\ 21,8\\ 19,8\\ 17,6\\ 13,3\\ 9,2\\ 5,0\\ -3,1\\ \end{array}$	9,9887663108750452084829
	$\begin{array}{c} 3000 \\ 4000 \end{array}$	627	3,9 -2,3	6,3 5,0		12-	-13 ч	
	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 4,0\\ 8,0\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\end{array}$	21 9 4 30 h 1009 1009 1009 1009 1009 1009 1009 100	/VII инн — 10 ч 33,6 33,0 32,7 32,4 32,1 31,7 31,4 31,2 30,7 30,2 29,6 29,2 28,8	10,2 10,2 10,2 10,1 10,1 10,0 10,0 9,7 9,5 9,2 9,1 9,0	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\end{array}$	$\begin{array}{c} 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 997\\ 997\\ 992\\ 986\\ 975\\ 965\\ 953\\ 926 \end{array}$	40,2 39,0 38,4 37,7 37,0 36,3 35,6 35,3 34,2 33,0 31,8 30,9 30,3 29,3 28,4 27,5 25,4	7,8 7,8 7,8 7,7 7,4 7,4 7,4 7,4 7,9 6,8 6,8 6,8 6,6 6,6 6,6

	<u> </u>				1		- 11 July -
Нм	<i>р</i> мб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>q</i> г/кг
$ 1000 \\ 1250 \\ 1500 \\ 2000 $	900 874 849 800	23,0 20,8 18,6 14,1	6,3 6,2 6,0 5,6	2500 3000 4000	754 712 629	11,0 7,3 0,7	6,0 6,4 5,0
2500	754	9,8	5,2		22	/VI1	
4000	627	_1,7	4,2	0.1	-01 1009 I	-11 4 37 5	I
	14–	-15 ч		0,25	1009	36,6	7,8
$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ \end{array}$	$\begin{array}{c} 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1007\\ 1007\\ 1007\\ 1005\\ 1002\\ 996\\ 991\\ 985\\ 974\\ 963\\ 952\\ 926\\ 900\\ 874\\ 850\\ 801\\ 754 \end{array}$	$\begin{array}{c} 42,2\\ 41,0\\ 40,1\\ 39,4\\ 38,6\\ 37,8\\ 37,0\\ 36,7\\ 35,6\\ 34,6\\ 32,0\\ 31,0\\ 30,0\\ 29,0\\ 26,8\\ 24,4\\ 19,7\\ 14,9\\ 10,4\\ \end{array}$	- 8,8 8,8 6,6 6,5 5,4 3,2 2,2 1,0 9,9 9,9 9,7 6 5,5 5,5 5,5 5,5 5,5 5,5 5,5	$\begin{array}{c} 0,5\\1\\2\\4\\8\\111,1\\25\\50\\100\\150\\200\\300\\400\\500\\750\\1000\\1250\\1500\\2000\\2500\\3000\\4000\\\end{array}$	$\begin{array}{c} 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1008\\ 1002\\ 997\\ 991\\ 986\\ 974\\ 964\\ 953\\ 926\\ 900\\ 875\\ 850\\ 802\\ 756\\ 711\\ 628 \end{array}$	36,0 35,6 35,2 34,4 34,2 33,6 32,6 32,2 32,6 32,2 32,8 31,9 27,3 25,4 17,5 12,6 8,04 -0,4	7,9 7,7,7 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 5,0 9,9 4,6 4,6 4,6 4,6 4,6 4,9 4,9 4,9 4,6 4,6 4,6 4,9 4,9 4,6 4,
3000 4000	628	0,5 0,4	5,7 4,6	0,1	1009	41,4	
0,1 0,25 0,5 1 2 4 8,0 11,1 25 50 100 150 200 300 400 500 750 1000 1250 2000	$\begin{array}{c} 16-\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 1007\\ 996\\ 991\\ 996\\ 991\\ 985\\ 974\\ 963\\ 952\\ 926\\ 900\\ 874\\ 850\\ 801\\ \end{array}$	-17 4 40,4 39,7 39,2 38,8 38,4 38,0 37,3 37,3 37,9 34,9 33,9 33,9 33,2 32,4 31,4 30,4 29,4 27,5 25,5 25,5 23,2 20,8 15,4	4,5,6,6,5,5,5,4,3,2,2,1,0,0,9,9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8	0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 300 400 500 750 1000 1250 1500 2000 2500 3000 4000 2500 3000 4000	$\begin{array}{c} 1009\\ 1009\\ 1009\\ 1009\\ 1009\\ 1008\\ 1008\\ 1006\\ 1002\\ 997\\ 991\\ 986\\ 974\\ 964\\ 953\\ 926\\ 900\\ 875\\ 850\\ 802\\ 756\\ 711\\ 628\\ \end{array}$	$\begin{array}{c} 40,2\\ 39,6\\ 39,0\\ 38,4\\ 37,1\\ 36,5\\ 36,0\\ 35,4\\ 37,1\\ 36,5\\ 36,0\\ 35,4\\ 34,2\\ 34,4\\ 33,8\\ 32,8\\ 30,0\\ 27,6\\ 25,2\\ 22,9\\ 18,0\\ 13,0\\ 8,2\\ -0,4\\ \end{array}$	7,00,88,88,66,64,21,06,4,1,09,9,9,8,8,66,6,6,6,5,5,5,5,5,4,4,9,9,9,8,7,6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Нм	рмб	t °C	q г/кг	Нм	рмб	t °C	q г/кг
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12—	-13 ч			10—	-11 ч	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ \end{array}$	$\begin{array}{c} 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1008\\ 1007\\ 1007\\ 1007\\ 1007\\ 1006\\ 1002\\ 997\\ 991\\ 986\\ 974\\ 964\\ 953\\ 926\\ 900\\ 875\\ 850\\ 802\\ 756\\ 711\\ 628\\ \end{array}$	$\begin{array}{c} 43,4\\ 42,3\\ 41,6\\ 41,0\\ 39,8\\ 39,2\\ 38,9\\ 38,2\\ 37,6\\ 37,0\\ 36,4\\ 36,2\\ 34,2\\ 30,8\\ 28,2\\ 25,8\\ 34,4\\ 23,3\\ 18,4\\ 13,2\\ 8,3\\ 18,4\\ 13,2\\ 8,3\\ -0,1\end{array}$	$\begin{array}{c} -2 \\ -6, 2 \\ 6, 2 \\ -6, 2 \\ -6, 2 \\ -6, 2 \\ -5,$	$egin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 2000\\ 2500\\ 3000\\ 4000\\ 2500\\ 3000\\ 4000 \end{array}$	$\begin{array}{c} 1015\\ 1015\\ 1015\\ 1015\\ 1015\\ 1015\\ 1014\\ 1014\\ 1012\\ 1010\\ 1004\\ 999\\ 993\\ 982\\ 971\\ 960\\ 933\\ 908\\ 882\\ 856\\ 856\\ 806\\ 757\\ 713\\ 632\\ \end{array}$	- 37,1 36,6 36,1 35,7 35,6 35,3 34,9 34,4 33,8 33,4 33,4 33,2 31,4 30,6 28,4 23,6 21,2 16,6 12,4 7,8 0,0	$\begin{array}{c} -\\ 5,4\\ 5,3\\ 5,2\\ 5,1\\ 4,7\\ 4,4\\ 4,3\\ 4,2\\ 4,1\\ 4,8\\ 3,7\\ 7,8\\ 4,25\\ 7,7\\ 8,1\\ 4,7\\ 4,8\\ 1,1\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			15.711		0.1	12-	-13 ч	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 11,1\\ 25\\ 50\\ 100\\ 150\\ 200\\ 300\\ 400\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 1500\\ 1500\\ \end{array}$	$9 ext{ y} = 9$ 1015 1015 1015 1015 1015 1015 1014 1014 1014 1012 1009 1003 998 992 981 970 959 932 906 880 854	ч 30 мин 33,6 33,3 32,8 32,7 32,5 32,4 32,1 31,8 31,5 31,3 31,1 30,7 30,1 29,5 28,1 25,9 23,6 21,2	$\begin{array}{c} -8\\ 5,8\\ 5,7\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5$	0,15 0,25 0,5 1 2 4 8 11,1 25 50 100 150 200 3000 400 500 750 1000 1250 1500 2500 3000 4000 2500 3000 4000	$\begin{array}{c} 1015\\ 1015\\ 1015\\ 1015\\ 1015\\ 1015\\ 1014\\ 1014\\ 1013\\ 1010\\ 1005\\ 1000\\ 994\\ 983\\ 972\\ 961\\ 934\\ 909\\ 884\\ 858\\ 807\\ 758\\ 714\\ 632\\ \end{array}$	$\begin{array}{c}\\ 39,8\\ 39,0\\ 38,4\\ 37,8\\ 37,4\\ 37,1\\ 37,0\\ 36,5\\ 36,0\\ 35,4\\ 34,8\\ 34,3\\ 33,1\\ 31,0\\ 28,4\\ 25,9\\ 23,6\\ 21,2\\ 16,6\\ 12,4\\ 8,4\\ 1,0\\ \end{array}$	6,76517621123332100477526
$= -\pi t_1 t_2 + \pi t_1 t_1 + \pi t_2 t_1 + \pi t_1 t_1 + \pi t_1 t_1 + \pi t_1 t_2 + \pi t_1	2500 2500 3000 4000	757 713 632	12,4 7,8	4,8 4,8 3 1	0,1	14- 1015	-15ч — 402	$\left \frac{1}{67} \right $

Нм	<i>р</i> мб	t °C	<i>q</i> г/кг	Нм	<i>р</i> мб	t °C	<i>q</i> г/кг
0,5 1 2 4 8 11,1 25 50 100 150	1015 1015 1015 1015 1014 1014 1013 1010 1004 2009	39,6 39,0 38,4 38,0 37,6 37,4 37,1 36,7 36,0	6,8 6,8 6,7 6,5 6,4 6,2 6,2 6,8	$1000 \\ 1250 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 4000$	908 884 858 806 759 716 634 16-	26,4 24,0 21,6 17,0 12,9 9,2 2,4 -17 ч	5,8 6,0 6,1 6,1 6,0 5,7 4,2
200 300 400 500 750	998 993 983 972 961 934	33,4 34,9 33,8 32,7 31,4 28,9	6,7 6,4 6,2 6,0 5,9	$0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2$	1015 1015 1015 1015 1015 1015	40,1 39,6 39,0 38,5	6,7 6,7 6,8 6,8

Скорость и направление ветра по данным градиентных и шаропилотных наблюдений ¹

Н	V	d	H	V	d	Н	V	d
9 ч. 0,25 0,5 1,0 2,0 5,0 9,4 16,3 0,25 0,5	27/VI 30 мин — 2,2 2,6 3,0 3,4 3,9 4,2 4,4 10—11 ч 2,9 3,5	10 ч 360	200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000	5,7 5,9 6,4 6,7 7,6 7,9 8,5 9,8 13,5 17,0 23,4	351 347 348 349 347 348 351 350 349 338 334 334 334 335 337	$5,0 \\ 9,4 \\ 16,3 \\ 25 \\ 50 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 900 \\ 1022 \\ 100 $	$\begin{array}{r} 4,1\\ 4,4\\ 6,1\\ 6,0\\ 5,9\\ 5,8\\ 5,6\\ 5,5\\ 5,5\\ 5,3\\ 5,2\\ \end{array}$	333 328 322 327 327 323 319 321 318 315 322 322 322
1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700	$\begin{array}{c} 4,1\\ 4,7\\ 5,8\\ 5,9\\ 6,3\\ 6,3\\ 6,3\\ 6,3\\ 6,7\\ 7,7\\ 7,6\\ 7,9\end{array}$	338 339 349 347 355 360 355 348 347	$\begin{array}{c} 2500\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 000\end{array}$	25,9 14—15 ч 2,9 3,3 3,9 4,4 5,0 5,4 5,7 5,7 5,8 6,3	320 33 5 331 320 326	000 1200 1400 1600 1800 2000 0,25 0,5 1.0	5,2 5,3 5,5 5,7 6,4 7,1 29/VI 10—11 ч 1,7 2,0 2,3	325 328 324 319 314 322
800 900 1000 1200 1400 1600 1800 2000 0,25 0,5 1,0 2,0	8,7 9,6 10,3 12,2 14,0 18,4 20,5 21,0 12—13 ч 3,1 3,6 4,1 4,5	354 349 345 339 336 336 337 336	$\begin{array}{c} 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ \end{array}$	6,3 7,1 7,7 7,1 7,1 7,6 7,7 8,5 8,5 8,5 8,5 8,7 10,1 11,4	331 335 331 328 327 320 320 320 323 327 333 333 331 332	2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800	2,5 3,1 4,5 3,1 4,3 0,6 3,5 3,5 7,0 4,3 6	244 251 251 253 258 258 256 258 261 263 262
$5,0 \\ 9,4 \\ 16,3 \\ 25 \\ 50 \\ 100$	5,2 5,5 5,7 5,7 5,6	$342 \\ 346 \\ 346$	0,25 0,5 1,0 2,0	16—17 ч 2,4 2,8 3,2 3,6		900 1000 1200 1400 1600	4,8 5,6 6,9 7,8 8,5	260 260 271 279 283

¹ Методика наблюдений и обработки описана в статье Н. А. Лазаревой и др. «Профили метеорологических элементов по материалам наблюдений». — См. настоящий сборник. $z_0 \approx 0,6$ см.

Н	V	d	H	V	d	Н	V	d
·,	<u></u> 12—13 [.] ч			12—13 ч			12—13 ч	
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1200 1400 1600 1200 1400 1600 1200 1400 1600 1200	2233344444444444444444557 2333444444444444444557	300 307 306 302 300 301 298 297 293 292 294 283 294 283 294 293 297 291 283 297 291 283 282	0,25 0,5 1,0 2,0 5,0 9,7 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1200 1400 1600 1800 2000	$\begin{array}{c} 2,9\\ 3,4\\ 4,4\\ 5,3\\ 5,6\\ 6,6\\ 7,9\\ 6,9\\ 6,9\\ 6,9\\ 6,9\\ 6,9\\ 7,6\\ 7,6\\ 7,6\\ 7,6\\ 6,8\\ 7,6\\ 6,8\\ \end{array}$	332 332 327 324 326 325 320 318 317 316 319 319 320 318 314 347 334	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000	2,61,69,47,90,00,00,00,00,00,00,00,00,00,00,00,00,	$ \begin{array}{r} 16 \\ 12 \\ 16 \\ 20 \\ 17 \\ 20 \\ 25 \\ 12 \\ 11 \\ 17 \\ 23 \\ 359 \\ 1 \\ 3 \\ 1 \end{array} $
	30/VI		2500	8,0	331	0.95	4—15 ч	I
	10—11 ч		• •	1/VII 10—11 ч	ъ.	0,25 0,5 1,0	2,8 3,2 3,8	
0,25 0,5 1,0 2,0 5,0 9,7 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1600 1800 2000	2,3,3,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,5,5,5,5,6	321 320 321 322 323 326 328 327 328 331 332 334 331 332 334 341 352 359 348 336	0,25 0,5 1,0 2,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000	2,5 $2,8$ $3,7$ $4,5$ $4,7$ $5,44,5$ $5,44,5$ $5,2$ $5,44,5$ $5,2$ $5,44,5$ $5,2$ $5,44,5$ $5,2$ $5,6$ $5,8$ $6,3$ $7,9$ $9,1$ $11,5$ $12,0$	57 40 36 26 28 34 32 30 34 30 30 16 356 357 349	2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 1600 1800 1,0 1	$\begin{bmatrix} 4,3\\ 4,9\\ 5,2\\ 5,1\\ 7,7\\ 6,7\\ 6,7\\ 6,1\\ 6,6\\ 5,4\\ 5,3\\ 4,5\\ 5,4\\ 5,3,4\\ 15\\ -17\\ 8,9\\ 15\\ -3,7\\ 3,7\\ 4,3\\ 4,3\\ 15\\ -17\\ 4,3\\ 15\\ -17\\ 4,3\\ 15\\ -17\\ 15\\ 15\\ -17\\ $	$\begin{array}{c} 30\\ 22\\ 8\\ 356\\ 356\\ 355\\ 348\\ 357\\ 345\\ 357\\ 345\\ 354\\ 350\\ 342\\ 349\\ 351\\ 351\\ 342\\ 359\end{array}$

Н	V	d	H	V	d	H	V	d
2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 9 4. 60,25 0,5 1,0 2,0 5,0	4,8 5,8 6,1 7,2 7,3 7,5 7,6 7,4 7,0 7,0 7,0 7,0 7,0 6,8 6,8 6,8 6,8 6,2 2/VII 30 мин. — 1,6 1,9 2,2 2,6	29 19 14 11 4 359 3 5 3 4 359 358 359 358 359 353 354 359 353 354 359 360 - 10 ч.	$\begin{array}{c} 1600\\ 1800\\ 2000\\ \hline \end{array}$	7,9 8,9 10,3 12-13 \mathbf{q} 2,4 2,8 3,3 4,2 4,4 5,6 6,0 5,3 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5	$\begin{array}{c} 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\ 31\\$	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1600 1800 2500	16-17 4 2,9 3,5 4,1 4,6 5,2 5,6 5,9 6,1 7,0 7,5 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1	$\begin{array}{c} 42\\ 39\\ 39\\ 39\\ 39\\ 45\\ 45\\ 47\\ 37\\ 38\\ 40\\ 45\\ 45\\ 38\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35\\ 35$
9,4 16,3	2,8 2,9	36		14—15 ч		÷.	, 10—11 ч	
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1200 1400	$10-11 \mathbf{q}$ 2,1 2,5 2,8 3,0 3,6 3,8 4,2 4,1 4,0 4,5 3,9 3,6 3,6 3,6 3,6 4,0 4,4 4,7 5,0 5,3 6,1	25 35 34 33 29 29 29 29 29 29 29 32 34 35 35 31	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 1000 1200 1400 1600	$\begin{array}{c} 2,6\\ 3,6\\ 8,4\\ 4,6\\ 9,4\\ 7,2\\ 2,2\\ 2,2\\ 8,8\\ 5,6\\ 5,6\\ 5,0\\ 6,5\\ 5,0\\ \end{array}$	46 41 40 39 48 49 46 43 43 37 34 30 26 28 29	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ \end{array}$	$\begin{array}{c} 2,2 \\ 2,6 \\ 3,0 \\ 4,3 \\ 4,5 \\ 4,8 \\ 2,5 \\ 6,5 \\ 6,5 \\ 9,1 \\ 3,6 \\ 9,9 \\ 9,9 \\ 9,9 \\ 10,9 \\ 6 \\ 11,9 \\ 9 \\ \end{array}$	165 156 154 153 164 162 170 170 170 170 170 170 170 170 170 170

•	·		1	1	<u>.</u>	1	i transfer	
H	V	d	Н	V	d	Н	² V	d .
· <u>La constan</u> ta da constanta da const	12—13 ч			16—17 ч	,		19—20 ч	
$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3 \\ 25$	3,1 3,7 4,4 5,7 6,1 6,4 6,6	208 206	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3 \\ 25$	2,73,23,84,45,25,65,95,2	216 217	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3$	$\begin{array}{c} 2,1 \\ 2,5 \\ 2,9 \\ 3,3 \\ 3,9 \\ 4,2 \\ 4,5 \end{array}$	170
50 100	6,6 6,7	207 194	50 100	5,2 5,3	214 213	20 ч 30 м	ин. — 21	ч 30 мин.
200 300 400 500 600 700 800 900 1000	7,1 7,2 7,3 7,3 7,3 7,4 7,4 7,4 7,1	191 188 188 187 185 184 185 184 185 184	200 300 400 500 600 700 800 900 1000	5,5 5,7 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8	204 203 199 200 201 200 196 194	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3$	$\left \begin{array}{c} 1,4\\ 1,7\\ 2,0\\ 2,4\\ 3,3\\ 4,1\\ 5,1\end{array}\right $	147
1200 1400	7,8 7,5	186 191	1200 1400	5,9 5,6	192 195	0.05	22—23 [°] म	ь ·
1600 1800 2000 2500 30 00	7,6 7,7 7,8 6,7	193 192 185 207	1600 1800 2000 2500 3000	5,6 5,7 6,0 7,4	191 184 183 196	0,25 0,5 1,0 2,0 5,0 9,4	$ \begin{array}{c} 1,3\\ 1,6\\ 1,8\\ 2,1\\ 3,0\\ 3,9\\ 5,0\\ \end{array} $	
2	14—15 ч		0.25	17—18ч 2.5	, I	10,5] 0,0	
0,25 0,5 1,0 2,0 5,0 9,4 16,3	2,7 3,9 4,3 5,1 5,5 5,7	189	0,5 1,0 2,0 5,0 9,4 16,3	2,5 3,0 3,5 4,0 4,8 5,1 5,3	205	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4$	$\begin{array}{c c} 0 - 1 & 4 \\ 1, 1 \\ 1, 4 \\ 1, 6 \\ 2, 0 \\ 2, 8 \\ 3, 8 \end{array}$	148
23 50 100 200 300 400 500	5,7 5,8 5,8 5,8 5,8 5,9 6,0	176 172 165 164 166 166 166	25 50 100 200 300	18—19ч 6,7 7,1 6,0 6,0	201 199 195 189 187	$ \begin{array}{r} {}_{3,4} \\ {}_{16,3} \\ {}_{25} \\ {}_{50} \\ {}_{100} \\ {}_{200} \\ {}_{300} \\ \end{array} $	5,0 5,8 6,5 8,5 9,4 9,4	161 178 199 201 198
$\begin{array}{c} 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 1800 \end{array}$	6,0 6,1 6,2 6,3 6,5 6,8 7,3 7,2	$ 170 \\ 170 \\ 176 \\ 178 \\ 180 \\ 188 \\ 188 \\ 180 \\ 182 \\ 182 $	$ \begin{array}{c} 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1200 \\ 1400 \\ 1400 \end{array} $	$\begin{array}{c} 6,1\\ 6,2\\ 6,6\\ 6,7\\ 6,2\\ 6,0\\ 5,5\\ 6,7\\ 7,0\\ 7,0\\ \end{array}$	193 195 191 193 197 203 207 215 216	400 500 600 700 800 900 1000 1200 1400	9,0 9,1 9,1 9,4 9,7 10,5 10,8 11,0 11,0	$ \begin{array}{c c} 194\\ 193\\ 191\\ 187\\ 184\\ 183\\ 176\\ 172\\ 171\\ 171\\ 171\\ 171\\ 171\\ 171\\ 171$
2000 2500 3000	7,1 8,0	196 204	1800 1800 2000	6,3 6,2	216 212 211	1800 1800 2000	$ 11,0 \\ 11,0 \\ 11,3 $	172

Н	V	d	Н	V	d	Н	V	d
$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ \end{array}$	2-3 ч 1,2 1,5 1,7 2,0 3,0 6,5 6,8 7,3 8,7 10,4 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,2 1,2 4,3 9,9 4-5 ч 0,9 1,1 1,2 1,7 2,0 3,0 0,5 6,5 8,7 10,4 11,0 11,2 1,2 1,3 1,0 11,0 11,0 11,0 11,0 11,0 11,0 11,2 1,2 1,2 1,0 1,0 11,0 11,0 11,0 11,0 11,2 1,2 1,2 1,2 1,2 1,2 1,2 1,	149 149 155 159 161 161 172 180 188 188 183 177 172 172 142 142 142 142 151 158	$\begin{array}{c} 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 192\\ 197\\ 198\\ 199\\ 193\\ 189\\ 185\\ 181\\ 181\\ 252\\ 256\\ 251\\ 248\\ 244\\ 240\\ 246\\ 241\\ 245\\ 245\\ 245\\ 245\\ 245\\ 245\\ 245\\ 245$	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1400 9 ч 3 0,25 0,5 1,0 2,0 5,0 9,4 16,3	12—13 ч 4,4 5,3 6,2 7,0 8,6 9,3 9,2 9,2 9,1 9,0 9,5 9,5 9,2 9,1 9,0 9,5 9,5 9,5 9,7 10,6 11,4 11/VII 0 мин. — 2,9 3,4 4,0 4,4 4,8 5,3 5,9 10—11 ч	245 234 232 230 228- 226 224 220 220 220 220 220 216 212 - 10 ч
$\begin{array}{c} 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ \end{array}$ $\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300 \end{array}$	9,3 10,0 10,4 10,5 10,3 10,0 10,0 6—7 ч 1,6 1,8 2,2 2,6 3,0 3,4 3,9 5,1 7,3 10,4 1,7 11,7	$168 \\ 176 \\ 181 \\ 181 \\ 179 \\ 179 \\ 178 \\ 177 \\ 177 \\ 155 \\ 141 \\ 141 \\ 151 \\ 168 \\ 179 \\ 179 \\ 179 \\ 179 \\ 179 \\ 168 \\ 179 \\ 170 $	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000	$\begin{array}{c} 10/\text{VII}\\ 10-11 $	245 245 245 242 241 243 240 238 238 238 235 231 228	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600 \end{array}$	$\begin{array}{c} 4,1\\ 4,8\\ 5,7\\ 6,4\\ 7,3\\ 8,7\\ 8,8\\ 8,7\\ 8,9\\ 9,7\\ 10,0\\ 9,8\\ 9,8\\ 10,0\\ 9,8\\ 12,4\\ 13,7\\ 14,8\\ 15,4\\ $	257 255 256 250 244 239 239 244 245 241 239 238 243 243 244

Н	V	d	H	V	d	Н	V	d
9 ч 3 0,25 0,5	12/VII 30 мин. — 2,6 3,0	10 ч	900 1000 1200 1400 1600 1800	7,8 7,5 6,5 7,9 8,2	304 307 306 301 297 208	1600 1800 2000	9,8 10,0 10,1 18—19 ч	288 288 292
2,0 5,0 9,4 16,3	$ \begin{array}{c} 3,9\\ 4,4\\ 4,7\\ 4,8 \end{array} $	312	2000	^{-8,7} 14—15 ч	302	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0$	2,7 3,2 3,7 4,0 4,7	
$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3 \\ 25 \\ 50 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800$	10—11 ч 2,6 3,2 3,7 4,0 4,9 5,1 5,6 5,5 5,5 5,5 5,6 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8 5,8	314 307 306 302 302 302 304 316 320 316 317	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1000	2,2,3,3,4,6,8,9,1,3,5,6,5,2,1,9,1,3,5,7 2,3,3,4,4,4,5,5,5,5,5,2,1,9,1,3,5,7 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	297 302 300 299 297 297 303 305 301 298 298 298 298 298	9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000	5,025 5,584 6,222 6,222 8,66 8,88 7,74 6,88 10,1	343 343 339 336 329 319 310 306 302 297 291 288 283 283 277 279 283
900 1000 1200 1400 1600 1800 2000	8,7 9,1 10,3 11,2 11,3 11,4 10,8	316 312 310 315 321 321 319	$ \begin{array}{r} 1200\\ 1400\\ 1600\\ 1800\\ 0,25\\ 0,5\\ 1,0\\ \end{array} $	5,7 5,8 6,6 8,1 16—17 ч 2,1 2,5 2,8	298 295 276 286	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16 \ 3$	22—23 ч 1,0 1,2 1,4 1,7 2,6 3,6 4 0	345
$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3 \\ 25 \\ 50 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312 305 306 304 307 306 307 307 305 303 304	2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1200	3,1 3,5,7 3,5,7 3,8 4,9 5,7 4,6 9 8,9 5,5,8 6,7 6 6,7 6	$\begin{array}{c} 316\\ 309\\ 308\\ 305\\ 303\\ 300\\ 305\\ 300\\ 305\\ 304\\ 302\\ 297\\ 291\\ 286\\ 287\\ 287\\ 287\end{array}$	0,25 0,5 1,0 2,0 5,0 9,4 16,3 9 4 3 0,25 0,5 1 0	0—1 ч 0—1 ч 1,7 2,1 2,4 2,7 3,4 4,1 4,9 /VII 0 мин. — 3,3 4,0 4,7	347 - 10 ч

H	V	d	H	V	d	H	V	d
2,0 5,0 9,4 16,3	5,2 6,0 6,4 6,8	1 - 14 - 1 1 - 14 - 1	0,2 0,5 1,0	14—15 ч 3,6 4,3 5,0		9ч.3 0,25 0,5	15/VI1 0 мин. — 1,6 2,0	- 10 ч
0,25 0,5 1,0 2,0 5,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,0 5,0 9,4 16,3 25 50	5,6 6,4 6,9 7,2 7,5 7,8	338 339 340	2,0 5,0 9,4 16,3	2,3 2,5 2,7 2,8 2,9	99
9,4 16,3 25 50 100 200	7,8 8,3 8,3 8,5 9,3	353 346 347 350 349	$ \begin{array}{r} 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ \end{array} $	8,3 8,6 9,3 9,5 9,4 9,1 8,9	341 342 340 341 346 349 351	0,25 0,5 1,0 2,0 5,0	$\begin{array}{c c} 10-11 & 4 \\ 2,1 \\ 2,3 \\ 2,6 \\ 2,9 \\ 2,9 \\ 2,0 \end{array}$	199
400 500 600 700 800 900 1000 1200 1400	9,8 10,2 10,5 10,9 11,2 11,4 11,6 12,0 12,2	351 353 352 352 352 348 350 344 346	$\begin{array}{c} 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ 2500 \end{array}$	8,6 7,6 7,2 7,7 8,2 8,3 8,8 8,9	352 351 352 359 355 353 352 357 363	$\begin{array}{c} 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ \end{array}$	3,52 3,3,8 3,7 4,8 5,1 5,1 5,1	123 133 141 169 181 190 193 195
$ \begin{array}{c} 1600\\ 1800\\ 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5\\ 0 \end{array} $	12,4 12,5 12—13 ч 3,9 4,8 5,6 6,3 7 2	349 351	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4$	16—17 ч 3,1 3,7 4,3 4,9 5,8 6,4	313	700 800 900 1200 1400 1600 1800 2000	5,1 6,0 4,8 4,7 4,6 4,3 4,2 4,0 3,8	194 191 191 189 182 181 182 187 203
$ \begin{array}{r} 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ \end{array} $	7,7 8,2 8,2 9,2 9,2 9,3 9,3	360 358 354 352 354 352 359	$ \begin{array}{r} 16,3\\25\\50\\100\\200\\300\\400\\500\\600\end{array} $	6,9 7,0 7,5 8,3 8,6 8,7 8,8	332 334 335 340 342 346 347 347	0,25 0,5 1,0 2,0 5,0 9,4 16,3	12—13 ч 2,5 3,0 3,5 4,0 4,5 4,7 4,9	145
600 700 800 900 1000 1200 1400 1600 1800	9,4 9,6 9,7 10,0 10,3 11,0 11,8 11,1 11,2	356 348 355 358 360 360 360 5 7	700 800 900 1000 1200 1400 1600 1800 2000	9,3 9,6 9,5 9,5 9,5 9,9 8,4 9,0 9,0	350 351 351 351 351 351 353 353 353 354	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16.3$	14—15 ч 3,5 4,4 5,1 6,0 7,0 7,5 8,1	201

Н	·V	d	Н	V	d	Н	V	đ
$\begin{array}{c} 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ \end{array}$	8,8 9,3 9,6 9,6 9,4 9,3 8,7 9,1 8,6 8,4 8,4 8,4 8,4 6,3 6,9 6,3 5,0 4,7	205 213 210 212 210 206 208 210 208 207 208 207 208 207 208 207 204 199 199 189 168	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ \end{array}$	12—13 ч 1,6 1,9 2,1 2,3 2,4 2,6 2,7 2,0 2,0 2,0 2,1 2,3 2,5 2,7 2,8 2,9 3,2	239 239 235 233 227 223 219 219 219 223 227 233	$\begin{array}{c} 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1600\\ \end{array}$	3,2 3,4 3,5 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,1 3,7 4,1 3,7 3,8 4,0 4,4	261 294 292 292 292 292 292 292 287 278 270 265 262 257 254 248 245 241 240
9ч3	10/VII 30 мин. —	10 ч	900 1000	3,4 3,4	242 242	2000	4,9	238
0,25 0,5 1,0 2,0 5,0 9,4 16,3	1,2 1,5 1,6 1,7 1,8 2,0 2,1 10—11 ч	55	$ \begin{array}{r} 1200\\ 1400\\ 1600\\ 2000\\ 0,25\\ 0,5\\ 1,0\\ 0 \end{array} $	3,4 3,5 4,2 5,0 5,3 14—15 ч 2,2 2,7 3,1	254 250 241 239 233	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25	18—19 ч 1,6 2,0 2,3 2,4 2,6 2,6 2,8 2,8 2,9	281 281
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400	1,7,9,0,2,3,4,2,1,9,7,6,4,3,0,0,1,2,3,7,1,7,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,3,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7	96 119 123 128 130 133 145 149 161 173 191 215 237 259 261 252	2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1600 1800	3,5 3,6 4,2 4,2 4,2 4,4 4,6 4,6 4,6 4,6 4,6 3,7 3,8 4,6 3,7 3,8 4,2 3,2 4,4 4,6 3,7 3,8 4,2 3,2 4,4 4,6 3,7 3,8 4,2 3,2 4,4 4,6 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,7 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,8 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,2 3,4 4,4 4,4 4,5	273 292 291 287 279 271 269 272 273 268 267 268 265 265 265 265 265 265 265	$\begin{array}{c} 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ \end{array}$	2,4 2,5 2,8 3,1 3,1 3,1 3,0 3,0 3,0 3,0 3,1 3,3 2,7 2,7 2,2 20 20 21 4 0,8 1,0 1,2	279 271 264 262 265 271 275 275 275 274 269 269 269 269 269 269
1800 1800 2000	3,1 4,0 4,0	253 248 247	0,25 0,5 1,0 2,0	2,0 2,4 2,7 3,0		2,0 5,0 9,4 16,3	1,4 1,7 2,0 2,1	307

<u></u>								· · · · · · · · · · · · · · · · · · ·
H	V	d	Н	V	đ	Н	V	d
$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3$	22—23 ч. 0,7 0,9 1,1 1,5 2,4 2,9 3,1	111	$1200 \\ 1400 \\ 1600 \\ 1800 \\ 2000 \\ 2500 \\ 3000$	5,8 6,2 6,5 6,3 6,0 5,7	203 213 233 242 249 249	1600 1800 2000 0,25 0,5 1,0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	232 239 245
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 93\\ 113\\ 117\\ 119\\ 125\\ 131\\ 139\\ 148\\ 160\\ 169\\ 175\\ 185\\ 189\\ 189\\ 200\\ 216\\ 227\end{array}$	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400 1800 2000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 134\\ 142\\ 144\\ 152\\ 163\\ 170\\ 171\\ 171\\ 179\\ 191\\ 199\\ 209\\ 212\\ 228\\ 238\\ 247\\ 249\\ 249\\ 249\\ \end{array}$	2,0 5,0 9,4 16,3 0,25 0,5 1,0 2,0 5,0 9,4 16,3 8 4 30 Mi 0,25 0,5 1,0 2,0 5,0 9,4 16,3	3,6 3,8 4,4 12—13 ч 2,8 3,4 4,0 4,4 4,9 5,5 18/VII ин.—9ч 1,4 1,9 2,2 2,4 2,6 2,7 2,8	30 мин. 6 6
$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ \end{array}$	$\begin{bmatrix} 3,3\\ 5,6\\ 2-3 \\ 4\\ 0,9\\ 1,3\\ 1,5\\ 1,7\\ 2,6\\ 3,5\\ 4,7\\ 7,7\\ 9,7\\ 10,0\\ 6,7\\ 5,7\\ 5,0\\ 4,9\\ 5,2\\ 5,4\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5\\ 5,5$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25 0,5 1,0 2,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1200 1400	б—7 ч 0,6 0,6 0,6 1,0 1,6 1,8 4,5 5,8 6,8 7,0 7,1 7,0 6,7 6,6 6,6 6,1 5,7	$177 \\ 177 \\ 181 \\ 189 \\ 194 \\ 195 \\ 196 \\ 199 \\ 204 \\ 209 \\ 213 \\ 215 \\ 223 \\ 233 $	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 75 79 85 89 93 95 100 102 109 106 109 120 149 156

Н	V	d	Н	V	d	Н	V	d
1600 1800 2000 2500 3000	3,3 3,2 3,1 3,3 4,6	160 160 180 215 225	100 200 300 400 500 600	4,4 4,2 4,3 5,2 5,0 5,2	336 331 317 305 290 284	400 500 600 700 800 900	4,4 4,5 4,2 4,1 3,2 2,9	276 272 276 277 263 295
0,25 0,5 1,0 2,0 5,0 9,4 16,3	12—13 ч 1,7 2,0 2,3 2,5 2,7 2,9 3,0 4 3	99	700 800 900 1200 1400 1600 1800 2000	5,4 5,2 5,1 5,0 5,8 7,4 8,5 9,4	284 279 278 277 260 203 191 197 202	1000 1200 1400 1600 1800 2000 2500	2,4 2,7 2,7 2,0 2,2 2,2 2,2 8,1	290 304 313 273 245 203 196
50 100	4,2 4,1	96 83	2500	10,8 1213 ч	195		16—17 ч	
200 300 400 500 600 700 800 900 1200 1400 1600 1800 2500 3000 9 4 0,25 0,5 1,0 2,0 5,0	3,9 3,4 2,7 2,4 2,5 2,6 2,9 3,9 4,0 3,2 3,1 3,4 4,6 19/VII 30 мин.— 2,8 3,3 3,8 3,8 4,4	77 79 85 99 103 106 111 114 121 128 141 159 181 207 231	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1200 1400 1200 1800 2000	$\begin{array}{c} 2,4\\ 3,3\\ 3,7\\ 4,3\\ 5,7\\ 4,3\\ 5,7\\ 4,3\\ 5,7\\ 5,3\\ 4,7\\ 5,3\\ 5,3\\ 5,1\\ 5,0\\ 1,0\\ 5,0\\ 7,2\\ 4,0\\ 2,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2$	292 286 279 283 287 289 297 301 301 301 305 305 299 293 283 261 274 197	0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50 100 200 300 400 500 600 700 800 900 1200 1400 1600 1200 1400 1200	1,3,6,6,1,9,1,2,2,1,6,6,1,9,1,2,2,1,6,5,4,8,0,4,7,7,3,7,9,3,3,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	309 301 297 275 280 293 295 295 292 264 274 274 274 274 274 256 247 231 235 234 214
9,4 16,3	$^{4,4}_{4,6}$	332	0.05	14—15 ч	•	2000	12,2	214
	1011 ч		0,25 0,5 1,0	2,2 2,7 2,9		0 24	20/VII	10
0,25 0,5 1,0 2,0	2,1 2,4 2,7 3,1		2,0 5,0 9,4 16,3	3,2 3,7 3,8 4,0	288	9430 0,25 0,5 1.0	лин. — 1,9 2,3	. 10 4
5,0 9,4 16,3 25 50	3,4 3,6 3,8 3,9 4,2	332 334 335	25 50 100 200 300	4,1 4,4 4,4 4,6	294 293 279 279	2,0 5,0 9,4 16,3	3,1 3,1 3,3	148

·	1	1			[
Н	V	d	H	V	d	; H	V	d
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50	10—11 ч 2,0 2,4 3,2 3,4 3,6 3,7 3,8 3,8 3,8	154 150 153	9ч 0,25 0.5 1,0 2,0 5,0 9,4 16,3	21/V1I 30 мин.— 2,9 3,4 4,1 4,6 5,2 5,5 5,7	10 ч. 108	900 1000 1200 1400 1600 1800 2000 2500	6,0 5,9 5,6 5,5 5,7 5,9 5,8 6,7 4—15 ч	$129 \\131 \\133 \\141 \\151 \\157 \\159 \\165$
$\begin{array}{c} 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ 2500\\ \end{array}$	3,07 4,05 5,72 5,22 6,64 5,77 5,55 5,55 5,55 5,55 5,55 5,55 5,5	$\begin{array}{c} 154\\ 155\\ 155\\ 155\\ 150\\ 145\\ 139\\ 132\\ 131\\ 134\\ 135\\ 145\\ 158\\ 165\\ 172\\ 181\\ 193\\ \end{array}$	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\end{array}$	10—11 ч 3,2 3,8 4,5 5,1 5,8 6,2 6,6 7,6 7,6 7,7 7,9 8,0 8,0 8,0 8,0 7,8 7,8 7,6	104 102 103 107 109 112 114 117 119	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ \end{array}$	$\begin{array}{c} 2,6\\ 3,1\\ 3,7\\ 4,0\\ 4,4\\ 4,8\\ 5,0\\ 6,0\\ 6,1\\ 6,3\\ 6,6\\ 6,1\\ 6,3\\ 6,6\\ 6,4\\ 6,1\\ 5,8\\ 5,6\end{array}$	125 123 125 129 129 132 131 131 133 129
0,25 0,5 1,0 2,0 5,0 9,4 16,3 25 50	12—13 ч 3,0 3,7 3,3 4,8 5,4 5,8 6,1 6,3 6,4	147 142 142	700 800 900 1000 1200 1400 1600 1800 2000 2500	7,3 7,0 6,8 6,6 6,3 5,9 6,0 5,8 5,8 5,5 3,8	$113 \\ 121 \\ 122 \\ 126 \\ 128 \\ 132 \\ 134 \\ 139 \\ 143 \\ 144 \\ 151 \\ 151 \\ 121 \\ 132 \\ 143 \\ 144 \\ 151 \\ 144 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 \\ 141 \\ 151 $	800 900 1000 1200 1400 1600 1800 2000 2500	5,4 5,4 5,5 6,0 6,5 6,6 6,3 5,1	$ \begin{array}{r} 130 \\ 136 \\ 135 \\ 136 \\ 137 \\ 137 \\ 131 \\ 125 \\ 136 \\ 136 \\ \end{array} $
100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000	6,7 7,0 7,0 7,0 6,8 6,5 6,5 6,5 6,5 6,5 6,5 6,5 6,4 6,4 5,4	$\begin{array}{c} 139\\ 144\\ 150\\ 147\\ 148\\ 151\\ 149\\ 150\\ 151\\ 150\\ 151\\ 150\\ 152\\ 158\\ 169\\ 178\\ 183\\ 190\\ 182\\ \end{array}$	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25,0\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 111\\ 113\\ 109\\ 105\\ 99\\ 99\\ 107\\ 115\\ 123\\ 119\\ 127\\ \end{array} $	$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ \end{array}$	$\begin{array}{c} 2,5\\ 3,6\\ 4,5\\ 4,5\\ 4,5\\ 5,1\\ 6,4\\ 6,8\\ 7,2\\ 6,6\\ 6,5\\ 6,5\\ 6,5\\ 6,5\\ 6,5\\ 6,5\\ 6,5$	100 109 107 107 107 109 110 117 117 127 130 133

Н	V	d	' H	V	d	Н	V	d
1000 1200 1400 1600	6,6 6,9 7,0 6,5	128 127 128 110	2,0 5,0 9,4 16,3	4,7 5,4 5,8 6,0	175	2400 2600 2800	7,3 7,3 7,8 14—15 ч	133 133 133
2000 2500 3000	5,0 6,2 6,1 22/VII	113 120 146	0,25 0,5 1,0 2,0 5 0	10—11 ч 2,6 3,1 3,6 4,0 4 5		0,25 0,5 1,0 2,0 5,0	3,3 3,9 4,4 5,0 5,6	
9 ч 3 0,25	30 мин. — 2,7 3 2	-10ч	9,4 16,3 25	4,7 5,0	168	9,4 16,3 25	5,9 6,2	126
1,0 2,0 5,0 9,4 16,3	3,6 4,2 4,8 5,0 5,3	136	50 100 200 300 400 500	5,0 5,1 5,5 6,0 6,5 6,8	176 169 167 165 164 162	50 100 200 300 400 500	6,2 6,5 6,5 6,5 6,5 6,5	$ \begin{array}{r} 122 \\ 116 \\ 116 \\ 116 \\ 115 \\ 115 \\ 115 \\ 115 \\ \end{array} $
	10—11 ч		600 700	7,1 7,4	161 157	700	7,0	115 115 115
$\begin{array}{c} 0,25\\ 0,5\\ 1,0\\ 2,0\\ 5,0\\ 9,4\\ 16,3\\ \end{array}$	2,1 2,7 3,0 3,3 3,8 3,9 4,0	143	$\begin{array}{c} 800\\ 900\\ 1000\\ 1200\\ 1400\\ 1600\\ 1800\\ 2000\\ 2400 \end{array}$	7,8 7,9 8,0 7,8 6,8 6,6 6,6 7,1	$ 155 \\ 153 \\ 151 \\ 146 \\ 145 \\ 145 \\ 141 \\ 137 \\ 134 $	900 1000 1200 1400 1600 1800 2000 2400	7,0 7,2 7,4 7,4 7,0 7,0 6,8 5,4	115 115 117 119 116 115 112 109
0.95	12—13 ч 26	 I	2100	и - , т 12—13 ч	101	2600] 4,9 16—17 ч	109
0,25 0,5 1,0 2,0 5,0 9,4 16,3	2,0 3,2 3,6 4,1 4,7 5,0 5,2	181	$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3 \\ 16,3 \\ 16,3 \\ 16,3 \\ 16,3 \\ 16,3 \\ 16,3 \\ 16,3 \\ 10,10 \\$	3,1 3,7 4,3 4,9 5,5 5,8 6,0		$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3$	3,2 3,8 4,3 4,9 5,5 5,8 6,1	107
$0,25 \\ 0,5 \\ 1,0 \\ 2,0 \\ 5,0 \\ 9,4 \\ 16,3$	14—15 ч 3,1 3,8 4,4 5,0 5,7 6,0 6,3	171	$\begin{array}{c} 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ \end{array}$	6,4 6,6 6,7 6,7 6,8 7,8 6,8 7,4 7,4 7,5	130 132 132 132 137 141 144 144 144	$\begin{array}{c} 25\\ 50\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ \end{array}$	7,3 7,5 7,8 7,7 7,2 7,0 7,0 6,6 6,6	107 109 114 117 117 119 119 119 119
0 00	23/VII	20	900 1000 1200	7,6 7,6 7.7	142 141 141	900 1000 1200	6,8 6,8 6,8	119 119 122
8ч30м 0,25 05	иин. — 9ч 2,7 3 4	30 мнн 	1400 1600	7,4 7,2 7,2	141 140	1400 1600	6,8 6,8	123 122
1,0	4,1		2000	7,3	139	2000	5,2 4,8	122

Температура почвы¹

ПРИЛОЖЕНИЕ 4

		Глубина, см									
Дата	Срок, ч	0	0	5	5	10	15	20	40	60	
27/VI	10-11 12-13 14-15	25,5 32,3 32,9	24,6 29,2 30,0	20,8 24,5 26,5	21,0 24,4 25,9	18,2 20,6 22,8	17,5 19,1 19,9	17,5 17,8 18.6	17,4 17,3 17.3	16,8 16,6 16,6	
29/VI	16-17 9-10 10-11	35,7 23,9 29,1	31,9 24,4 30,5	27,9 18,9 21,3	27,0 19,0 21,4	24,2 17,3 18,3	21,1 17,5 17,8	19,3 18,1 18,0	17,3 17,8 17,9	16,6 16,8 16,8	
30/VI	12-13 9-10 10-11	36,0 25,1 27,9	37,1 24,2 27,2	$ \begin{array}{c} 20,2 \\ 19,8 \\ 21,7 \end{array} $	20,4 20,0 21,9	17,9 19,0	19,1 18,0 18,2	10,4 18,4 18,4	18,0 18,0	16,8 16,8	
1/VII	$12-13 \\ 9-10 \\ 10-11 \\ 10$	34,2 27,3 32,0	33,7 27,3 32,6	25,6 21,0 23,0	25,4 21,1 23,1	21,3 19,6 20,3	19,3 19,6 19,7	18,7 19,8 19,8	17,9 18,5 18,5	16,8 16,9 16,9 16,0	
2/VII	$\begin{array}{c} 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 18 - 19 \\ 9 - 10 \\ 10 - 11 \\ 12 - 13 \\ 14 - 15 \\ 16 - 17 \end{array}$	40,9 44,7 44,8 36,2 29,8 35,0 43,9 47,5 45,5	40,6 43,0 41,0 34,4 29,9 35,7 44,0 46,3 43,6	28,1 31,5 32,1 30,5 21,8 24,3 29,1 31,8 32,8	28,131,331,630,022,124,629,231,732,3	23,3 26,0 27,6 27,8 20,2 21,3 24,0 26,6 28,3	20,8 22,5 24,0 25,0 20,3 21,6 23,3 24,8	20,0 20,7 21,8 22,7 20,5 20,5 20,7 21,6 22,6	18,5 18,4 18,4 19,3 19,2 19,2 19,1 19,1	10,9 17,0 17,1 17,0 17,4 17,4 17,5 17,5	
4/VII	18-19 8-9 10-11 12 13	40,6 26,6 39,0 46,0	38,1 26,9 41,6 50,1	30,9 21,8 26,2 30,7	30,4 21,9 26,5 30,9	28,3 21,8 23,2 25,7	25,6 22,4 22,5 23,5	23,5 22,8 22,5 22,5 22,7	19,1 20,5 20,5 20,5	17,5 18,2 18,3 18,3	
5/VII	$\begin{array}{c} 12 \\ -13 \\ 14 \\ -15 \\ 16 \\ -17 \\ 18 \\ -19 \\ 20 \\ -21 \\ 22 \\ -23 \\ 0 \\ -01 \\ 02 \\ -03 \\ 04 \\ -05 \\ 06 \\ -07 \\ 09 \\ -10 \\ 10 \\ -11 \end{array}$	52,8 52,9 46,1 31,0 25,8 22,0 19,3 18,0 20,3 30,7 34,3	54,9 52,6 45,0 31,4 26,2 22,3 19,5 18,1 20,4 32,3 37,5	34,2 35,3 34,2 31,3 28,4 26,3 24,5 22,9 22,3 24,2 26,3	34,2 35,0 33,9 28,2 26,1 24,3 22,7 22,2 24,7 26,8	28,4 30,3 30,8 29,9 28,5 27,1 25,8 24,6 23,6 22,9 23,5	25,0 26,5 27,5 27,8 27,4 26,8 26,0 25,1 24,4 23,1 23,2	223,5 24,4 25,3 26,0 26,0 25,5 25,0 24,5 23,4 23,3	20,4 20,5 20,5 20,5 20,7 20,9 21,0 21,2 21,2 21,7 21,7	18,4 18,5 18,4 18,5 18,5 18,5 18,6 18,6 18,7 19,4 19,4	
10/VII	9—10 10—11	30,7 35,1	31,8 38,2	23,4 25,8 20,5	23,9 26,4 31,0	22,0 22,6 24,9	22,2 22,2 23,0	22,4 22,3 22,4	21,2 21,1 21,1	19,4 19,4 194	
11/VII	9 <u>10</u> 10 <u>11</u>	23,1 26,4	23,9 28,1	20,3 22,5	20,7 22,8	20,2 20,6	20,7 20,8	21,4 21,3	21,0 21,0	19,5 19,0	
12/VII	$\begin{array}{c} 9-10\\ 10-11\\ 12-13\\ 14-15\\ 16-17\\ 18-19\\ 20-21\\ 22-23 \end{array}$	27,2 31,9 37,0 30,5 36,7 34,2 26,4 20,1	27,5 33,4 37,4 31,2 36,4 33,5 26,9 20,5	21,1 24,1 29,3 29,4 28,2 28,5 26,6 23,5	21,3 24,2 29,2 29,4 28,1 28,2 26,3 23,3	19,5 22,6 23,2 25,1 25,1 25,7 25,3 24,2	20,0 20,4 21,1 22,4 23,1 23,6 23,8 23,6	20,6 20,4 20,7 21,3 22,0 22,3 22,7 22,9	20,5 20,5 20,4 20,3 20,2 20,2 20,2 20,2 20,3	19,3 19,3 19,3 19,3 19,2 19,2 19,2 19,2 19,1	

¹ Методика наблюдений и обработки описана в статье С. И. Леготиной и Л. Р. Орленко «Тепловой баланс подстилающей поверхности в период экспедиции КЭНЭКС-71». — См. настоящий сборник.

		Глубина, см									
Дата	Срок, ч	0	0	5	5	10	15	20	40	60	
13/VII	0-01	18,7	19,0	21,7	21,5	22,9	23,1	22,7	20,3	19,1	
	9-10	28,2	28,4	20,9	20,7	20,2	20,5	22,0	20,3	19,1	
1	12-13 14-15	42,0	43,0	29,3	28,9	23,5	20,0	20,3 21,0 21,7	20,4 20,4 20,3	19,2	
	16-17	28,6	28,7 30,4	30,4	29,9	27,0	23,9	21,7 22,3 22,8	20,3 20,2 20,2	19,2	
15/VII	9-10	29,0	29,7	22,4	22,5	21,6 22,1	21,8	22,0	20,2	19,1	
:	12-13	44,0	45,4	29,6	29,7 30,2	24,3 26,3	22,4 23,6	22,0	20,6	19,1 19,2	
16/VII	15—16 9—10	39,4 31,6	40,6 32,6	30,3 23,2	30,4 23,3	26,5 22,2	24,0 22,3	22,8	20,5	19,1 19,3	
	10-11 12-13	39,7 49,7	42,0	26,0 32,1	$26,3 \\ 32,4$	22,8 25,5	22,3 23.1	22,3 22,9	20,9 20,8	19,3 19,3	
	14—15 16—17	52,2 53,5	53,3 53,2	35,6 37,2	36,0 37,1	$28,2 \\ 30,2$	24,6 26,1	$23,2 \\ 24,0$	20,8 20,8	19,3 19.3	
	18—19 19—20	45,8 38,8	45,2 39,2	36,3 34,5	35,8 34,1	31,0 30,9	$27,2 \\ 27,4$	25,0 25,3	20,8 20,8	19,3 19,3	
	21-22 22-23	27,3 24,5	28,0	30,6 28,7	$ \begin{array}{c} 30,4 \\ 28,6 \end{array} $	29,5 28,7	27,5 27,3	25,8 25,9	21,0 21,0	19,3 19,3	
17/VII	0-01 02-03	21,8 19,3	22,1	26,2	26,1 24,4	27,1 25,8	26,6 25,9	25,7 25,3	21,2 21,4	19,3 19,4	
	04-05 06-07	18,2	18,5	23,1 22,0	23,0	24,7	25,1 24,4	24,9 24,5	21,5 21,6	19,4 19,4	
18/VII	9-10	20,6	20,8	22,0	22,0	23,4	24,1 24,7	24,2	21,7 22,2	19,4 19,9	
	10-11 12-13 14-15	53,8	43,5	33,9	34,0	25,2	24,8 25,2	24,6	22,2	19,9 20,0	
19/VII	9-10	35,3	35,7	28,1	28,4	26,1	25,8	25,6	22,2	20,0	
	12-13 14-15	50,8	52,6	35,6	36,0	28,6	26,0 26,5 27,5	25,5	22,8	20,3	
	16-17	42,2	41,4	36,3	36,1	31,5	28,4	26,7	22,8	20,3	
20/VII	9—10 10—11	34,0	34,7	25,9	25,8	24,8	25,0 25,0	25,0 24,9	23,0	20,6	
	12_13	51,3 45,1	53,6 46,6	33,6 35,8	33,7 35,6	27,4 29,5	25,5 26,6	25,0 25,3	23,0 22,9	20,6 20,7	
21/VII	9 <u>10</u> 10 <u>1</u> 1	36,6 37,7	37,6 39,1	32,4 29,5	27,5	25,6 26,3	25,5 25,5	25,5 25,3	23,3 23,2	20,8 20,8	
	12-13 14-15	52,3 60,6	53,9 61,6	32,6 37,0	32,4 37,9	27,5 29,9	25,8 26,7	25,3 25,6	23,1 23,0	20,7 20,8	
22/VII	$ \begin{array}{c} 16-17 \\ 9-10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	51,6	51,8	38,5	37,9 28,0	31,8	28,0 25,7	$26,2 \\ 25,7$	23,0 23,5	20,8 21,0	
	10-11 12-13	43,0	46,6	30,2 36,2	30,5 36,5	26,5	25,8 26,4	25,5	23,5	21,0 21,1	
92 4711	14-15 15-16	58,5 53,6	55,3	40,4	40,6	31,4 32,4	27,6 28,3	26,3	23,4	21,0 21,0	
20/ V II	0-9	30,9 43,4	46,4	20,9	27,0 31,9 37,9	20,1 27,5	20,8 26,7	20,9 26,7	24,1 24,2	21,4 21,4	
	14-15 16-17	59,7 40 0	61,3	40,2	40,1	32,1 33,6	28,2 29 4	20,1 27,1 27,7	24,1 24,0 23 4	21,4 21,4 21,4	

ПРИЛОЖЕНИЕ 5

те	и направле мпературы и	давления	грофическо воздуха	по данны	, горизон м синоптич	ческих кар	градиенты т
Дата	Время (моск.), ч	Vg	dg	$\frac{\partial p}{\partial x}$	$\frac{\partial p}{\partial y}$	$\frac{\partial T}{\partial x}$	$\frac{\partial T}{\partial y}$
			Приземна	я карта			
27/VI	09 12	$5,1 \\ 2,2$	340 360	-0,8 -1,0	-0,3 -0,2	$ -0,2 \\ -0,6 $	-0,3 -0,8
29/V1	15 09	3,7 2,4	360 045	-0,6 -0,2	-1,0 -0,3	-0,7 -0,3	-0,8 -1,3
-30/VI	12 09 12	1,1 1,7	040 035 350	-0,5 -0,3 -0,6	-0,2 0,2	-1,3 -0,1	-0,9 -1,5
1/VII	09 12	1,4 1,6 1.8	030 040	-0,0 -0,1 -0,7	0,0 0,2 0,6	-0,2 -0,2 -1.7	-0,8 -0,5 -2.0
2/VII	15 09 12	$3,2 \\ 1 \\ 1,4$	090 040 135	0,0 0,8 0,4	0,5 0,7 0,5	0,9 0,5 0,3	-0,2 -0,2 -0,3
4/VII	15 09 12	4,1 7,8 2,4	055 180 170	$ \begin{array}{c} -0,5 \\ 1,2 \\ 0,1 \\ 0 \\ \end{array} $	$0,5 \\ 0,0 \\ 0,2 \\ 0,1$	$ \begin{array}{c c} -1,2 \\ 0,8 \\ -0,3 \\ \end{array} $	-0,7 -0,7 -2,3
	15 18 21	2,0 2,7 4 4	180 190 165	$0,4 \\ 0,4 \\ 0.2$	-0,1 -0,3		-0,3 -0,5 -0.9
5/VII	00 03	4,7 7,5	210	2,0 1,2	-0,8 0,0		0,5 0,0
7/VII 10/VII	06 09 09	$3,0 \\ 5,7 \\ 5,0 \\ 2,8 \\ 3,8 \\ 3,0 $	180 270 240 180	$0,1 \\ -0,2 \\ 0,4 \\ 0,2$	-0,3 -0,9 -0,7	-0,5 1,2 0,5	-0,3 -0,7 -0,9 1 0
11/VII 12/VII	09 12 09 12	$3,2 \\ 5,7 \\ 1,4$	310 335 275	0,2 0,1 -0,8 -0,4	-0,4 -1,5 -0,4 -0,5	0,5 0,6 0,5 -0,1	-1,0 -1,4 -0,8 -1,0
15/VII	15 18 15 12	3,7 1,0 0,8 2,1	315 275 250 250	$\begin{array}{c} -0,6\\ -0,5\\ 0,0\\ 0,2 \end{array}$	$\begin{array}{c} 0,4 \\ -0,1 \\ 0,1 \\ -1,0 \end{array}$	0,1 0,5 0,6 0,1	-0,4 -0,4 -0,3 0,4
16/VII	09 09 12	$0,59 \\ 2,5 \\ 0,8 \\ 1.5 $	215 090 130 065	$ \begin{array}{c} 0,1 \\ -0,1 \\ 0,4 \\ 0,0 \end{array} $	$0,0 \\ 0,4 \\ 0,0 \\ 0,1$	$ \begin{array}{c} 0,7 \\ -0,2 \\ -0,2 \\ 0,6 \end{array} $	$ \begin{array}{c} 0,8 \\ -0,5 \\ -0,7 \\ 0,6 \end{array} $
17/VII	15 21 00 03	1,5 3,2 1,2 1,9	070 130 090	$0,0 \\ 0,0 \\ 0,4 \\ 0,2$	$0,1 \\ 0,5 \\ 0,4 \\ 0,2$	$ \begin{array}{c} 0,0 \\ -0,1 \\ -1,3 \\ -0,6 \end{array} $	-0,9 -0,3
18/VII	06 09	$1,2 \\ 2,6$	130 130	$\begin{array}{c} 0,5\\0,2\end{array}$	0,3 0,4	0,0 1,2	0,5 0,9
19/VII	12 09 12	1,3 2,7 1 4	130 100 080	0,0 0,4 -0.2	0,6 0,2 0,6	$\begin{array}{c}0,4\\0,8\\18\end{array}$	-1,4 -0,7 -20
20/VII	12 15 09 12	0,8 4,0 0,8	100 140 135	0,1 0,5 0,5	0,0 0,1 0,4 0,3	0,9 0,3 0,1	-0,5 -1,0 -0,6
	15	4,1	140	0,4	0,7	0,4	—U,0

Дата	Время (моск.), ч	Vg	dg	$\frac{\partial p}{\partial x}$	<u></u> 	$\frac{\partial T}{\partial x}$	$\frac{\partial T}{\partial y}$
21/VII	09 12 15	5,9 2,4 5,1	150 125 150	0,5 1,1 0,4	0,8 0,5 0,7	0,6 0,0 0,0	-0,9 -0,5 -0,1
22/V1I	18 09 12	2,4 4,2 2,3	105 155 160	0,9 0,6 1,1	0,6 0,4 0,1	1,0 0,8 1,9	$ \begin{array}{c} -0,8 \\ -0,1 \\ -0,3 \end{array} $
23/VII	15 09 12 15	5,2 2,2 1,4 5,8	140 120 140 100	0,8 0,3 0,2 0,6	0,1 0,2 0,6 0,6	$ \begin{array}{c} 0,0\\ 0,4\\ -2,1\\ -0,2 \end{array} $	-0,1 -0,6 -0,1 $-0,2^{-1}$
			850 1	і мб	l	l	I
27/VI 29/VI	15	6,0 14	305	-0,6	0,5	-0,2 -0,2	-0,2 -0,7
30/VI 1/VII	15 15	10 11	335 360			$\begin{bmatrix} -0, \bar{5} \\ -0, \bar{4} \end{bmatrix}$	-0,4 -0,5
2/VII 4/VII 5/VII	15 15 03	2,3 9 11	210 190	-0,3 -1,3 -1,8	0,9 0,7 0,3	-0,5 0,5 -0,4	-0,2 -0,3 -0,5
7/VI1 10/VII	15 15	17 13	260 240 275			0,8	-0,6 -0,4
12/VII 13/VII	15 15 15	10 9,8	325 33 5	-0,9	0,9	0,0 0,0	-0,3 -0,2
15/VII 16/VII 17/VII	15 15 03	1,1 2,1 2,1	245 230 210	0,0 0,0 0,0	0,1 0,3 0,3	0,2 0,0 0,0	$\begin{vmatrix} 0\\ 0\\ -1,2 \end{vmatrix}$
18/V11 19/V11	15 15 15	6 13,7 3 0	115 190	0,4	1,7	0,2 0,6	-0,2 -0,3 -0,5
20/VII 21/VII 22/VII	15 15 15	8	125		,5	0,0 -0,2	-0,0 -0,1 0,1
23/11	61	0	700 1	мб		0,3	0,0₄
27/VI 29/VI	15	9 12	310 295	}			-0,6 -0,2
30/VI 1/VII 2/VII	15 15 15	10 12 15	330 325 030		1	-0,5 -0,1 -0,3	-0,3 0,4 -0.4
4/VII 5/VII	15 03	8 17	225 205	1		-0,1 -0,2	$\begin{bmatrix} -0,1\\ -0,2\\ 0,2\\ \end{bmatrix}$
7/VII 10/VII 11/VII	15 15 15	15 24 19	250 240 285			0,2 0,5 -0,2	$\begin{vmatrix} 0,0\\ -1,0\\ -1,2 \end{vmatrix}$
12/VII 13/VII	15 15 15	15 7,6	315 335 245	-0,9	0,2	$\begin{vmatrix} 0,0\\ -0,1\\ 0,1 \end{vmatrix}$	-0,3 -0,3
16/VII 16/VII 17/VII	15 15 03	8,8 10	240 230 245	0,1	0,0	0,1	-0,6
18/VII 19/VII 20/VII	15 15 1 5	1,4 5,2 2,7	245 180 205	0,2 0,7 0,3	$ \begin{bmatrix} 0,0 \\ -0,2 \\ 0,0 \end{bmatrix} $	0,3 0,1 0,1	$\begin{vmatrix} -0,2\\0,1\\-0,3 \end{vmatrix}$

	Дата	Время (моск.), ч	Vg	dg	$\frac{\partial p}{\partial x}$	<u> </u>	$\frac{\partial T}{\partial x}$	$\frac{\partial T}{\partial \mathbf{y}}$
	21/VII 22/VII 23/VII	15 15 15	2,0 6 18,0	120 140 180	0,3 1,2	0,2 —2,0	0,1 0,4 0,1	-0,3 0,1 -0,3
	500 мб							
	27/VI 29/VI 30/VI 1/VII 2/VII 4/VII 5/VII 7/VII 10/VII 11/VII 12/VII 13/VII	15 15 15 15 15 15 15 15 15 15 15	$ \begin{array}{c} 15\\ 10\\ 18\\ 20\\ 15\\ 13\\ 17\\ 12\\ 28\\ 30\\ 18\\ 22\\ \end{array} \\$	$\begin{array}{c c} 300\\ 330\\ 320\\ 325\\ 315\\ 240\\ 210\\ 250\\ 240\\ 260\\ 310\\ 315\\ \end{array}$			$\begin{array}{c} -0,5 \\ -0,5 \\ -0,5 \\ -0,6 \\ -0,1 \\ 0,4 \\ 0,3 \\ 0,3 \\ 0,3 \\ 0,1 \\ 0,0 \\ \end{array}$	$ \begin{vmatrix} -0,2 \\ -0,3 \\ -0,3 \\ -0,2 \\ -0,1 \\ -0,2 \\ 0,2 \\ -0,8 \\ -1,1 \\ -0,1 \end{vmatrix} $
	15/VII 16/VII 17/VII 18/VII 19/VII 20/VII 21/VII 22/VII 23/VII	15 15 15 15 15 15 15 15 15	7 13 3,5 4,0 8 6,0 3,7 12,7	260 260 230 180 195 190 150 100	$0,4 \\ 0,4 \\ 0,8 \\ -0,3 \\ 0,8 \\ 0,8$	$ \begin{array}{c} -0,2 \\ -0,2 \\ -0,2 \\ 0,4 \\ -1,4 \end{array} $	$\begin{array}{c} 0,4\\ 0,2\\ 0,0\\ -0,3\\ -0,2\\ -0,2\\ -0,1\\ \end{array}$	$ \begin{array}{c} -0,4\\ -0,4\\ -0,1\\ -0,1\\ -0,3\\ -0,2\\ -0,3\\ \end{array} $
400 мб								
	27/VI 29/VI 30/VI 2/VII 2/VII 4/VII 5/VII 7/VII 7/VII 10/VII 11/VII 12/VII	$ \begin{array}{r} 15 \\ 15 \\ 15 \\ 03 \\ 15 \\ 03 \\$	$ \begin{array}{c} 13\\10\\15\\11\\10\\10\\13\\10\\9\\15\\15\\15\end{array} $	$\begin{array}{c} 295\\ 315\\ 305\\ 345\\ 235\\ 190\\ 230\\ 235\\ 240\\ 275\\ \end{array}$			$ \begin{array}{c}0,8\\0,1\\ -0,7\\ -0,9\\0,4\\ 0,0\\0,1\\ 0,1\\0,0\\ \end{array} $	$\left \begin{array}{c} -1,0\\ -0,6\\ -0,6\\ -0,2\\ -0,4\\ -0,7\\ 0,0\\ -1,1\\ 0,9\end{array}\right $
	13/VII 15/VII 16/VII 17/VII 18/VII 19/VII 20/VII 21/VII 22/VII 25/VII	03 03 15 15 15 15 15 15 15	8 5,6 2,1 1,8 7,3 6,1 3,4 4,6	270 260 180 250 195 205 220 210	$\begin{array}{c} 0,5\\ 0,3\\ 0,3\\ -0,1\\ 0,7\\ -0,2\\ 0,6\end{array}$	$\begin{array}{c} 0,4 \\ -0,1 \\ -0,7 \\ -0,9 \\ -0,3 \\ -0,4 \\ -0,2 \end{array}$	$\begin{array}{c} -0,4\\ 0,0\\ -0,3\\ -0,3\\ -0,2\\ -0,2\\ -0,4\\ -0,5\end{array}$	$\begin{array}{c} -0,7 \\ -0,3 \\ 0,7 \\ -0,7 \\ -0,4 \\ -0,2 \\ -0,3 \\ -0,2 \end{array}$
	10/VII 11/VII 12/VII 13/VII 15/VII 16/VII 16/VII 17/VII 18/VII 19/VII 20/VII 22/VII 25/VII	$\begin{array}{c} 03\\ 03\\ 03\\ 03\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	15 15 15 8 5,6 2,1 1,8 7,3 6,1 3,4 4,6	240 275 260 180 250 195 205 220 210	0,5 0,3 0,3 -0,1 0,7 -0,2 0,6	$\begin{array}{c} 0,4\\ -0,1\\ -0,7\\ -0,9\\ -0,3\\ -0,4\\ -0,2\end{array}$	$\begin{array}{c} -0,1 \\ -0,0 \\ 0,0 \\ -0,3 \\ -0,3 \\ -0,2 \\ -0,2 \\ -0,4 \\ -0,5 \end{array}$	$ \begin{array}{c c} -1 \\ 0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 $

СОДЕРЖАНИЕ

К. Я. Кондратьев, С. П. Малевский-Малевич, Л. Р. О	p-
ленко, Ю. И. Рабинович, Н. Е. Гер-Маркарян	Ц, э.
Л. Р. Цванг. Программа экспедиции Копокс-71	
Б. Б. БИНОГРАДОВ, А. А. Григорьсь, ландшафиная харакиер стихо опытного политона КЭНЭКС-71	12 ⁻
Л. Н. Гусева, Б. А. Дерюгин, Б. Д. Заварин, О. Б. Шкляр	е- ии
KH4, CARONINACCANA COCIANODIA D ROPINOZ PACOLIZI CRONOZILA	17
Н. А. Лазарева, Л. Р. Орленко, В. И. Скнарь, И. И. Честна	я.
Профили метеорологических элементов по материалам наблюдени	(й 22:
А. А. Елисеев, И. И. Иванова, С. П. Малевский-Малеви	. प,
М. А. Прокофьев, Л. И. Прокофьева. Профили радиационны	JX of
потоков по материалам наблюдений	••• ³¹
Л. Г. Елагина, С. Л. Зуоковский, Б. М. Копров, Д. Ю. Сок	0-
лов. Экспериментальное исследование баланса тепла на поверхнос	38.
С И. Леготина. Л. Р. Орленко. Тепловой баланс подстилающ	ей
поверхности в период экспедиции КЭНЭКС-71.	. 46
А. А. Елисеев. Результаты экспериментального определения ради	a-
ционного притока тепла в приземном слое	. 56
Л. А. Ключникова, Л. Р. Орленко. Некоторые результаты исслед	10- 60.
вания баланса тепла в попраничном слое атмосферы	. 02
К. Я. КОНДратьев, Б. Ф. Жвалев, М. А. Прокофьев, П. Е. Ге	р- и-
маркарянц. Опыт осуществления полного радиационного экспер	70
И В Виноградова, В. Ф. Жвалев. М. А. Прокофье	в.
Н. Е. Тер-Маркарянц. Н. И. Федорова. Радиационные пото	ки
и притоки тепла в свободной атмосфере	. 79
В. И. Дмоховский, В. А. Иванов. Методика самолетных аэрозол	іь-
ных измерений	87

ТРУДЫ ГГО, вып. 296

КОМПЛЕКСНЫЙ ЭНЕРГЕТИЧЕСКИЙ ЭКСПЕРИМЕНТ (КЭНЭКС-71)

Редактор Л. И. Штанникова

Технический редактор Г. В. Ивкова Корректоры: Е. П. Баскакова, И. А. Крайнева

Сдано в набор 30/111 1973 г. Подписано в печать 14/VIII 1973 г. М-11339. Формат 60 × 90¹/₁₆. Бумага типографская № 1. Печ. л. 8,75. Уч.-изд. л. 10,85. Тираж 620 экз. Индекс МЛ-245. Заказ № 294. Цена 76 коп. Гидромстеоиздат, 199053. Ленинград, 2-я линия, д. 23.

Типография им. Котлякова издательства «Финансы» Государственного комитета Совета Министров СССР по делам издательств, полиграфии и книжной торговли. Ленняград, Садовая, 21.