МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР

ЛЕНИНГРАДСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ

Труды, выпуск 14

ОБЛАКА, ОСАДКИ И ВОПРОСЫ АТМОСФЕРНОЙ ТУРБУЛЕНТНОСТИ

175263

ЛЕНИНГРАД 1963

В сборнике освещаются актуальные вопросы физики облаков, осадков и атмосферной турбулентности; приводятся новые данные о пространственной структуре полей облачности, внутриоблачных физических процессах и количественных характеристиках турбулентного обмена.

Сборник рассчитан на научных работников и специалистов, работающих в области метеорологии а также на синоптиков-практиков.

Ответственные редакторы:

доцент, канд. физ.-мат. наук С. В. Солонин, доцент, канд. географ. наук Г. Г. Тараканов

В. С. АНТОНОВ

ОБ УЧЕТЕ ВНУТРИОБЛАЧНЫХ ФИЗИЧЕСКИХ ПРОЦЕССОВ ПРИ ДИАГНОЗЕ И ПРОГНОЗЕ ОБЛОЖНЫХ ОСАДКОВ

В настоящее время теоретические схемы фазовых превращений воды в атмосфере, описывающие образование осадков, представляют собой решение задачи о росте капли в облаке [1-5 и др.]. При практическом использовании этих схем в целях диагнова и прогноза осадков следует различать два основных случая: чисто водяные облака, из которых выпадают только жидкие осадки, и смешанные облака, состоящие из капелек воды и кристаллов льда. Из смешаных облаков могут выпадать как жидкие, так и твердые осадки.

Многочисленные наблюдения указывают, что в средних широтах в преобладающем большинстве заметные обложные осадки, исключая моросящие, выпадают из смещанных облаков.

В исследованиях [2,6,7] дается повторяемость осадков, выпадающих из слоистых облаков при различных значениях температурны на верхней границе и различных типах микроструктуры облака. В частности, Е.Г.Зак [7], обработав общирный материал самолетного зондирования атмосферы над территорией СССР, показала, что чисто водяные слоистые облака дают обложные осадки у поверхности земли только в 6% случаев, кристаллические - в 53%, а смешанные - в 83%.

Таким образом, в средних широтах смешанные облака являются коллоидально неустойчивыми и служат источником наиболее интенсивных осадков.

Подобные выводы были сделаны Пепплером [6], Мейсоном

и Хауортом [2].

Рассмотрим прежде всего некоторые вопросы физики образования осадков в этих облаках.

1. Смешанные облака

Общеиввестно, что существование в переохлажденном облаке капель воды совместно с кристаллами льда вызывает интенсивный рост последних, что даже при незначительной толщине облака и малых значениях водности приводит к выпадению осадков [2,4,8,10 и др.].

Используя теоретические выводы и расчеты работ [4,8] о том, что мощность облака и температура на его верхней границе являются важными параметрами, определяющими процесс осадкообразования, в работе [11] был построен график связи между мощностью облака, температурой на его верхней границе и осадками.

Из этсго графика было установлено, что при температурах на верхней границе слоистого облака от -16°С и ниже минимальная мощность облака, при которой наблюдаются осадки, 400 м. В области возрастающих от -16° значений температур идет прогрессирующее увеличение значений мощности облаков, причем наибольшее нарастание мощности идет от температуры > -10°.

Из работ [1,2,6,12,13 и др.] известно, что повторяемость чисто водяных переохлажденных облаков с понижением температуры убывает с большой скоростью. Уже при температуре -8° она становится менее 50%, а при -20° - всего 10%. Таким образом, температура на верхней границе облака в какой-то степени может характеризовать существование твердой фазы в облаке, но такая характеристика недостаточно надежна. Из нее не следует, при каких условиях при данной температуре в переохлажденном облаке произойдет образование такого количества кристаллов, которое могло бы сказаться на коллоидальной устойчивости облака.

Поэтому зависимость между мощностью облака, температурой на его верхней границе и осадками может характеризовать процесс осадкообразования только в первом приближении, особенно в области температур, при которых равновероятно существование как жидкой, так и тверцой фазы.

В работах Л.Г.Качурина [8,14,16] разработана теория кристаллизации переохлажденных водных аэрозолей.

Для исследований нашего плана наибольший интерес представляет уравнение скорости кристаллизации облаков, полученное в [17]:

<u>dn</u> olt	=1,63π9(T) <u>92</u> W	>
	1t=0 L ¹ B L	

где $\frac{dn}{dt}$ - относительное число капель, замерзающих в единицу времени (скорость замерзания); $\Psi(T)$ - вероятность образования гетерофазных ледя: ых зародышей в единице объема переохлажденной воды в единицу времени при температуре T; χ - коэффициент вязкости воздуха; g - ускорение силы тяжести; \int_{g} - плотность воздуха; W - вертикальная скорость ветра.

(1)

Уравнение (1) устанавливает зависимость между скоростью замерзания облака, его температурой и вертикальными токами. Справедливо оно только для неконвективных развивающихся облаков типа As-Ns-Sc, в которых наблюдаются восходящие токи ~ 1 см/сек. Обычно такие облака в преобладающем большинстве своем отмечаются в циклонических областях.

В работе [8] было показано, что замерзшая капля в развиварщемся переохлажденном облаке при вертикальных скоростях ветра

ð -

менее 10 см/сек. после своего замерзания может подняться на очень небольшую высоту, от нескольких сантиметров до нескольких метров, так как за счет сублимации водяного пара будет быстро укрупняться и падать вниз. Сдновременно резко возрастает и роль коагуляции из-за увеличения разности скоростей падения капли и кристалла одного и того же веса и увеличения вероятности захвата растущей снежинкой соседних капель.

Таким образом, чем больше скорость кристаллизации, т.е. чем большее количество капель замерзает в единицу времени, тем при прочих равных условиях будут интенсивнее осздки. Если рассматривать только факт выпадения осадков, не рассчитывая их интенсивности, то необходиме устаневить такое минимальное число вамерзших капель, которое быле бы дестатечным для образования заметных осадков:

$$\frac{dn}{dt} = const.$$

(2)

Температура, при которой осуществляется условие (2), названа Л.Г.Качуриным температурой интенсивной кристаллизации.

В работе [8] приводится график для расчета температуры интенсивной кристаллизации в облаках в зависимости от вертикальной скорости ветра при $\frac{d.n}{d.t} = 10^{-4} \frac{1}{cek} = 10^{-2}$ %/сек. Насколько справедлив выбор именно такой минимальной скорости замераьния, могла определить только экспериментальная проверка.

На большом материале самолетного зондирования атмосферы было проведено исследование по выявлению зависимости между температурой интенсивной кристаллизации и вертикальными токами в слоистых переохлажденных облаках [17].

В результате обнаружилось, что между вертикальной скоростью в облаке и температурой интенсивной кристаллизации действительно имеется связь такого типа, как подсказывала теория [8].

Эмпирическая кривая [17] указанной связи при наличии восходящих токов от 0,1 до 5 см/сек. (от-5 до-250 мб/12 час.) может быть аппроксимирована уравнением

$$lg\frac{dn}{dt} = 0,4343 |_{9,6} - \frac{1540}{T} - \frac{2.4T}{(273-T)^2} - 8,4921 + \frac{3}{2}lgW, (3)$$

где $\frac{dn}{dt}$ = const = 2,3·10⁻⁵1/сек., которое совпадает с уравнением (1) и отличается от последнего лишь численными коэффициентами.

Однако при получении эмпирической кривой зависимости температуры интенсивной кристаллизации от вертикальных токов учет мощности облаков производился лишь частично. Принимались во внимание только такие облака, мощность которых была 400 м и более, что вытекало из установленной ранее [11] критической мощности при осадках из смещанных слоистых облаков. Такой учет мощности предполагал, что все интенсивные осадки выпадают только из смешанных облаков, что не совсем верно.

В настоящее время имеется немало примеров интенсивных осадков, выпадающих из чисто водяных слоистых облаков [2,5,7 и др.]. Несмотря на то, что процентное количество случаев выпадения осадков из таких облаков небольшое, все же и это заставляет признать принципиальную возможность нарушения коллоидальной устойчивости в водяных облаках. Теоретическое обоснование такой возможности приводится в работе [4]. К сожалению, при построении графика связи между осадками, температурой на верхней границе облака и вертикальными токами в нем [17] мы не имели возможности выделить осадки, которые выпадают из капельных облаков, так как методика построения графика не предполагала разделение осадков на выпадающие из чисто водяных или смешанных облаков, а наблюдения при самолетном зондировании атмосферы в ряде случаев непосредственно не характеризуют фазового состояния облака.

Очевидно, что исследование по выявлению связи между осадками, скоростью замерзания на верхней границе развивающегося переохлажденного слоистого облака и мощностью его позволит выявить те критические параметры облака, при которых оно переходит в дождевое.

Попутно выявится и тип микроструктуры облака, дающего осадки, так как скорость замерзания, согласно [8,17] характеризует фазовое состояние облака, а мощность отображает интегральное влияние суммы факторов, участвующих в конденсационно-коагуляционном процессе роста падающей в облаке капли. Из имеющихся в нашем распоряжении материалов более 4300 подъемов самолетоввондировщиков атмосферы за 1959, 1960 и частично 1961 гг. Москвы, Ленинграда, Киева, Минска, Минеральных Вод, Одессы, Риги, Куйбышева, Львова, Свердловска, Волгограда, Ростова-на-Дону были ввяты случаи только утреннего вондирования, когда наблюдалась облачность и восходящие вертикальные токи на уровне или близко к уровню верхней границы облаков.¹/

Всего таких случаев оказалось 787. Для каждого использованного нами самолетного вондирования атмосферы по данным о температуре и вертикальных токах на верхней границе облака вычислялся логарифм величины скорости замерзания (g f) и рассчитывалась мощность облака (A H). Вычисление g f производилось по специально построенному для этой цели графику (рис. 1), который рассчитан на основании уравнения (3).

¹⁷ Были использованы вертикальные токи, которые ежедневно рассчитываются в Центральном институте прогнозов по формулам, опубликованным в [18].

Утреннее зондирование использовалось для того, чтобы избежать влияния дневного прогрева приземных слоев воздуха на облака.

8

Рис.1. ГРАФИК ДЛЯ РАСЧЕТА СКОРОСТИ ЗАМЕРЗАНИЯ ВЕРХНЕЙ ГРАНИЦЫ ПЕРЕОХЛАЖДЕННОГО СЛОИСТОГО ОБЛАКА В ФУНКЦИИ ТЕМПЕРАТУРЫ И ВЕРТИКАЛЬНЫХ ТОКОВ,

Затем результаты расчетов наносились на другой график, по оси абсцисс которого откладывалась величина egdn, а по оси

ординат - ДН.

Случаи вондирования, при которых наблюдались осадки (исключая моросящие), на графике отмечались значком "+", а бев осадков - "0".

После того как были нанесены все данные, плавной кривой были разделены области "осадков" и "без осадков".

Полученный таким образом график, устанавливающий зависимость между осадками, температурой и вертикальными токами на верхней границе переохлажденного развивающегося слоистого облака и его мощностью, представлен на рис.2.

Рассмотрим подробно этот график. Видно, что существует очень четкое разделение областей "с осадками" и "без осадков", особенно при больших значениях och . Такое положение позволяет провести кривую связи с большой обеспеченностью и сделать выводы в достаточной степени, надежными.

При больших вначениях ig dn мощность облаков, из которых выпадают осадки, равна 400 м. и остается постоянной вплоть до

Рис.2. ЗАВИСИМОСТЬ МЕЖДУ ОСАДКАМИ, МОЩНОСТЬЮ ОБЛАКА И СКОРОСТЬЮ ЗАМЕРЗАНИЯ НА ВЕРХНЕЙ ГРАНИЦЕ ПЕРЕ-ОХЛАЖДЕННОГО СЛОИСТОГО ОБЛАКА.

значений $g \frac{dn}{dt} = -4,65$, что соответствует $\frac{dn}{dt} = 2,3\cdot10^{-5}$ 1/сек. Эта величина скорости замерзания соответствует установленной в работе [17] минимальной скорости замерзания облака, которая достаточна для образования и выпадения заметных осадков. В области эначений $g \frac{dn}{dt}$ несколько меньших -4,65 минимальная мощность облака, при которой выпадают осадки, скачкообразно возрастает до 1800 м. Затем при дальнейшем уменьшении $g \frac{dn}{dt}$ идет довольно оыстрое, но не скачкообразное нарастание мощности "доядящих" облаков, и при $g \frac{dn}{dt} = -6,2$ она достигает наибольшей величины и равняется 2600 м. Далее, с уменьшением скорости замерзания на верхней границе облака, из которого выпадают заметные осадки,

10

идет медленное уменьшение мощности облака.

Следует указать, что этот участок кривой недостаточно обеспечен количеством точек.

Анализируя ход кривой указанной связи, можно сделать следующие выводы.

ционного роста падающей в облаке капли.

Естественно считать поэтому скорость замерзания на верхней границе облака, равную 2,3°10⁻⁵1/сек., критической скоростью замерзания, при которой происходят существенные изменения в фазовом состоянии облака.

Представляет особый интерес рассмотреть участок кривой при значениях la dn or -4,65 до -6,2, где увеличение необходимой мощности для "дождящего" облака происходит быстро, но не скачкообразно. Здесь, по всей вероятности, уменьшение числа замерая ющих в единицу времени капель на верхней границе облака и, таким обравом, числа "дождевых" капель восполняется их конечным размером, которого они достигают, выпадая из облака. Как визуально, так и инструментально такие осацки воспринимаются ĸaĸ существенные. Таким образом, облака при мощности более 1800 м могут переходить в другое фазовое состояние при скорости замерзания на верхней границе ~ 10⁻⁶1/сек., что соответствует диапазону температур от -8 до -11° при колебаниях вертикальной скорости ветра соответственно от 5 до 0,1 см/сек. Сдвиг температуры интенсивной кристаллизации в сторону более высоких температур в облаках, имеющих мощность около 2000 м, не противоречит теории замерзания переохлажденных водных аэрозолей.

Согласно [16], расчет скорости кристаллизации переохлажденных облаков может быть проведен с помощью уравнения

$\frac{dn}{dt} = \varphi(T)$	η(z) <u>4</u> πz ³ exp	[-43Jz3]	y(T)dt]	dz, (4)
гле t. – вре	MA. $\Pi(\mathcal{Z})$ - OTHOCH	тельное чи	сло канель	с радиусом Z

где С - время, ((С) - относительное число капель с радиусом с, остальные обозначения известны.

Если выполнить интегрирование (4) для t = 0, используя функцию распределения капель по размерам 1(2) в виде [4]

(5)

$$\int (z) = \frac{z^2 \exp\left[\frac{2}{\kappa} \left(\frac{z}{z_m}\right)^{\kappa}\right]}{\frac{z_m^3}{\kappa} \left(\frac{\kappa}{2}\right)^{\frac{3}{\kappa}} \left[\frac{z}{\kappa}\right]},$$

где $Z_m - мода$ (радиус наиболее часто встречающихся капель) функции $\int (2)$, Γ - полная гамма-функция, K - козффициент (1 $\leq K \leq 4$), то получим

$$\frac{dn}{dt} = \frac{4}{3} \operatorname{Tr} \Psi(T) P(K) \operatorname{Zm}^{3}, \qquad (6)$$
rge $P(K) = \left(\frac{K}{2}\right)^{\frac{3}{K}} \frac{\Gamma(\frac{6}{K})}{\Gamma(\frac{4}{K})}.$

Из (6) Видно, что чем больше радиус наиболее часто встречающихся капель, тем больше скорость замерзания и тем при более высокой температуре достигается определенная скорость кристаллизации облака.

Вероятнее всего предположить поэтому, что при большой мощности облаков можно получить осадки при меньшей скорости кристаллизации на верхней границе облака и, как следует из теории [16] и рис.1, при более высокой температуре. На рассматриваемом графике это довольно четко выражено участком кривой связи в области обще от -4,65 до -6,2 и Δ H от 1800 до 2600 м.

Наконец, рассмотрим участок кривой связи между осадками, температурой и вертикальной скоростью на верхней границе облака и мощностью его при $\operatorname{Grav}_{dt} \zeta - 6, 2$.

Уменьшение мощности, необходимой для "дождящего" облака, с уменьшением скорости кристаллизации на его верхней границе может показаться на первый взгляд парадоксальным, так как все предндущие рассуждения доказывали обратное. Однако такой ход кривой связи становится объяснимым, если предноложить, что скорость кристаллизации, меньшая 10⁻⁶1/сек., уже не влияет на изменение фазового состояния облака. В этом случае мы имеем дело с чисто водяными облаками, в которых характер процессов конденсационно-коагуляционного роста падающей капли отличается от подобных процессов в смешанных облаках. Ниже это будет показано.

Заканчивая анализ графика, отметим его прогностическое значение. Зная мощность облака, температуру на его верхней границе и вертикальную скорость, можно рассчитать возможность выпадения осадков из слоистых облаков, не прибегая к громоздким и довольно сложным расчетам по формулам, описывающим скорость роста капель и скорость замерзания облака.

Большой практический интерес представляет выявление зависимости между фактом выпадения осадков у земли и высотой расположения нижней границы облака. В теоретическом плане этот вопрос подробно рассматривался в работах [1,2,8 и др.]. Из указанных работ следовало, что луть, который проходит капля под облаком до своего полного испарения, вависит от начального радиуса капли и дефицита влажности под облаком.

Так как мощность облака в какой-то степени может характеризовать размер выпадающих из него капель, а высота нижней гра-

12 -

ницы – путь падения капли и среднюю относительную влажность слоя воздуха под облаком, то естественно ожидать связь между осадками у вемли, мощностью и высотой нижней границы облака.

Мейсон и Хауорт [20], а позднее Синглетон [19] построили графики зависимости между выпадением осадков у земли в соотношении мощности и высоты нижней границы облака. Из полученных ими графиков указанной зависимости, построенных по данным самолетного зондирования атмосферы, видно, что действительно существует связь между выпадением осадков у земли, мощностью и высотой нижней границы облака. Однако эти графики имеют, на наш взгляд, некоторые недостатки.

Во-первых, они не обеспечены достаточным количеством данных, особенно при аначительной высоте нижней кромки облака, и, во-вторых, не произведено разделение облаков, дающих осадки, на смешанные и чисто водяные, что сделать было необходимо.

Из теории образования осадков следует, что для чисто водяных облаков зависимость выпадения осадков у земли от соотношения мощности и нижней границы облака должна быть сильной, для смешанных облаков-слабой, что объясняется большими по сравнению с каплями размерами снежинок, наличием отрицательной температуры под облаком, повышенной относительнои влажностью воздуха в пограничном слое атмосферы в холодное полугодие и другими причинами.

Располагая значительно большим числом данных самолетного зондирования атмосферы, чем авторы [20,19], мы получили возможность исследовать зависимость между выпадением осадков у земли, мощностью и высотой нижней границы облака, разделив осадки на выпадающие из смешанных и чисто водяных облаков. В основу деления облаков на чисто водяные и смешанные была положена скорость замераания на верхней границе облака.

Указанная зависимость для чисто водяных облаков будет обсуждена ниже, при рассмотрении физики образования осадков в капельных облаках. Здесь же мы изложим результаты исследования для смещанных облаков.

Прежде всего было произведено определение повторяемости осадков у земли при различных градациях мощности и высоты нижней границы смешанного облака.

Из данных самолетного зондирования атмосферы на Европейской территории СССР за 1959, 1960 гг. отоирались случаи выпадения осадков из смещанных облаков, как достигающих, так и не достигающих земной поверхности. Таких случаев оказалось около 400.

Затем по градациям подсчитывалась повторяемость выпадения осадков у земли, как процентное отношение осадков, достигающих земной поверхности, ко всем выпадающим из облаков осадкам при данной градации мощности и высоты нижней границы облака.

Результаты расчетов представлены в табл.1.

13 -

Таблица 1

Высота	Мо	ΔΗΜ					
ницы обла- ка, дающе- го осадки, Н	0-200	200- 400	400- 800	800 1200	1200- 2000	2000-4400	> 4400
0-1300	0%	72%	95%	96%	97%	99%	100%
1300-2200	0	0	76	88	91	91	100
> 2200	0	0	20	25	25	25	нет данных

Видно, что при высоте нижней границы облаков от 0 до 1300 м почти все выпадающие осадки достигают земной поверхности, если толщина смешанного облака 400 м и более. При мощности облаков 800 м и более осадки в преобладающем большинстве случаев достигают земли уже при высоте нижней границы облака около 2200 м.

Существенно важно отметить, что высокие облака, нижнее основание которых располагается на высотах более 2200 м, очень редко, в 20-25% случаев, приносят осадки, достигающие вемной поверхности.

Объясняется это, по-видимому, тем, что высокие облака большей частью бывают смешанными при небольшой своей толщине (400-800 м) и при положительных температурах в приземном 400-метровом слое воздуха. Это приводит к резкому возрастанию скорости испарения тающих снежинок, и выпадающие из данных облаков осадки до земли не доходят.

При отрицательных температурах в приземном слое воздуха слоистые облака, которые располагаются на высотах более 2200 м, при мощности 400 м и более чаще всего бывают кристаллическими. Известно, что в чисто ледяных облаках скорость роста кристаллов значительно меньше, чем в смешанных, количество их в единице объема облака мало.

Таким образом, выпадающие из кристаллических облаков осадки, как правило, бывают разреженными, а их элементы имеют малую массу и небольшую скорость падения. Они легко уносятся горизонтальным потоком воздуха на большие расстояния, образуя полосы падения - vizga[],2]. Что же касается повторяемости осадков при мощности облаков от 200 до 400 м, то к этим данным надо подойти особо. Дело в том, что при мощности смешанного облака меньше 400 м осадки выпадают только в 4% случаев, из которых 72% достигают земли, в то время как при мощности слоистого облака от 400 до 800 м вероятность выпадения осадков составляет 91%.

Из этого следует, что при расчетах осадков тонкие облака (aH < 400 м) следует считать облаками, не дающими осадков, даже если они и являются смешанными.

Наблюдения показывают, что выпадающие из таких облаков осадки

14

представляют собой небольшие, отдельно летящие снежинки.

В литературе приводится схема образования осадков в St , Sc, когда облако "заражается" ледиными элементами извне, например, при выпадении зародышей снежинок и кристаллов из вышележащего слоя AS [9,10,21,22 и др.].

Как показал анализ материала самолетного вондирования атмосферы, такая схема для конкретных расчетов непригодна, так как не во всех случаях переохлажденные облака типа St.Sc. даже если они и "заражаются" ледяными элементами извне, дают осадки.

В этом случае мы имеем полную аналогию с опытами по искусственному воздействию на переохлажденные устойчивые слоистые облака.

В справке [23] указывается, что искусственные осадки могут быть стимулированы в тех случаях, когда облако имеет толщину не менее 300 м и температуру у его верхней границы не выше -4°.

Опыты по искусственному воздействию на переохлажденные слоистые облака и наши данные показали, что положительный результат воздействия или, для наших случаев, выпадение осадков из таких облаков может быть только при определенном сочетании мощности и средней температуры переохлажденного слоистого облака.

Приведем несколько примеров.

Казань. 27/Х 1959 г. 3,3 ч.

Погода у земли 10/10 Sc, без осацков. $t = 2,7^{\circ}$. U = 82%. Зондаж: 1-й слой облаков -10 б., Sc, нижняя граница около 640 м, верхняя - 1400 м, температура на нижней границе +0,4°; на верхней -4,4°; 2-й слой облаков - 10 б., Ac, нижняя граница 2470 м, $t = -11,7^{\circ}$, верхняя граница 2870 м, $t = -14,1^{\circ}$.

Из ЛС выпадает снег. Снег прекращается на высоте 630 м.

В этом примере слой облаков, в который попадают ледяные элементы из вышележащего слоя \mathbf{Ac} , имеет мощность $\mathbf{\Delta H} = 800$ м и среднюю температуру $\mathbf{t} = -2^{\circ}$. При таком сочстании указанных параметров облака рост элементов осадков в нем незначительный, т.е. выпадающие снежинки имеют небольшой размер и быстро испаряются под облаком, проходя незначительный слой, хотя облако, "заразившись" ледяными элементами извне, стало смешанным и коллоидально неустойчивым.

Минск. 8/1У 1959 г. 4,7 ч.

Погода у земли 10/10 \mathcal{N} S, умеренный дождь, $\mathbf{t} = +5, 5^{\circ}, \mathbf{u} = 92\%$. Зондаж: 1-й слой облаков - 10 б, NS, нижняя граница 690 м, температура на нижней границе $\mathbf{t} = +2, 1^{\circ}$, верхняя граница 1280 м, $\mathbf{t} = +1, 6^{\circ}$; 2-й слой - 10 б., Sc, нижняя граница 1620 м, $\mathbf{t} = -0, 7^{\circ}$, верхняя граница 2430 м, $\mathbf{t} = -3, 8^{\circ}$; 3-й слой - 10 б., \mathcal{A} S, нижняя граница 3060 м, $\mathbf{t} = -7, 2^{\circ}$, верхняя граница 5630 м, $\mathbf{t} = -26, 6^{\circ}$.

Из Аз выпадает снег, достигая слоя Sc. Параметры этого облака Δ H=810 м, \dot{t} = -2,3°. В етом случае укрупнение снежинок в Sc более значительное. Выпадая из облака, они проходят безоб-

лачную прослойку в 400 м еще настолько крупными, что обусловливают у поверхности земли умеренные осадки. Этому несколько способствует и нижележащий слой теплых капельных облаков. Однако влинние этого слон, как будет показано ниже при рассмотрении вопроса образования осадков в теплых облаках, не является определяющим. Можно утверждать, что и без наличия этого сравнительно тонксго (H = 590 N) облачного слоя теплых капельных облаков у земли наблюдались бы существенные осадки.

Другие примеры представлены нами в табл.2.

Отметим, что при отборе подобных случаев был использован материал зондирования атмосферы за 1959 г. Москвы, Минска, Казани, Минеральных Вод, Волгограда, Львова, Ростова-на-Дону, Риги, при обязательном выполнении следующих условий:

1) нижняя граница облаков, из которых выпадают ледяные элементы, должна располагаться на высоте не менее 2300 м, что, как следует из предыдущего, гарантирует в подавляющем большинстве отсутствие осадков у земной поверхности;

2) выпадающие из этих облаков снежинки должны достигать верхней границы капельного переохлажденного облака;

3) облака, в которые попадают ледяные элементы, должны быть переохлажденными полностью или частично, но так, чтобы средняя температура такого облака была меньше 0°;

4) температура на верхней границе такого облака должна быть выше -8⁰, что указывает на отсутствие заметной спонтанной кристаллизация.

Зависимость между осадками, которые достигают земли, мощностью переохлажденного облака и его средней температурой может быть объяснена тем, что скорость роста снежинки в смешанном облаке в огромной степени зависит от разности в давлении пара над водой и льдом при температурах ниже 0°. Эта разность в свою очередь сильно зависит от температуры, возрастая в сторону понижения температуры и достигая максимального значения при $t = -12^\circ$.

Такое положение приводит к уменьшению скорости роста падающей снежинки при повышении температуры, а следовательно, и к увеличению пути, который должна пройти падающая снежинка, чтобы вырасти до некоторого размера R.

Покажем это.

Кинетика процесса сублимационного роста падающей замерзшей капли определяется уравнением диффузии, которое по [8] может быть записано

(7)

 $\frac{dR}{dz_{\kappa Hg}} = -\frac{D_{MA}E(1+\alpha\sqrt{Re})}{\rho\kappa\sqrt{R[v(R)-w]}},$

где R – радиус капли; Z – путь, который проходит падающая капля в облаке; D – коэффициент диффузии водяного пара; M – молекулярный вес воды; ΔE – пересыщение пара относительно поверхности капли, равное разности между упругостями насыщения пара над 17

Таблица 2

(8)

		Пара охл	аметры адденно облака	пере- го	Высота н.г.верх него об-	Мощ- ность без-	Погода у земли		
Пункт	Дата	мощ- ность дНм	темпе- рату- ра на верх- ней	сред- няя темпе- ратура град.	лака ца- ющего снег, м	облач- ной про- слойки, м	t°	u %	ЯВЛЕ- НИЯ
	00/W		ралице						
москва	1959	680	-2,7	-0,1	2930	430	+10,8	60	оез осадков
Волго- град	6/ 🛙	1000	-7,3	-5,3	2970	1080	+ 0,4	92	уме- ренный дождь
-* -	26/ 1X	590	-3,0	-2,5	2730	170	+10,7	94	то же
-"-	12/X	920	-4,2	-2,7	3520	1940	+2,0	93	- ⁿ -
n	19/X	190	-2,4	-1,9	3440	1590	+2,4	91	бев осадков
"	18/ XII	1150	-5,3	-6,2	2400	400	-5,9	92	умерен- ный снег
Мине-						•			
ральные Воды	30/1X	2320	-7.2	-2.1	4720	1150	+7.2	96	то же
¹¹	4/X	530	-4,4	-3,8	2430	220	+5,1	78	полосы
									паде- ния
Ростов- на-Дону	5/XII	920	-5,2	-2,7	3660	400	-0,7	98	Слабый Дождь
Львов	3/1	410	-7,5	-4,1	2790	1320	-0,6	84	слабый снег
-#-	20/ 1y	410	-7,8	-6,5	3680	2050	+1,2	91	умерен- ный дождь
Рига	23/X1	1310	-1,5	-0,4	4560	3240	+1,4	98	очень слабый дождь
Минск	8/1 3	1400	-3,8	-0,8	3060	630	+5,9	92	умерен ный дождь

водой и нацо льдом ($E = E_g - E_h$); β - плотность води; κ - постоянная Больцмана; N - число Авогадро; U(R) - скорость падения капли; W - вертикальная скорость ветра; Re - число Рей- с. – коэффициент, зависящий от размера капли. нольдса;

Уравнение коагуляционного роста крупных капель, падающих в монодисперсном облаке, при вертикальной скорости ветра, соизмеримой со скоростью падения облачных капель, с достаточной точностью можно записать

 $\frac{dR}{dz_{\kappa r}} = -\frac{\varphi}{4\rho} \frac{\tilde{E}(R)}{E(R)},$ БИ ЛИО ЛЕНИНГРАДСКОГО **ГИДРОМЕТЕ**ОРОЛОГИЧЕСКОГИ **МНСТИТУТА**

175263

где **Ч** – водность облака, **Е(Я)** – коэффициент захвата. Уравнение для суммарного роста имеет вид

$$\frac{dR}{dI} = \frac{4\Omega M_{\Delta} E(1+\alpha \sqrt{Re}) + qE(R) \kappa NTR[v(R) - w]}{4\rho \kappa NTR[v(R) - w]}.$$
 (9)

Знак минус в (7),(8) и (9) указывает, что мы следим за падающей в облаке каплей.

Решая относительно Z и интегрируя (9), получим

$$\Delta Z = \int_{R} \frac{4 \mathcal{P} \kappa \mathcal{N} T R [\mathcal{V}(R) - w] d R}{4 \mathcal{D}_{\mu} \Delta E (1 + \alpha \sqrt{Re}) + q E (R) \kappa \mathcal{N} T R [\mathcal{V}(R) - w]} (10)$$

Уравнение (10) выражает путь, который проходит падающая капля, вырастая от начального радиуса h_1 до конечного h_2 . Было произведено численное интегрирование (10) при различных температурах от начального радиуса $h_1 = 5$ мк до конечного $h_2 = 100$ мк при $q_1 = 0,4$ г/м³, W = 0.5 см/сек.

Полученные значения ΔZ при температуре Т наносились на график, по оси абсцисс которого откладывались значения температуры в ^оС , что соответствует средней температуре облака, а по оси ординат - значения **Д** в метрах, что соответствует мощности облака, через которое проходит падающая капля, вырастая до размера 🖁 = 100 мк. Считалось при этом, что снежинка, равновеликая по массе сферической капле 🖁 = 100 мк, выпадая из облака, полностью не испарится, а дойдет до земной поверхности. Соединив плавной кривой точки, получим график зависимости между осадками, мощностью переохлажденного смешанного облака и его средней температурой. На рис.З представлен этот график, на котором также нанесены данные опытов по искусственному воздействию на переохлажденные слоистые облака твердой углекислотой и Данные из анализа самолетного зондирования атмосферы (табл.2).

Видно, что теоретическая кривая в основном правильно описывает термодинамику процесса осадкообразования в слоистых переохлажденных смешанных облаках.

Искусственное вызывание осадков может с такой же успешностью осуществляться и при температурах на верхней границе облака выше -4° , но для этого необходимы более значительные мощности облака.

Процессы осадкообразования в переохлажденных слоистых облаках совершенно одинаковы как при искусственном воздействии на них твердом углекислотой, так и при естественном засеве их ледяными элементами извне.

Анализ грацика подтверждает также достоверность разделения облаков на смешанные и чисто водяные по значению скорости замерзания на верхней границе облака, если эти облака не "заражаются" извне ледяными элементами.

- 18

Рис.3. ЗАВИСИМОСТЬ МИНИМАЛЬНОЙ ТОЛЩИ ПЕРЕОХЛАЖДЕННОГО КАПЕЛЬНОГО СЛОИСТОГО ОБЛАКА, ДАЮЦЕГО ОСАДКИ У ЗЕМЛИ, ОТ ЕГО СРЕДНЕЙ ТЕМПЕРАТУРЫ, ПРИ ИСКУССТВЕННОМ ВОЗДЕЙСТВИИ НА ЭТО ОБ-ЛАКО ТВЕРДОЙ СО2 ИЛИ "ЗАРАЖЕНИЙ"ЕГО ЛЕДННЫМИ ЭЛЕМЕНТАМИ ИЗВНЕ. С) – Данные ААНИИ [25], о з данные ГГО [24], А – данные са-

П - данные А́АНИИ [25], О - данные ГГО [24], А - данные самолетного вондирования. Значок затушеван - осадки, крест - полосн падения или отдельные снежинки, чисто - бев осадков.

При естественном, спонтанном замерзании облака в области более высоких температур на верхней границе облака, чем температура интенсивной кристаллизации, повышение необходимой мощности облака, при котором могут образоваться осадки, происходит скачкообразно от 400 до 1800 м, при искусственной кристаллизации облака в этой области температур нарастание необходимой мощности идет плавно. Это еще раз свидетельствует о том, что установленная ранее критическая скорость кристаллизации определнет переход облака из чисто водяного в смешанное.

Перейдем теперь к рассмотрению некоторых вопросов физики образования осадков в чисто водяных облаках.

2. Чисто водяные облака

Аналитическое решение задачи о пересыщении пара и скорости конденсационного и коагуляционного роста капель в водяных облаках с небольшими вертикальными токами было получено Л.Г.Качуриным в работах [4,8,26,27].

20 .

Частное решение задачи конденсационно-коагуляционного роста капли для случая установившегося пересыщения согласно [4,31] имеет вид

$$-\frac{dR}{dz} = \frac{2\mathfrak{D}\mu^{2}6}{(P\kappa\mathcal{N}T)^{2}R[\nu(R)-w]} \left[\left(1 - \frac{dS}{dt} \frac{\mathcal{P}(\kappa\mathcal{N}T)^{2}}{8\mathrm{Jin}6\mathfrak{D}\mu^{2}E_{\infty}}\right) \frac{1}{2} - \frac{1}{R} \right] + \frac{q}{4P} \frac{\int_{z} \eta(z) E(R,z) z^{3} \left[\frac{\mathcal{V}(R) - \mathcal{V}(z)}{\mathcal{V}(R) - w} \right] dz}{\left[\eta(z) z^{3} dz}, \qquad (11)$$

где 6 - удельная поверхностная энергия на границе вода-водяной пар, $\sum_{n=1}^{\infty}$ - упругость насыщения пара при температуре Т, $\overline{2}$ средний радиус капель в облаке, n - концентрация капель в единице массы, $\frac{ds}{dt}$ - изменение удельной влажности насыщения в единицу времени, другие обозначения известны.

С целью выяснения роли различных факторов, влияющих на рост капель, в работах [4,8] был произведен расчет ряда примеров,которые отличались друг от друга величиной исходных параметров облака.

Расчеты показали, что для диагноза осадков из чисто водяных облаков необходимо точно знать распределение капель по размерам, температуру, водность, вертикальную мощность облака и дефицит влажности воздуха под облаком.

Основой для решения вопроса о том, каков в действительности внутренний механизм развития водяных облаков для превращения их в дождевые, должны послужить, как считает Л.Г.Качурин [4], материалы сопоставления фактических данных с результатами расчетов укрупнения частиц в водяных облаках.

В частности, в [4] указывается, что необходимо выяснить, какие характеристики облаков являются наиболее изменчивыми в процессе их развития, какие, наоборот, наиболее консервативными. Бев этого попытки предвычисления осадков из водяных облаков останутся в значительной степени безрезультатными.

Чтобы облегчить задачу по выявлению природных зависимостей между осадками и параметрами чисто водяных облаков, имеет смысл получить теоретические зависимости между скоростью роста капли и последовательным изменением каждого параметра облака.

Упростим прежде всего уравнение (11) для случая монодисперсного развивающегося облака. Это может несколько изменить численный результат, однако, что самое важное, существенно не повлияет на выявление жарактера искомых зависимостей.

Для монодисперсного облака первое слагаемое уравнения (11), описывающее скорость роста за счет конденсации пара на капле, может быть представлено

$$-\frac{dR}{dZ_{KHg}} = -\frac{dS}{dt} \frac{1}{R^2 4 \pi n [v(R) - w]}$$
(12)

Переходя от концентрации капель в единице массы к водности облака с помощью соотношения

$$n = \frac{54}{4 \pi R^2 \rho \rho}, \qquad (13)$$

где 9 - водность облака, выраженная в г/см³, 6 - плотность воздуха, получим

$$\frac{dR}{d\chi_{\rm KHg}} = \frac{dS}{dt} \frac{(RP)}{3q[v(R)-w]}$$
(14)

Преобразуем уравнение (14) следующим образом. В [1,28] показано, что, если мы следим за судьбой отдельной частицы, т.е. рассматриваем dt , то основными факторами образования облаков будут адиабатическое, трансформационное и радиационное охлаждения.

Так как нас интересуют капельножидкие и притом достаточно мощные облака типа As - NS, которые в основном располагаются выше пограничного слоя атмосферы и в теплую половину года, то можно принять условие адиабатичности и считать, что изменение температуры за счет вертикальных движений намного больше трансформационных и радиационных изменений.

Исходя из такого предположения, можно записать, что

 $\frac{dS}{dt} = \frac{dS}{dT} \frac{dT}{dt} = \frac{dS}{dT} \frac{dT}{dZ} \frac{dZ}{dt} = -\frac{dS}{dT} \mathcal{T} \mathcal{W}, \quad (15)$ TAR KAR $\frac{dZ}{dt} = \mathcal{W}$ - Вертикальная скорость Ветра, $\frac{dT}{dZ} = -\mathcal{T}$ - Вертикальный температурный градиент в облаке.

Согласно [29] величина $\frac{d.s}{d.T}$ может быть представлена

$$\frac{ds}{dT} = \frac{\mu_{i}}{\mu} \qquad \frac{\mathcal{L} E_{\infty}}{PT^{2} \mathcal{A} Rn},$$

где "Ми – молекулярный вес водяного пара, Р – давление воздуха, R_n - удельная газовая постоянная водяного пара, A - тепловой эк-вивалент работы, отношение $\frac{M_1}{M} \approx 0,622$. Решая совместно (14),(15) и (16), получим

(18)

$$\frac{dR}{dZ_{KHg}} = -0.622 \frac{L E_{\infty} RP P_{e} \sigma W}{PT^{2} A R_{n} 3q [r(R)-W]}$$
(17)

Второе слагаемое уравнения (11), описывающее коагуляционный рост капли в облаке для случая монодисперсного облака, можно представить в виде

$$\frac{dR}{dZ_{\kappa_{r}}} = -\frac{\varphi}{4\rho} \widetilde{E}(R) \left[\frac{v(R) - v(z)}{v(R) - w} \right]$$
(18)

- 21

Окончательно упроценное уравнение для суммарной скорости роста капли, падающей в монодисперсном развивающемся облаке, имеет вид

$$-\frac{dR}{dZ} = \frac{4.0,622 \pm E_{\infty} \beta^{2} \beta_{\beta} R \delta W + 3 q^{2} T^{2} \rho A R_{n} \widetilde{E}(R) [v(R) - v(z)]}{12q P T^{2} A R_{n} [v(R) - w] p}$$
(19)

Разделив переменные и интегрируя (19) от Z, до Z₂ и от R, до R₂, получим

$$\Delta Z = - \int_{R_1}^{R_2} \frac{124 \text{ PT}^2 A R_n P [v(R) - w] d R}{4.0,622 L E_p P^2 R N + 3q^2 \text{ PT}^2 A R_n E(R) [v(R) - w]} (20)$$

Результаты численного интегрирования уравнения (20) при различных значениях T, W, q и при $R_1 = 7$ мк, $R_2 = 150$ мк, P = 800 мб представлены на рис.4.

Рыс.4. ЗАВИСИМОСТЬ МИНИМАЛЬНОЙ ТОЛЩИ СЛОИСТОГО КАПЕЛЬНОГО ОБЛАКА, КОТОРАЯ ТРЕБУЕТСЯ ДЛЯ ТОГО, ЧТОБЫ ПА-ДАЮЩАЯ КАПЛЯ, ПРОХОДЯ ЕЕ, ВЫРОСЛА ДО Я = 150 мк, ОТ СРЕД-НЕЙ ВЛАЖНОСТИ И СРЕДНИХ ВЕРТИКАЛЬНЫХ ТОКОВ В ОБЛАКЕ.

Коэффициент захвата рассчитывался по формулам Н.С.Шишкина [5]. Так как величина \mathcal{T} в облаках As-NS меняется незначительно [1,30], ее мы приняли постоянной и равной 0,5⁰/100 м. Из рис.4 видно, что для того, чтобы капля, падая в чисто водяном облаке, выросла от начального радиуса 7 мк до конечного 150 мк при различных значениях T, W и Q, ей необходимо проходить различные отревки пути. Так, при средней водности 0,2 г/м³, средней температуре облака 0[°] и средней вертикальной скорости 1 см/сек. падающая капля вырастет до $R_2 = 150$ мк в облаке толщиной не менее 5200 м, в то время как при q = 0,5 г/м³, W = 2 см/сек. и $T = 0^{\circ}$ потребуется мощность облака только 2400 м. Существенно будет меняться мощность облака и в зависимости от изменения средней температуры. Выполненные нами расчеты находятся в хорошем согласии с. расчетами работ [4,8].

К сожалению, отсутствие регулярных и надежных данных о водности облаков и вертикальных токах не позволяет построить природные зависимости между осадками и этими параметрами для чисто водяных облаков. Данные о температуре и мощности облаков, если они наблюдаются, имеются в протоколах каждого самолетного подъема. Это дает возможность выявить естественную связь между осадками, мощностью и средней температурой чисто водяных облаков.

Выше, рассматривая рис.2, мы не остановились на анализе хода кривой связи при значениях $\log \frac{an}{dt} \zeta - 6,2$, указав только, что в этом случае мы имеем дело с чисто водяными облаками. Из гра-фика рис.1 видно, что при малых значениях e dn влияние вертикальных токов на величину скорости замервания уменьшается. Таким образом, $\lg \frac{dn}{dt} \approx f(T)$. Это вначит, что с уменьшением $\lg \frac{dn}{dt}$ происходит повышение температуры на верхней границе облака, а следовательно, и повышение его средней температуры. В таком случае участок кривой на рис.2 при значениях gdn 4-62 можно рассматривать как зависимость между осадками, температурой и мощностью чисто водяного облака. Для этого дополнительно к имеющимся данным были привлечены самолетные подъемы в указанных выше пунктах за теплое полугодие с 1954 по 1958 г. Данные отбирались при следующем условии: облака должны быть капельные, что при отрицательных температурах характеризовалось критерием и din , видом осадков, если они наблюдались, и визуальной оценкой наблюдателя. При положительных температурах это условие автоматически выполнялось.

Дополнительно были включены данные самолетных подъемов из работ [2,5,6]. Всего было использовано около 1000 самолетных подъемов в чисто водяных облаках.

Для каждого случая рассчитывалась средняя температура облака как полусумма температур на верхней и нижней границах и мощность облака. Затем эти данные наносились на грарик, по оси абсцисс которого откладывались значения средней температуры облака $\mathbf{t}^{\mathbf{C}}$, а по оси ординат мощность Δ Н км. Если при этом наблюдался умеренный дождь, ставился значок \mathbf{A} , если очень слабый дождь – +, если морось – 9, без осадков – 0.

Разделив области умеренного дождя от очень слабого дождя и мо-

AH MM

роси, а последнюю от области отсутствия осадков, мы получили график зависимости между осадками, мощностью и средней температурой облака.

Этот график представлен на рис.5.

Видно, что, если параметры облака таковы, что точка на графике окажется выше кривой, разделяющей умеренные осадки от очень слабых или моросящих, то в этом случае мы в 95% случаев будем наблюдать осадки у вемной поверхности, из которых 90% будут умеренными или сильными. Кривая, разделяющая область отсутствия осадков от области мороси или очень слабого дождя, определяет 50% вероятность этих явлений.

Рис.6. ВЕРОЯТНОСТЬ ВЫПАДЕНИЯ ОСАДКОВ ДО ЗЕМЛИ В ЗАВИСИМОСТИ ОТ СООТНОШЕНИЯ МЕЖДУ ВЕРГИКАЛЬНОЙ МОЩНОСТЬЮ И ВЫСОТОЙ НИЖНЕЙ ГРАНИЦЫ ЧИСТО ВОДЯНОГО СЛОИСТОГО ОБЛАКА. Сравнение полученных природных кривых связи между осадками, мощностью облака и его средней температурой с расчетными (см.рис.4, на котором природные кривые проведены пунктирными линиями) показывает, что в природе действительно имеется зависимость между параметрами облака и осадками такого типа, как подсказывает теория [4,8]. Более строгий учет параметров облака позволил бы производить и более точный расчет осадков, но в настоящее время сделать это не представляется возможным, так как мы не располагаем надежными и регулярными данными о водности, величине и характере распределения вертикальных скоростей в облаке.

Однако полученный результат позволяет уже сейчас использовать его в синоптической практике в целях диагноза и прогноза обложных осадков.

В заключение остановимся на зависимости выпадения осадков у земли от соотношения между Вертикальной мощностью и высотой нижней границы чисто водяного слоистого облака, что обсуждалось ранее в § 1. На рис.6 представлена эта зависимость. График построен по материалам самолетного вондирования атмосферы в чисто водяных облаках, которые использовались при построении графика рис.5.

Из рис.6 видно, что между выпадением осадков у земли, мощностью и высотой нижней границы чисто водяного облака обнаруживается четкая зависимость. Рисунок 6 подтверждает выводы работ [2,4,8 и др.] о характере процессов осадкообразования в чисто водяных облаках и влиянии влажности и мощности подоблачного слояна выпадение осадков у земли.

Заключение

Как известно, в настоящее время синоптик делает заключение о вероятности выпадения осадков по характеру ожидаемой формы облаков, исходя из сложившейся к моменту составления прогноза конкретной синоптической обстановки. Это очень часто не приносит положительного результата, и поэтому прогноз осадков даже при правильном прогнозе синоптического положения имеет более низкую оправдываемость, чем другие метеорологические элементы.

А.С.Зверев [21] указывает, что прогнозы осадков затруднены, помимо прочего, и невозможностью учета микрофизического строения облаков и тех процессов, которые влияют на укрупнение элементов облака.

В настоящей работе показано, что некоторые закономерности физики обложных осадков, разработанные теоретически, правильно отображают природу этого явления.

Полученные эмпирические зависимости между доступными для измерения и предвычисления параметрами облака и осадками уже сейчас могут быть использованы в синоптической практике, так как они позволяют качественные соображения заменить количественным расчетом.

Лите	ратура
1. Боровиков А.М. и	др. Физика облаков. Гидрометес- издат. Л., 1961.
2. Мейсон Б.Дж.	Физика облаков. Гидрометеоиздат, Л., 1961.
3. J. Podzimek.	Fysika oblaku a srážek. Nakladatelstvi
	Ceskoslovenske akademie ved. Praha, 1959
4. Качурин Л.Г.	Образование осадков в облаках с
	малыми вертикальными токами.
	Изв.АН СССР, серия геофиз., В 2, 1956.
5. Шишкин Н.С.	Облака, осадки и грозовое электри-
	чество. Гостехтеориздат, М., 1954.
6. Peppler W.	Unterkülte Wasserwolken und Eiswolken.
	Forsch. W. Erfahr. Reichsant f. Wetterdinet
	B. I, 1940.
7. Зак Е.Г.	Микроструктура фронтальных обла-
	ков. Метеорология и гидрология,
о. кад уриналит. и цр.	Анализ вон осадков из фронталь-
9. Бержерон Т.	Физика облаков и осалков.
	Сб. "Физика образования осадков".
	ИЛ, М., 1951.
10. Финдайзен В.	Коллондально-метеорологические
	явления при образовании осадков.
	Сб. "Физика образования осадков",
	ИЛ, М., 1951.
11. Антонов В.С.	Аналив условий выпадения осадков
	иа облаков слоистых форм.
	со.работ по региональной синопти-
	ле, - О, Іддродстсомодат, Ш., 1706. Некотолые результаты местенований
IN. DOPOBALOB A.M.	СТруктуры кристаллических облаков
	Труды ШАО. вып. 10. 1958
13. Заварина М.В.	Аэроклиматические факторы обледе-
	нения самолетов. Гидрометеоиздат,
	Л., 1960.
14. Качурин Л.Г.	Замерзание монодисперсных водных
	аэроволей. Изв.АН СССР, серия гео-
	физ., 🛢 2, 1951.
15. Качурин Л.Г.	Замервание полидисперсных водных
	аэрозолей. Там же.
16. Качурин Л.Г.	сравнение различных уравнений за-
	мервания переохлажденных водных

- 27

. .

аэрозолей. Изв.АН СССР, серия геофиз., 🖺 1, 1959. 17. Антонов В.С. О зависимости между вертикальными токами и температуров интенсивной кристаллизации во фронтальных облаках слоистых форм. Метеорология и гидрология, 6, 1962. 18. Руководство по краткосрочным прогнозам погоды, часть 1. Гидреметеоиздат, Л., 1955. 19. Singleton F. Aircraft observations of rain and drizzle from layer clouds. Quart. J.R. Met. Soc.. v. 86, N 368, 1960 20. B.J. Mason, B.P. Howorth. Some characteristics of stratiform clouds over North Ireland in relation to their precipitation. Quart. J. R. Met. Soc.. vol. 78, N 336, 1952. 21. Зверев А.С. Синоптическая метеорология. Гидрометеоиздат, Л., 1957. 22. Руководство по краткосрочным прогнозам погоды, часть П. Гидрометеоиздат, Л., 1954. 23. Искусственное воздействие на облака и осадки. Техническая справка 📱 13 (перевод с английского). Гидрометеоиздат, Л., 1957. 24. Никандров В.Я., Чуваев А.П. Сводные данные об опытах по воздействию на облака сухим льдом. Труды ГГО, вып.20, 1953. 25. Морачевский В.Г., Никандров В.Я. Эффективность частиц СО, и дыма ЯдЈ для рассеивания переохлажденных низких облаков. Труды ААНИИ, **r.22**8, 1959. 26. Качурин Л.Г., Алантьева Л.Е., Ся 10 n -Концентрация пара и скорость роскень. та капель конденсата в водных азроволях. Изв.АН СССР, серия геофиз., ₽ 9, 1961. О пересыщении пара и конденсаци-27. Качурин Л.Г. онном росте капель в водяных облаках. Метеорология и гидрология, ₩ 8, 1953. 28. Абрамович К.Г., Хргиан А.Х. Исследование условий возникновения слоистообразной облачности нижнего яруса. Труды ЦАО, вып.28, 1960. О связи между вертикальными дви-29. Качурин. Л.Г. кениями в атмосфере и интенсив-

28 -

ностью осадков из фронтальных облаков слоистых форм. Труды ГГО, вып. 76, 1958.

Характеристика фронтальной облачности по данным самолетных подъемов. Метеорология и гидрология, # 8, 1937.

30. 3 a r E.F.

М. А. ГЕРМАН

30

НЕКОТОРЫЕ КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ ТУРБУЛЕНТНОГО ОБМЕНА В ОБЛАКАХ

В ряде исследований, выполненных в последние годы, рассмотрен вклад турбулентного переноса влаги в формирование пространственной и внутренней структуры облаков. Однако, несмотря на это, количественные характеристики турбулентного обмена в облаках до сих пор изучены мало, поскольку до последнего времени отсутствовали на техные методы определения этих характеристик.

Появление работ А.С.Дубова [7,8], Л.Т.Матвеева [15], Д.Л.Лайхтмана [11,12] появолило в определенной степени восполнить пробел в изучении турбулентного состояния свободной атмосферы и облаков. Вместе с тем еще далеко не все вопросы являются решенными окончательно.

В настоящее время по данным научно-исследовательских полетов накоплен уже довольно общирный материал, позволяющий охарактеризовать турбулентное состояние свободной атмосферы и различных облаков. Используя данные этих полетов, автором была предпринята попытка исследовать турбулентный обмен в облаках.

Для изучения турбулентного режима были использованы акселерографические записи перегрузок самолетов в облаках, полученные во время специальных полетов ЦАО, Гос.НИИ ГВФ, ГГО, ААНИИ. В полетах 1957-58 и 1962 гг. принимал непосредственное участие автор.

В качестве дополнительного материала использованы бортовые журналы зивуальных наблюдений за формой и количеством облаков, проводившихся бортаэрологами, а также данные температурно-ветрового вондирования в этих пунктах.

1. Материал и методика исследования

Изучение турбулентного обмена в облаках производилось на специально оборудованных самолетах. Основным прибором, с помощью которого регистрировалась турбулентность (перегрузки самолета), был акселерограф, состоящий из потенциометрического датчика перегрувок, установленного в центре тажести самолета, и оптического самоВ качестве индикатора времени в схему прибора обычно включались электрические часы, производящие отметку времени через 1,0 сек. Самописцем К4-51 регистрировалась также температура воздуха, прозрачность облаков (атмосферы), влажность и температурные пульсации. С этой целью на самолете устанавливалось два самописца.

Для большинства полетов температура воздуха измерялась с помощью самолетного экранированного термометра конструкции В.А.Зайцева и А.А.Ледоховича или электрометеорографа ЦАО (с введением соответствующих поправок) [9, 24].

Количество и форма облаков определялись визуально бортазрологами. Вход и выход из облаков регистрировался с помощью измерителя прозрачности Г.М.Забродского [9], а при отсутствии приборов визуально.

Отбору акселерографических записей для их последующей обработки предшествовала критическая оценка условий получения данных. В частности, обязательным треоованием являлось сохранение постоянной скорости и высоты полета для каждого случая (горизонтальной площадки). Вмешательство летчика в управление самолетом на горизонтальнои площадке обычно было минимальным (в пределах, необходимых для обеспечения безопасности полета).

Продолжительность полета по горизонтали в момент исследования в среднем была 120 сек. В некоторых случаях полетов на больших эысотах такой временном интервал не всегда был осуществим, что связано со спецификой полета в облаках. В таких случаях использовались акселерографические записи продолжительностью не менее 50 сек. Количество записей на таких площадках составллет примерно 6% всех случаев, рассмотренных в работе.

Исследования, выполненные А.П. Юргенсоном [25], показывают, что интервал времени в 120 сек. достаточно хорошо обеспечивает изучение ряда важных характеристик турбулентного режима сьободной атмосферы.

Выбор указанного интервала времени вполне обеспечивает исследование турбулизированного слом с горизонтальной протыженностью от 7000 до 25 000 м.

Время и районы исследовательских полетов, типы самолетов, количество горизонтальных площадок в облаках и вне облаков приведены в табл.1.

Всего было исследовано 1120 записей с болтанкой самолетов; 60,0% записей получены при полетах в облаках и 40,0% записей - вне облаков.

Облака нижнего, среднего ярусов и частично облака вертикального развитин исследовались с помощью винтомоторных самолетов Ли-2 и Ил-12. Облака верхней тропосферы и нижней стратосферы прозондированы скоростными самолетами Ту-104, Ту-104Б и Ил-18.

Маршруты полетов охватывают многие географические районы страны с разными климатическими условиями формирования облаков. Это обеспечивает возможность сравнения полученных выводов о турбулентности в облаках в тех или иных районах.

Таблица 1

Исходные данные научно-исследовательских полетов, использованных при изучении турбулентного режима в облаках

32

B	Географический район,	Тип	Число	случаев	Общее
n/n	вания	TOB	В ООЛА- ках	вне облаков	случаев
1	ЕТС, Средняя Азия, вима, 1957 г.	T y-1 04	-	28	28
2	Арктика, лето,1957 г.	Ил-12	87	136	223
3	Северо-вападная часть ЕТС, осень-вима,1957г.	Легкий Истре- битель		4 4	44
4	Центральная часть ЕТС, зима, 1957-58 г.	Ли-2	54	-	54
5	Центральная часть ЕТС, Средняя Азия, лето, 1958 г.	Ty- 104	44	5	49
6	Арктика, лето, 1959 г.	Ил-12	37	-	37
7	Центральная часть АТС, лето-осень, 1959 г.	Ил-14	26	-	26
8	Северо-вападная часть ЕТС, осень, 1960 г.	Ли-2	51	10	61
9	Дальний Восток, Средняя Азия, весна-лето, 1960г.	Ил-18, Ту-104Б	65	85	150
10	Дальний Восток, Сред- няя Азия, лето-осень, 1960 г.	Ту-104Б	93	49	142
11	Северо-западная и юго- западная части ЕТС, зима, весна, лето, 1961 г.	Ли-2	88	36	124
12	Северо-вападная часть ЕТС, лето, 1962 г.	Ли-2	126	56	182

Применение различных типов самолетов является недостатком использованного материала, что в некоторой степени осложняло его обработку.

Распределение количества случаев по ярусам и полугодиям представлено в табл.2. В теплое полугодие в облаках исследовано 519 случаев, из них 124 в арктических районах. В холодное полугодие в Арктике облака не исследовались, а в умеренных широтах рассмотрено 152 случая.

Число площадок, на которых производились измерения, было большим и поэтому результаты, полученные при обработке, можно считать более или менее надежными.

П. <u>Методика обработки акселерографических записей</u> болтанки самолетов в облаках

В качестве исходных данных для анализа были использованы вначения ординат h; , снятых с акселерограмм черев промежутки вре-

Таблица 2

Количество горизонтальных площадок в облаках в зависимости от полугодия

_		мерен	ные шиј	POTH	Арктика				Всего	
Полу- годие	оол, верт, раз-л вития	ния- ний прус	сред- ний ярус	верх- ний ярус	вне обла- ков	оолака верт. разви- тия	ту- ман	них- ний нрус	вне обла- ков	случа- ев
Теплое	128	87	36	144	211	11	9	104	136	866
Холод- ное	15	107	30	-	102	-	-		-	254
Общее число случаев	143	194	66	144	31 3	11	9	104	136	1120

мени T = 0,5 сек. с точностью до 0,1 мм. В тех случаях, когда скорость развертки самописца была недостаточно большой, проводилось дополнительное построение нового графика, но при более "растянутом" масштабе времени, чем на акселерограмме. После снятия ординат вычислялись абсолютные значения разностей Δh между производьной величиной ординаты h_i и средней ординатой h на горизонтальной площадке.

Переход от абсолютных значений разностей ординат к значениям перегрузок Δn (где $\Delta n = n - 1$ в долях g) осуществлялся при помощи тарировочных графиков, приданных к каждому датчику перегрувок. Осреднение перегрузок, необходимое для дальнейших расчетов, проводилось по 120 мгновенным значениям Δn

Для интервала времени менее 120 сек. количество мгновенных значений, использованных при осреднении, было соответственно меньше.

Для датчика типа МП-66, которым фиксировались перегрузки в полете, зависимость между значениями ординат и перегрузок является линейной. Тарировка датчика перегрузок во всех случаях производилась до и после окончания полетов (экспедиции) при фиксированном напряжении. Для характеристики турбулентного режима облаков можно использовать данные о величинах вертикальной пульсации скорости ветра, козффициента турбулентности, энергетического спектра и т.д. В данной работе приводятся коэффициенты турбулентности в основных формах облаков. В работе также рассматриваются перегрузки современных самолетов и размеры турбулентных вихрей, вызывающих их болтанку.

В настоящее время известен ряд методов [8,11,12 и 15] для определения коэффициента турбулентности в сободной атмосфере. В нашем случае наиболее удобно пользоваться расчетными формулами, предложенными в работе [8].

В основу выполненного расчета положена структурно-кинематическая формула Ляпина-Дубова

$$K = \frac{u_2 T \overline{v}}{2}$$

34

Величина Uz определяется по данным акселерографических записей с помощью соотношения

 $u_2 = \beta_{\Delta n}, \qquad (2)$

(1)

(2)

где $b = \frac{\theta_o}{\Delta}$ - коэффициент, характеризующий летно-технические данные самолета,

$$B_{o} = \frac{2}{P_{o} C_{y}^{a}}$$

 С - среднее время сохранения вертикальной пульсации одного внака, в сек., <u>G</u> - удельная нагрузка на несущие поверхности самолета, <u>G</u> - плотность воздуха, <u>G</u> - коэффициент, характеризурций изменение подъемной силы самолета в зависимости от угла атаки.

Величины, входящие в формулу (1), могут быть легко определены с помощью акселерографических записей и данных из технических описаний самолетов.

Величина **С** определялась как разность времен начала и конца перегрузки одного знака и осреднялась для всей горизонтальной площадки.

В тех случаях, когда при исследовании акселерографом фиксировалось отсутствие перегрузок самолета, т.е. турбулизированные слои чередовались со спокойными участками полета (в пределах чувствительности акселерографа), определение времени сохранения перегрузки одного внака производилось по четодике, предложенной А.С.Дубовым [8].

В подобных случаях в начале коэффициент турбулентности находился только по участкам записи, где были возмущения, а для характеристики турбулентного состояния всей исследуемой области полученное значение множилось на отношение длины участков записи с наличием ускорений к общей длине записи.

Современные исследования показывают, что в свободной атмосфере наблюдается широкий спектр турбулентных возмущений, от размеров вихрей в несколько миллиметров до сотен и тысяч километров.

При использовании самолета для исследования атмосферы из этого широкого спектра оказываются исключенными самые мелкие и самые крупные вихри. На первые самолет не реагирует в силу значительности инерции. Вихри очень больших размеров, т.е. очень большие поднимающиеся и опускающиеся массы воздуха, либо просто "захватывают" самолет и переносят его без изменения угла атаки, либо эти изменения оказываются настолько незначительными, что при существующей точности акселерографов не могут быть выявлены на записи [8]. Так как величина турбулентного обмена определяется в первую очередь большими вихрями, то пренебрежение влиянием малых вихрей практически не скажется на величине полученных характеристик обмена.

Ограниченность спектра вихрей сверху может в определенной степени приводить к уменьшению козффициента турбулентности.

Для исследования этого вопроса обратимся к соотношению (2), которое учитывает переход от перегрузок, испытываемых самолётом, к вертикальным пульсациям скорости ветра. Входящий в соотношение (2) коэффициент 6, строго говоря, является функцией частоты возмущений. В этой целью рассчитаны вначения функции б'(ω) по формуле

$$\boldsymbol{\beta}^{\prime 2}(\boldsymbol{\omega}) = \frac{(\boldsymbol{\omega}^{4} + \boldsymbol{\mathfrak{D}}_{1}\boldsymbol{\omega}^{2} + \boldsymbol{\mathfrak{D}}_{2}) + (\boldsymbol{\mathfrak{B}}_{3}\boldsymbol{\omega}^{2} + \boldsymbol{\mathfrak{B}}_{4})^{2}\boldsymbol{\omega}^{2}}{(\boldsymbol{\mathfrak{B}}_{3}\boldsymbol{\omega}^{2} + \boldsymbol{\mathfrak{D}}_{9})\boldsymbol{\omega}^{4} + (\boldsymbol{\mathfrak{D}}_{10}\boldsymbol{\omega} + \boldsymbol{\mathfrak{D}}_{2})^{2}\boldsymbol{\omega}^{2}} \cdot$$
(3)

Вид кривой зависимости величины в от частоты для самолета Ли-2 представлен на рис.1.

1 - 1000 m, 2 - 3000 m, 3 - 5000 m.

Из рис.1 видно, что особенно сильно меняется величина козффициента при малых частотах, однако при расчетах козффициента турбулентности используется постоянное, асимптотическое значение величины в. Это, естественно, приводит к рассмотрению только высокочастотного участка спектра возмущений, а следовательно, и к определенным погрешностям расчета.

Прежде чем оценить погрешность принятого в выражении (2) приближения, рассмотрим повторяемость вначений среднего времени со-

$$\omega = \frac{2\pi}{T}$$
,

(4)

(5)

где T = 2T - время полного периода, в сек.

Повторяемость величины среднего времени сохранения перегрузки одного знака в турбулизированных слоях атмосферы ^{1/} для различных типов самолетов приведена в табл.З.

Таблица З

Повторяемость	(в%)	величин	среднегс	времени
сохранения	пере	грузки од	цного зна	ka

Тип Сек.	60, 60	0,61- 1,00	1,01- 1,40	1,41- 1,80	1,81- 2, 2 0	2,21- 2,60	2,61- 3,00	Общее число
само- шрад лета сек	≥5,23	5,16- 3,14	3,13- 2,24	2,23- 1,74	1,73- 1,43	1,4 2- 1,21	1,20- 1,05	случа- ев
Легкий ис- требитель	52,2	47,8	-		-	- '	-	44
Ли-2		0,5	31,1	49,2	17,3	1,7	0,2	421
√л−12	-	1,5	10,0	49,2	30,0	5,8	3,5	260
Ил-14	- 1	-	15,4	69,2	15,4		· 🛶 · ·	26
Ил-18	-			19,0	76,2	4,8	-	21
Ty-104	-	2,0	6,9	38,7	44,6	7,5	0,3	348

Просмотр данных табл.З показывает, что наибольшая повторяемость величины Т ограничивается прецелами от 1,00 до 2,60 сек., что соответствует частотам 3,14-1,21 рац/сек.

Исключением является повторяемость T для истребителя, где значение времени ограничено сверху величиной T = 1,00 сек.

Таким образом, на участок большой изменчивости коэффициента падает наибольшая повторяемость частот атмосферных возмущений, на которые реагируют современные самолеты.

Погрешность за счет использования в расчетах асимптотического значения козффициента в может быть определена из соотношения

$$\eta = \frac{\beta}{\beta'} ,$$

где $\mathbf{b}' = \mathbf{b}(\mathbf{\omega}).$

Величина **П** в этом случае в определенной степени зависит от конструкции самолета, в частности, для большинства самолетов с "жесткой" конструкцией в рассмотренном выше диапазоне частот она обычно меньше единицы, для "нежестких" самолетов - больше единицы. Рассмотрим это на примере. Для самолета Ли-2, летящего со ско-

1/ В этом случае рассмотрены полеты в облаках и внеоблачном пространстве вместе, в дальнейшем они исследуются раздельно.
37

ростью V = 218 км/час на высоте H = 2000 м, $\eta = 0,668$ (при $\omega = 1,05$ рад/сек.), а для самолета Ту-104 при полете на высоте H = 8000 м со скоростью V = 775 км/час при одинаковом значении частоты $\eta = 3,23$.

Таким образом, выполненные в работе расчеты показывают, что для самолетов с "жесткой" конструкцией использование козфициента

b будет приводить к заниженным значениям, а для "нежестких" конструкций результаты расчета коэффициента турбулентности оказываются завышенными.

Учитывая это обстоятельство, в работе были рассчитаны поправочные множители для всех типов самолетов, на которых производилось вондирование.

Ревультаты расчета для самолета Ли-2 представлены на рис.2.

Рис.2. ЗАВИСИМОСТЬ ПОПРАВОЧНОГО МНОЖИТЕЛЯ О ОТ ВЫСОТЫ (САМОЛЕТ ЛИ-2). 1 - 1000 м, 2 - 3000 м, 3 - 5000 м.

Для "нежестких" самолетов поправочный множитель рассчитан из экспериментальных данных.

С учетом этих замечаний выражение для коэффициента турбулентности принимает вид

$$K_{i} = \frac{B_{o}\overline{\tau}}{2\eta\Delta} \Delta n , \qquad (6)$$

(7)

Используя материалы акселерографических записей, по формуле (6) рассчитаем козффициенты турбулентности в различных формах облаков.

Размеры турбулентных вихрей, вызывающих болтанку современных самолетов, определялись из соотношения

где Z - размер турбулентного вихря, в метрах; V - воздушная

скорость, в м/сек.

Рассмотрим турбулентный обмен и его характеристики в основных формах облаков.

Ш. Перистые и перисто-слоистые облака

Интенсивное развитие авиационной техники в последнее десятилетие поставило перед метеорологией задачу детального изучения облаков верхнего яруса. Это, очевидно, определило то, что усилия ряда научно-исследовательских организаций направлены на изучение и решение этой задачи. Большое количество исследовательских полетов обеспечило накопление общирного материала, содержащего данные о температурном режиме, турбудентной структуре и т.д. По результатам полетов выполнен ряд интересных и оригинальных работ [2,6,10,18,19,22 и 29], в которых подробно рассматриваются вопросы пространственной структуры и условия полетов в облаках верхнего яруса, синоптическая обстановка, благоприятствующая образованию этих облаков, и другие вопросы.

Вопросы турбулентного обмена в облаках верхнего яруса рассмотрены в работах [6,10,18,22 и 29], которые являются одними из иер вых в этом направлении, так как до последнего времени исследования турбулентного режима в указанных облаках не производились.Так, в работе С.М.Шметера [22] по данным полетов Ту-104 виервые рассмотрены пространственные характеристики турбулентных зон в облаках верхнего яруса. Получены средние и максимальные значения перегрузок современных самолетов. С.М.Шметер указая на существенное различие в интенсивности турбулентного обмена в облаках в зависимости от скорости ветра (струйного течения).

Г.Д.Решетов [18] по данным 1664 наблюдений исследовал вопрос интенсивности болтанки самолетов в облаках верхнего пруса в зависимости от синоптического положения. По его данным в верхних облаках холодных фронтов и фронтов окклюзий, особенно в летнее время года, обычно наблюдается умеренная болтанка, что обусловлено, по его мнению, наличием неупорядоченных вертикальных движений, вызванных действием термического фактора в вонах этих фронтов.

Результати, полученные этими авторами, в определенной степени восполняют пробел в изучении турбулентного режима облаков верхнего яруса. Но все же многие вопросы, в частности, такие, как количественные характеристики турбулентного обмена, масштабн турбулентных возмущений, энергетический спектр турбулентности, выэывающей болтанку самолетов в облаках, и другие, не получили освещения в специальной литературе.

Ниже приводятся результаты расчетов характеристик турбулентного обмена в перистых и перисто-слоистых облаках.

По данным акселерографических записей болтанки самолетов Ту-104 и Ил-18 рассчитаны значения величины коэффициента турбулентности и масштабы турбулентных возмущений, вызывающих болтанку современных самолетов. Для выполнения этих расчетов использованы материалы научноисследовательских полетов ЦАО и Гос.НИИ ГВФ за 1958 г. (июль август) и 1960 г. (май-мюнь, август-сентябрь). Одной из задач этих полетов являлось изучение облаков верхнего яруса и струйных течений. Исследования производились на скоростных самолетах Ту-104, Ту-104Б и Ил-18 над Центральной частью ЕТС, Средней Азией и районами Дальнего Востока.

Для изучения турбулентного режима было проанализировано 208 случаев, из них 144 случая в облаках и 64 вне облачного слоя (табл.4).

Таблица 4

For a Neogra	Βοσι	arax	Вне о	Вне облаков			
исследования	Ci	Cs	под облака- ми	над Облаками	число случаев		
Июль-август 1958 г.	41	•	5	-	46		
Май-июнь 1960 г.	13	32	12	39	96		
Август-сентябрь 1960 г.	3	55	.1	7	66		

Количество случаев с болтанкой самолета в различных формах облаков верхнего яруса

Полетн производились только в теплую полвоину года, это в некоторой степени ограничивает исходные данные и лишает возможности выполнить сравнение турбулентных характеристик в облаках по полугодиям. В работе исследованы перистые к перисто-слоистне облака. На борту самолета было установлено специальное оборудование для определения скорости и направления ветра. Это позволило рассмотреть случаи полетов в облаках при малых и больших скоростях воздушного потока. В тех случаях, когда ветер измерялся не достаточно надежно (при полетах 1958 г.) использовались данные, снятые с карт барической тонографии.

В облаках струйных течений исследовано 77 случаев (табл.5), в перистых и перисто-слоистых облаках соответственно 32 и 45.

Таблица 5

Количество случаев с болтанкой самолета в облаках при различной скорости воздушного потока

Вне	Bc	В струйной течении						
под обла- вами	Ci	Cs	над обла- ками	облака- Сі		Cs	над Облака- ми	число случаев
6	25	42	21	12	32	45	25	208

Акселерографические записи в перисто-кучевых облаках в работе не рассматривались из-за отсутствия надежных данных. 1. <u>Перегрузки самолетов</u>. Перегрузки, которые испытывают современные скоростные самолеты в облаках верхнего яруса, изменяются в широких пределах - от 0,05 до 0,60 g. Известны случаи, когда максимальные значения Δn достигали 0,80g [22].

В работе приводятся средние значения перегрузок при горизонтальном полете того или иного типа самолета. Эти величины обично характеризуют турбулизированный слой в пределах 15 000-25 000 м. Эти пределы ограничены горизонтальными размерами облака.

Перегрузки, которые испытывают современные самолеты, в облаках Сі и Сз резко различаются по величине в зависимости от скорости воздушного потока (табл.6).

Таблица б

Формя		Unoro					
облаков	0,00-0,05	0,06- 0,10	0,11- 0,15	0,16- 0,20	0,21- 0,25	0,26- 0,30	случа- ев
		Вне ст					
Под облаком	33,3	66,7	-		→ 1	-	6
Ci	28,0	52,0	8,0	12,0	-	-	25
Cs	9,6	40,4	35,6	9,6	4,8	-	42
Над облаком	61,8	33,4	4,8	_ ²		-	21
		Встр	уйном	гечении	<u> </u>		
Под облаком	8,3	33,3	16,7	41,7		-	12
Ci		6,2	21,9	40,6	21,9	9,4	32
Cs	_	13,3	17,8	24,5	35,5	8,9	45
Над облаком		16,0	48,0	28,0	8,0	-	25
			i			1	

Повторяемость (в %) средних перегрузок самолетов Ту-104 и Ил-18 в облаках Сі и Сб

В облаках струйных течений резко увеличивается повторяемость перегрузок со значениями 0,20 g и более. Заметим, что в перистых облаках при небольших скоростях воздушного нотока такие перегрузки отсутствовали. В С повторяемость таких значений составляет всего 4,8%.

Сравнивая повторяемость перегрузок в перистых и перисто-слоистых облаках, необходимо указать на следующий факт. В облаках Сі повторяемость перегрузок более 0,10 g составляет 20%, а в Сб – почти 50%, т.е. в два с половиной раза больше. В случае струйных течений можно заметить обратное, т.е. здесь в облаках Сі повторяемость перегрузок более 0,15 g составляет почти 72%, а в Сб 68,9%. Анализ акселерографических записей и данные повторяемости ΔN позволяют считать, что в перистых облаках при небольших скоростях ветра турбулентность менее интенсивна, чем в перисто-слоистых, а в случае струйных течений – наоборот. Турбулентность (болтанка) вне облачного слоя при больших скоростях воздушного потока также увеличивается. В этом случае над облачным слоем С*s* она более интенсивна, чем под облаками. Вне струйных течений под облаками турбулентный обмен развит сильнее, чем над облаками. Этот факт становится ясным, если учесть, что обычно верхней границей рассматриваемых облаков является слой тропопаувы.

2. <u>Коэффициент турбулентности</u>. Коэффициент турбулентности в облаках верхнего яруса в сильной степени зависит от скорости воздушного потока и от структуры облачного слоя. Поэтому величина К в таких облаках меняется в широких пределах. Так, например, в случае полета 18/УШ 1958 г. на H = 10 000 м в облаке СL при скорости ветра U = 80 м/сек. было K = 8,1 м²/сек., а для случая 23/УШ 1958 г. на H = 9450 м в облаке СL при U = 160 м/сек. было K = 111 м²/сек., при перегрузках, соответственно равных 0,05 и 0,25 g.

Особенно четко выявляется различие в интенсивности турбулентности, если рассмотреть повторяемость вначений коэффициента турбу-Таблица ?

Форма		Коэфф	рициент	г турбу	лентно	ости, 1	Z/CER.	•	Число
облако в	0,00- 10,0	10,1-20,0	20,1- 30,0	30, 1-40, 0	40,1- 50,0	50,1- 75,0	75,1- 100,0	100,1 125,0	_ слу- чаев
			Вне	струйны	IX Тече	ний			
под оола- ком	-	83,5	16,5	1. -		-	-		6
Ci	12,0	56,0	20,0	8,0	-	4,0	-	+ '	25
Cs	-	31,0	33,3	11,9	11,9	7,1	2,4	2,4	42
Над об- лаком	19,0	57,2	19,0	4,8	-	-	-	-	21
	. .	t i	Bc	руйно	Tever	IN M			
Под обла- ком	. –	-	25,0	41,7	8,3	25,0	-	-	12
Ci	-	-	6,2	-	21,9	46,9	21,9	3,1	32
Cs	-	2,2	8,9	15,5	17,8	31,2	20,0	4,4	45
Над обла- ком	_	-	40,0	44,0	12,0	4,0		-	25

Повторяемость (в %) козффициента турбулентности в облаках Сі и СS

лентности в этих формах облаков (табл.?). При небольших скоростях ветра на уровне облаков относительно развитая турбулентность наблюдается в перисто-слоистых облаках. Повторяемость значений коэффициента 40 м²/сек. и более составляет в них 23,8% случаев, в перистых же она равна лишь 4,0%. Максимальная повторяемость коэффициента турбулентности в Cs приходится на градацию 20,1-30,0 м²/сек. и равна 33,2%. В облаках же Ci максимум повторяемости дает градация 10,1-20,0 м²/сек. Он равен 56%. Эти данные иодтверждают, что в Ся в этом случае турбулентность более интенсивна, чем в С:

В облаках струйных течений максимум повторяемости вначений К как в Сі , так и в Сз приходится на одну и ту же градацию 50,1-75,0 и²/сек., но для Сі он равен 46,9%,для С⁴ - 35,4%. Анализ табл.7 показывает, что в последнем случае в перистых облаках набящается более интенсивный турбулентный обмен, чем в перистослоистых. Отчетливо намечается сдвиг максимума повторяемости и вне облачного слоя в зависимости от скорости ветра.

Сравнение средних значений коэффициента турбулентности (табл.8) дополняет ранее приведенные сведения о турбулентном режиме.

Таблица 8

Средние вначения коэффициента турбулентности К м²/сек. в облаках Сі и Сз

	I	Іерист	ые обла	K a	Перисто-слоистые обдака				
	под обла- ком	в обла- ке	в оез- облачн, прослой ке	над обл а- - ком	поц обла- ком	в обла- ке	в оез- облачной прослойке	над обла- ком	
Вне струй- ного тече- ния В струй-	15	19	11	12	18	31	18	15	
ном тече- нии	46	66	22	36	2 8	60	21	31	

Из табл.8 видно, что вне струйного течения наименьшая интенсивность турбулентного обмена наблюдалась в безоблачных прослойках и над облаками. При больших скоростях ветра турбулентность в безоблачных прослойнах возрастает примерно в два раза, но все же остается слабой по сравнению с обменом в облаках. В перистых облаках струйных течений коэффициент турбулентности увеличился более чем в три раза по сравнению с значением вне этих течений. В перисто-слоистых же облаках соответствующий рост составил примерно 1,9 раза.

Анализ полученных значений коэффициента турбулентности позвояяет выявить некоторые особенности интенсивности турбулентного обмена в облаках Сси С.S. Так, при скоростях ветра на высоте облака менее 100 км/час переход из подоблачного слоя в облако СS почти не выявляется (табл.9), в то же время при выходе из облака на верхней границе отмечается усиление интенсивности турбулентного обмена, а затем уменьшение ее по мере роста превышения над облачным слоем. В перистых облаках такая закономерность не обнаруживается.

В облаках струйных течений пересечение нижней и верхней границ облаков общчно сопровождается усилением турбулентного обмена (болтанки самолета) по сравнению с полетом внутри облачного слоя, что-хорошо согласуется с результатами С.М.Шметера [22].

Средние значения коэффициента турбулентности на нижней и верхней границах СL и Сs

Вне струйных течений					В стру	HOM TEY	ении
нихняя	граница	верхняя	граница	. нихняя	граница	верхняя	граница
Ci	Cs	Ci	Cs	Ci	Co	Ci	Co
16	30	20	34	67	72	77	76

Представляет интерес сравнение полученных данных с результатами других авторов.

Так, например, по данным П.М.Мушенко средний коэффициент турбулентности в облаках Сс ULCC. равен 30,0 м²/сек. Коэффициенты турбулентности были рассчитаны П.М.Мушенко для достаточно большого числа наблюдений при отсутствии струйных течений по видимому расширению конденсационного следа ва самолетом. ¹/Нетрудно видеть, что полученные результаты находятся в хорошем согласии между собой.

3. <u>Размеры турбулентных образований</u>. Повторяемость различных размеров турбулентных вихрей, вызывающих перегрузки самолетов Ту-104 и Ил-18, приведена в табл.10. С увеличением скорости воадушного потока отмечается некоторое увеличение масштабов турбулентных образований, вызывающих болтанку указанных самолетов-

Так, повторяемость размеров более 500 м в облаках струйных течений Сі возросла на 34,8%, а в С5 – на 25,8%. Под облаками наблидается также аналогичное увеличение на 8,3%, над облаками число случаев для рассматриваемых градаций примерно одинаково, поэтому существенных изменений подметить не удалось.

Средние размеры турбулентных вихрей, вызывающих болтанку Ту-104 и Ил-18 в облаках Сі и Ся, в зависимости от скорости ветра на высоте полета представлены в табл.11.

В облаках струйных течений наблюдается ревкое увеличение размеров турбулентных образований.

Таким обравом, В облаках верхнего яруса В теплое полугодие наблюдается достаточно хорошо выраженный турбулентный обмен. В облаках струйных течений отмечается резкое усиление интенсивности турбулентности, а также увеличение перегрузок самолета и размеров вихрей, вызывающих их болтанку. Максимальные по средним значениям коэффициенты турбулентности, зафиксированные в С. и С., соответственно равны 111 и 109 м²/сек.

1/ Конденсационные следы за самолетами (Сс Слас), как показала практика рейсовых полетов самолетов Ту-104 и Ил-18, по своим турбулентным характеристикам близки к перисто-слоистым облакам.

43 •

Повторяемость (в%) различных размеров турбулентных вихрей, вызывающих перегрузки самолетов Ту-104 и Ил-18

ชิกาพส	J	Размеры	турбул	enthex I	зихрей,	M .	Udmee
обла- ков	200,0- 300,0	300, 1- 400, 0	400,1- 500,0	500,1- 600,0	600,1- 700,0	700,1- 800,0	слу- чаев
		Вне	струйно	Dro Teve	enna		
Под облаком	-	50,0	50,0	-	-		6
	8,0	40,0	40,0	12,0	-	-	25
	2,4	38,1	47,6	11,9	- ·	-	42
Над обла- ком	-	14,2	81,1	4,7	-		21
i	1	Be	1 TP YR HOM	Tevenu	<u>K</u>		
Под облаком	-	8,3	75,0	16,7	T –		12
	•	18,8	84,4	25,0	21,8	-	32
	2,2	17,8	42,3	28,9	4,4	4,4	45
Над обла-				1			
ROM	· · ·	4,0	72,0	24,0	-	-	25

Таблица 11

Средние размеры турбулентных вихрей 2 м, вызывающих перегрузки самолетов Ту-104 и Ил-18

Вне ст	руйных течений	В струйных	течениях
 Ci	Cs	Ci	Cs
410	430	490	480

У1. Слоисто-доддевые, высокоолоистые и высококучевые облака

Исследование облаков среднего яруса представляет определенчые трудности. Это объясняется тем, что границы этих облаков часто находятся на таких уровнях, которые не представляется возможным исследовать с помощью одного самолета.

Для, винтомоторных самолетов верхняя граница Аз и Ас очень часто находится за пределами "практического потолка" самолета. Наоборот, высота нижней границы этих облаков представляет определенные трудности для полета скоростных самолетов.

К исследованию турбулентного режима облаков Ns, As и Ac были привлечены 193 случая акселерографических записей болтанки самолета. Районы исследования, типы самолетов и количество случаев приведены в табл. 12.

Полеты производились в тенное и холодное полугодия в различ-

Количество случаев с акселерографическими записями в облаках NS, As и Ac

Географический	'fn u	Воб	лаказ	C	Вне обл	IAROB	Общее
вон исследова- ния	Само- лета	Ns	As	Яc	под облаком	над облаком	число случаев
Центральная часть ЕТС, зима,1957- 58 гг.	Ли-2	10	11	14	-		35
Центральная часть АТС,лето, 1959 г.	ил−14	5	.8	5	-	-	18
Арктика, лето- осень, 1959 г.	Ил-12	6	-	-	-	-	6
Дальний Восток, Средняя Азия, весна, лето, 1960 г.	Ty-1045	-	9	6	-	24	39
Северо-западная часть ЕТС,осень, 1960 г.	Ли-2	12	-	5	1	, , , , , , , , , , , , , , , , , , ,	18
Дальний Восток Средняя Авия, лето-осень,1960 г.	Ту-104Б	-	1	4	1	6	12
Северо-западная и юго-западная части ЕТС, вима, лето, весна, 1961 г.	Ли-2	· •	-	1	7		8
Северо-западная часть ЕТС, лето, 1962 г.	Ли-2	47	2	-	8	-	57

ных фронтальных облачных системах, а также и во внутримассовых облаках.

Как видно из табл.11, совместно с облаками среднего яруса в этой части работы рассматриваются и слоисто-дождевые облака. Целесообразность такого рассмотрения основана на том, что облака Ns и As очень часто представльют единый облачный массив, при этом их турбулентные характеристики оказываются близкими.

Внеоблачное пространство представлено 47 случаями, это акселерографические записи полетов под и над облаками.

1. <u>Перегрузки самолетов</u>. Многочисленные полеты показывают, что в облаках среднего яруса обычно наблюдается слабая и умеренная болтанка винтомоторных самолетов. Случаи сильной болтанки встречаются сравнительно редко, при этом чаще в сысококучевых, чем в высокослоистых, облаках.

Средние перегрувки самолета Ли-2 в облаках Ns, As и Ac изменяются в пределах от 0,05 до 0,259. Максимум повторнемости An э слоисто-дождевых облаках в теплое полугодие приходится на градацию 0,11-0,159. В холодное полугодие в Ns и As

• 45

Форма	Пе	ерегр уз	долях д)	Число		
облаков	0,00- 0,05	0,06- 0,10	0,11- 0,15	0,16- 0,20	0,21- 0,25	случаев
		Тепл	ое полу	годие		
Ns	4,9	23,4	46,8	19,1	6,4	47
		Холод	ное пол	угодие		
Ns	4,6	18,2	45,5	27,1	4,6	22
As	-	36,4	54,5	9,1	_	11
Ac	15,8	21,0	15,8	36,9	10,5	19
Под сбла- ками	6,3	31,9	56,1	6,3	-	16

Повторяемость (в %) средних перегрузок самолета Ли-2 в облаках Ns , As и Ac

максимум падает на эту же градацию.

Предварительный анализ повторяемостей показывает, что в теплое время года интенсивность турбулентного обмена в слоисто-дождевых облаках ниже, чем в холодное. Этот результат несколько противоречит существующим представлениям о механизме и интенсивности турбулентности в этих облаках. Но дело в том, что данные о перегрузках в холодное полугодие являются завышенными. Анализ материалов самолетного зондирования, а также наблюдения автора в полетах 1957-1958 гг. показывают, что в ряде случаев одновременное с Ля зондирование производилось также Св . В облачных системах фронтов окклюзии часто можно наблюдать, что слоисто-доядевые облака пронизаны отдельными массивами СВ . Средние перегрузки, которые испытывали самолеты Ту-104 и Ил-18 в облаках среднего яруса, достигали до 0,219 . Небольшое число случаев полетов в этих облаках не позволяет привести в настоящей работе их повторяемость.

Акселерографические записи показывают, что в небольшой части полетов над облачным слоем отмечается увеличение интенсивности турбулентности, а вместе с этим и перегрузок самолете. При изучении синоптической обстановки и данных ветрового вондирования оказалось, что некоторое увеличение болтанки самолетов в этом случае объясняется наличием на высоте полета сильного ветра.

Соотношение между интенсивностью турбулентного обмена в облаке и вне облачного слоя примерно такое же, как в случае облаков верхнего яруса. В те.дни, когда над облаками Яс наблюдались сильные ветры (струйные течения), отмечалось резкое увеличение интенсивности турбулентности.

2. <u>Коэффициент турбулентности</u>.В облаках *Ns* , *As* и *Ac* в теплую половину года наблюдается хорошо выраженная турбулентность. Наиболее интенсивный турбулентный обмен, как видно из табл.14, зарегистрирован в высококучевых облаках. Повторяемость аначений К более 50,0 м²/сек. составляет в них 62,5%. Б облаках струйных течений Сі и Ся она равнялась соответственно 71,9 и 55,6%. Это повволяет считать, что в облаках Ас турбулентный обмен Таблица 14

Повторяемость (в %) коэффициента турбулентности в облаках NS . Ас и Ас

Форма			Козф	рициен	г турб	улентн	ости, м	²/cer.	Число
облаков	0,00- 10,0	10,1- 20,0	20,1- 30,0	30,1- 40,0	40,1- 50,0	50,1- 75,0	75,1- 100,0	100,1-	сду- чаев
			Тепл	пое по:	Тугоди	e		17 gar - 445	
Ns	1,9	7,7	9,6	19,3	25,0	25,0	11,5	· •	52
As	-	10,0	10,0	5,0	20,0	15,0	40,0		20
Ac	•	6,2	6,3	12,5	12,5	25,0	25,0	12,5	16
			Холоди	і 10е по.	угоди	e			
Ns	-	22,7	13,7	31,8	22,7	9,1	-		22
JIS	-	-	-	63,7	27,2	9,1	-	•	11
Ac	-	15,8	5,3	15,8	15,8	42,0	5,3		19
Под обла- ками	5,9	17,7	23,5	23,5	29,4	-	- (•	17
над обла- ками	-	46,7	26,7	3,3	10,0	10,0	3,3	-	30

по своей интенсивности блиаок к облакам струйных течений. Однако необходимо указать, что в работе рассмотрены только случаи с Ас, когда скорости воздушного потока на исследуемой высоте не презышали 60-80 м/сек. В это время года максимум повторяемости коэффициента турбулентности в облаках Ас равмыт и приходится на градации 50,1-100,0 м²/сек. В высокослоистых облаках максимум повторяемости выражен четко и падает на градацию 75,1-100,0 м²/сек.Наиболее слабая турбулентность среди рассматриваемых форм наблюдеется в слоисто-дождевых облаках.

В холодную половину года для всех форм максимум повторяемссти козффициента турбулентности сдвинут в сторону меньших градаций, жотя турбулентность в облаках и остается достаточно интенсивной. Вне облаков также отмечается хорошо выраженныя турбулентность.

Дополнительное представление об интенсивности турбулентного обмена в облаках Ms, As и Ac дают средние значения К в разные полугодия (табл.15).

В теплую половину года во всех облаках козффициент турбулентности примерно в 1,3-1,4 раза больше, чем в холодное полугодие. В арктических районах в слоисто-дождевых облаках интенсивность турбулентности летом в два раза меньше, чем зимой, что вполне естественно, если учесть синоптические условия формирования этих облаков.

Средние значения коэффициента турбулентности в облаках Ns, As и Ac

Полу-	Слоис Девые	то-до ж облака	Выс	облан	оистые ка	Выс Выс	Число случа-				
годие	под обла- ком	в обла- ке	над обла- ком	в обла- ке	над обла- ком	под обла- ком	В обла- ке	над обла- ком	ев		
Теплое	21	46	44	58	18	36	63	27	129		
Холодное	-	34	40	42		37	46	-	58		
Теплое Арктика)		23	-		_ *	-	-	-	6		

В холодную часть года в слоисто-дождевых облаках интенсивность турбулентного обмена наиболее правильно характеризуется вначением $K = 30 \text{ m}^2/\text{сек.}$ (здесь случаи зондирования Ns - Cb исключены).

В безоблачных прослойках, наблюдавшихся в облаках Ns, As и Ас обычно отмечается ослабление турбулентного обмена. Средние вначения коэффициента К здесь соответственно равны 12, 13 и 16 м²/сек.

3. <u>Размеры турбулентных вихрей</u>. Турбулентные вихри, которые вызывают болтанку самолетов Ли-2 и Ту-104 в рассматриваемых облаках, можно определить пределами от 70 до 460 м. Средние значения их приводятся в табл.16.

Таблица 16

Средние размеры турбулентных вихрей, вызывающие болтанку самолетов ли-2 и Ту-104 в облаках Ns. As и Ac

Тип	Слоисто-до ж- девые облака		Высокослоистые облака			Высокожучевые облака		
Ta	под обла- ком	в обла- ке	под обла- ком	в обла- ке	над обла- ком	под обла- ком	в облаке	над облаком
Ли-2	80	90	80	100	-	80	100	-
Ty-104		-	-	380	420		400	460

В облаках среднего яруса размеры вихрей, вызывающих болтанку Ли-2, оказались одинаковыми, несколько меньшими были размеры в слоисто-дождевых облаках. В случае Ту-104 отмечается разница между Яз и Ас , в последнем случае вихри по своим размерам больше. Для самолета Ту-104 турбулентные образования по своим размерам больше в 3,8-4,0 раза. Заметим, что соотношение аэродинамических козффициентов для этих самолетов равно примерно 4,0.

Итак, в облаках Ns, As и Ac наблюдается хорошо выраженный турбулентный обмен, интенсивность которого меняется в зави**Симости** от сезона, синоптических условий формирования облаков, а также от географического района. Максимальные значения козффициентов турбулентности, полученные в этих формах облачности, равны в *NS* 92,5 м²/сек. летом и 66,5 м²/сек.зимой, в *As* 89,3 и 62,4 м²/сек. и в *Ac* - 108,9 и 79,3 м²/сек. В безоблачных прослойках интенсивность турбулентного обмена уменьшается примерно в 4-5 раз.

В высококучевых облаках в течение всего года турбулентность остается наиболее интенсивной по сравнению со всеми ранее рассмотренными формами облаков, исключая лишь облака струйных течений. Сильный ветер над высококучевыми, а иногда и высокослоистыми облаками приводит к увеличению интенсивности турбулентного обмена по сравнению с турбулентностью в подоблачном слое.

1У. Слоистые и слоисто-кучевые облака

Относительно низкое расположение этих облаков и большая их горизонтальная протяженность способствуют тщательному их изучению с помощью самолетов и вертолетов.

В настоящее время создана теория образования слоистообразных облаков [14], в которой существенная роль отводится вертикальным токам и турбулентному обмену.

Исследованию слоистых и слоистокучевых облаков посвящены работы [[1,4, 13 и 19]. Эти облака наиболее изучены по сравнению с другими формами облаков. Турбулентность в St. и Sc также изучалась многими авторами [1,4, 19 и 20]. Так, в работе М.П. Чуриновой [20] приводятся вначения коэффициента турбулентности в слоистых и слоисто-кучевых облаках, полученные по материалам ветрового и самолетного зондирований.

Л.Т. Матвеев и В.С. Кожарин [13] рассмотрели уровни турбулентной энергии в облаках. Они установили, что в облаках St и Sc наблюдается турбулентность, усиленная по сравнению с безоблачной атмосферой. Коэффициенты турбулентности, рассчитанные Л.Т. Матвеевым [4] для облаков Аргтики, подтверждают теоретические положения работы [14].

Несмотря на неличие указанных работ, сведения о турбулентном обмене в облаках нижнего яруса являются далеко еще не полными. Поэтому целесообразно снова вернуться к турбулентным характеристикам этих облаков. Для изучения турбулентного режима в слоистых и слоисто-кучевых облаках в настоящей работе использовано 303 акселерографические записи болтанки самолетов Ли-2 и Ил-12 ^{1/}. Распределение случаев в зависимости от формы облаков, времени года и района исследования прецставлено в табл. 17. 75% всех слу-

1/ Акселерографические ваписи болтанки самолета в облаках арктических районов и некоторые результаты их обработки были любезно предоставлены профессором Л.Т.Матвеевым. чаев относятся к полетам в облаках и только 25% - к полетам вне облаков. К случаям слоистых облаков отнесены также полеты в тумане арктических районов в 1959 г. (9 случаев). Для теплого полугодия рассмотрено 195, а для холодного 108 случаев. Если исключить полеты в арктических широтах, то для теплого полугодия рассмотрено лишь 49 случаев, из них 35 в облаках.

Таблица 17

Географи- ческий район	Tei	Теплое полугодие					Холодное полугодне				
	под обла- ком	St	Sc	над обла- ком	под обла- ком	St	Sc	над обла- ком	случа- ев		
Умеренные широты	9	8	27	5	8	55	30	15	157		
Арктика	33	81	26	6	-	-	-	↓ – .	146		
Все г о случаев	42	89	53	11	8	55	30	15	303		

Количество случаев с болтанкой самолетов Ил-12 и Ли-2 в облаках St и Sc

1. <u>Перегрузки самолета</u>. Средние перегрузки самолетов Ил-12 и Ли-2 в теплое и холодное полугодия в облаках St и SC заметно различаются (табл.18).

В теплое время года в слоистых облаках максинум повторяемости перегрузок Ли-2 приходится на градацию 0,11-0,15 9 и достигает 50%, в холодное же полугодие максимум сдвинут на более низкую градацию 0,06-0,10 9. Повторяемость значений ДО 0,21 9 и более в St в теплую половину на 10,3% больше. Данные табл. 18 показывают, что в слоистых облаках намечается существенное различие в интенсивности турбулентности для разных полугодий. Такого же различия для слоисто-кучевых облаков из этой таблицы установить не удается. Однако, если рассмотреть только внутримассовую облачность Sc (в работе этого разделения не сделано из-за небольшого числа случаев), то вновь намечается хорошо выраженное различие такого же характера, как и в случае слоистых облаков. Акселерографические записи, а также визуальные наблюдения бортаэрологов и автора, позволяют утверждать, что в облаках Stu Sc , которые связены C фронтами (в особенности с холодными), турбулентный обмен выражен более ярко, чем во внутримассовых облаках.

Инверсия (или изотермия) над облаками приводит к резкому ослаблению турбулентности, а вместе с этим к уменьшению перегрузок,испытываемых самолетом. Над облаками средние перегрузки самолета ли-2 более 0,10 g в рассмотренных материалах не зафиксированы. В то же время под облачным слоем они представляют основную часть повторяемости $\Delta \Pi$ для обоих полугодий.

Турбулентность (болтанка) в тумане и облаках St - Sc арктических районов развита слабо, максимум повторяемости для всех рассмотренных случаев приходится на вначения $\Delta n = 0,059$.

		ISOUNDS 18
Повторяемость (в %) средних н	перегрузок	Самолетов
Ил-12 и Ли-2 в облаках St	t n Sc	

_	1	Перег	рузки	An(вдолях	(g)	Unone
Форма облаков	0,00- 0,05	0,06- 0,10	0,11- 0,15	0,16- 0,20	0,21- 0,25	0,26- 0,30	случа- ев
		Теплое	полу	годие			
Под облаками	-	44,4	55,6	-	· · ·	-	9
St	-	· -	50,0	37,5	12,5	-	8
Sc	3,7	18,5	22,2	37,1	18,5	-	27
Над облаками	-	100,0		· · -	-	-	5
	1	і Колодно	е пол	лодие			
Под облаками	-	50,0	50,0			-	8
St	1,8	41,8	32,8	21,8	1,8	_	55
Sc	3,3	23,4	16,7	33,3	20,0	3,3	30
Над облаками	40,0	60,0		-	-	-	: 15
	Тепло	ре полу	годие	(APRTI	ика)(Ил	-12)	
Под облаками	51,5	48,5	-	-	_		33
Туман	100,0	-		-	-	_	9
St	77,8	22,2		-	-	-	72
Sc	73,1	26,9	I	-		-	.26
Над облаками	83,3	16,7	_	-	-	-	6
					· · · ·	1	

Анализ акселерографических записей показывает, что на границах слоистых и слоисто-кучевых облаков наблюдается более интенсивная болтанка, чем в облачном слое. Особенно следует указать на интенсивность болтанки на верхней границе облаков St - Sc, где перегрузки достигают относительно больших размеров по сравнению с нижней кромкой и самим облачным слоем.

2. <u>Коэффициент турбулентности</u>. Повторяемость значений коэффициента турбулентности, рассчитанных по рассмотренным ранее перегрузкам, приведена в табл. 19.

В теплую половину года в слоистых и слоисто-кучевых облаках отмечается увеличение интенсивности турбулентного обмена по сравнению с холодным временем года. Из табл. 19 видно, что повторяемость больших градаций коэффициента турбулентности резко возрастает по сравнению с более нивкими градациями. Так, например, повторяемость значений К более 40 м²/сек. для теплого полугодия в слоистых облаках увеличилась на 31,6%, а в слоистокучевых на 25%, при этом в Sc в 7,4% случаев были K =75 м²/сек.

Максимум повторяемости коэффициента турбулентности в облаках. St - Sc арктических районов приходится на градацию $20,1-30,0\frac{M^2}{Cek}$. Он оказался сдвинутым в сторону низких значений по сравнению со гначениями К в теплое и холодное полугодие в умеренных широтах.

Повторяемость	(₿%)]	коэфф	þиц	иента	турбулентности	
BO	блаках	St	И	Sc		

<u> </u>	Форма	K	oə¢¢ni	иент т	урбуле	HTHOCI	и, м ² /	cer.	Число	
00	блаков	0,0- 10,0	10,1 <u>-</u> 20,0	20,1- 30,0	30,1-40,0	40,1 - 50,0	50,1- 75,0	75,1 - 100,0	случа- ев	
				Тепло	е полу	годие				
Под	облаками	-	-	55,6	33,1	11,1		<u> </u>	9	
	St	- 1	-	12,5	25,0	50,0	12,5	-	8	
· · · ·	Sc	-	-	7,4	11,0	37,1	37,1	7,4	27	
Над	облаками	• 🖦 🖓	80,0	20,0	-	-	-	-	5	
				Холодн	ое пол	угодие	3			
Под	облаками	-	25,0	50,0	25,0	-	[_]	-	8	
[.	St	-	16,4	23,6	29,1	23,6	7,3	-	55	
	Sc	-	13,4	10,0	20,0	33,3	20,0	3,3	30	
Над	облаками	-	73,5	26,5	1 	-		-	15	
		la de la	Тепл	пое пол	і Тугодиє	Apri	чка)			
Под	облаками	-	24,2	39,4	27,3	9,1	-	-	33	
Тум	ан	22,2	66,7	11,1		-	-	-	9	
	St	5,6	38,8	41,7	9,7	2,8	1,4		72	
[Sc	3,8	19,2	46,3	26,9	· -	3,8		26	
Над	облаками	-	83,5	16,5	-	1 - - 1	-	-	6	
		1		1	1	1 · · · · ·	1	1		

Повторяемость разных значений коэфициента турбулентности в облаках St - Sc в зависимости от географического района и полугодия представлена графически на рис.З. Из рис.З видно, что в слоистых и слоисто-кучевых облаках наиболее интенсизная турбулентность наблюдается в теплое время года. Максимум кривой лежит в пределах 40-50 м²/сек. и составляет около 32% случаев. В холодное время года он лежит в этих же пределах, но составляет 27% случаев. В облаках St - Sc арктических районов максимум кривой повторяемости сдвинут левее в сторону низких градаций и находится в пределах 20-30 м²/сек.

Характеристику интенсивности обмена в облаках St и Sc донолняют данные о средних значениях коэффициента турбулентности (табл.20). Анализ данных, помещенных в табл.20, указывает на хорошо выраженные различия интенсивности обмена в зависимости от формы облаков и времени года. В рассматриваемых облаках, в особенности на их верхних границах, отмечается определенное увеличение обмена. Так, например, по средним данным для теплого времерч года в Sc коэффициент турбулентности на верхней границе увеличился на 15,7% по сравнению с холодным полугодием. На нижней границе усиление обмена выражено менее ярко. В холодное полугодие в St и Sc на верхней границе рост величины К соответственно равен З и 22%. Однако в отдельных случаях на нижней

Рис. З. ПОВТОРНЕМОСТЬ (В %) КОЭФФИ-ЦИЕНТА ТУРБУЛЕНТНОСТИ В СЛОИСТООБРАЗНЫХ ОБ-ЛАКАХ ДЛЯ РАЗНЫХ ГЕОГРАФИЧЕСКИХ РАЛОНОВ.

1 - умеренные широты (теплое полугодие),

2 - умеренные широты (холодное полугодие),

3 - Арктика (теплое полугодие).

Таблица 20

Средние	значения	коэффи	цие	HTa	турбулентн	ОСТИ
	в облака	ax St	И	Sc		

Полуго-	Слоистые облака			Слоисто-куче- вые облака			На границах облаков				
дие	над обла-	В обла-	над обла-	под в на - обла-обла-обл		нац обла-	ла нижняя		верхняя		-
	KOM	KG KOM	KOM KE	ĸe	KE KOM	St	Sc	St	Sc		
Теплое	28	39	15	32	51	19	-	52	-	59	
Холодное	23	33	16	26	40	17	31	40	34	49	

и верхней кромках облаков отмечается более интенсивная турбулентность, чем это следует из данных табл.20. Средние значения коэффициента турбулентности в облаках St и Sc арктических районов вдесь не приводятся, так как они опубликованы в работе Л.Т.Матвеева [4]. В тумане К составляет 14 м²/сек.

3. <u>Размеры турбулентных вихрей</u>. Турбулентные вихри, которые вызывают болтанку самолета Ли-2 в облаках нижнего яруса, изменяются в относительно небольших пределах – от 60 до 140 м.

Средние их размеры приведены в табл.21.

Анализ данных табл. 21 показывает, что средние размеры \mathcal{L} в слоистых облаках в теплую половину года меньше, чем в слоисто-кучевых облаках. В холодную половину года размеры вихрей оказались одинаковыми.

Над облачным слоем размеры вихрей в течение года для слоистых облаков остаются постоянными, в то же время над слоисто-кучевыми отмечается небольшой рост размеров турбулентных образований. Этот

Таблица 21 Средние размеры турбулентных вихрей, вызывающих болтанку самолета Ли-2

Полугодже	Слои	стые обл	ara	Слоисто-кучевые облака			
	иод облаком	в облаке	над облаком	под облаком	в облаке	над облаком	
Тепло е	90	100	80	90	110	80	
Холодное	80	90	80	80	90	90	

интересный факт, по мнению автора, должен быть исследован на более общирном материале.

Итак, В слоистых и слоисто-кучевых облаках по сравнению с внеоблачным пространством наблюдается усиленная турбулентность, наиболее интенсивная в теплое полугодие и менее развит в холодную часть года. В слоисто-кучевых облаках коэффициент турбулентности больше, чем в слоистых. Вне облаков турбулентность более развита под облачным массивом и несколько слабее над облачным слоем.

Анализ исходных материалов указывает на существенное равличие турбулентного обмена на верхней и нижней границах облаков. Если рассмотреть интенсивность болтанки самолета при переходе из подоблачного слоя в облако, то для слоистых облаков равличие почти не обнаруживается, а для слоисто-кучевых наблюдается увеличение интенсивности турбулентности. Иная картина наблюдается при выходе ив облака или полете по самой верхней кромке облаков, в тех и других облаках при этом отмечается ревкое увеличение турбулентного обмена, в особенности в слоисто-кучевых облаках.

Рассмотрение времени суток, в которые производился каждый полет, раскрывает еще одну особенность турбулентного обмена в слоистых и слоисто-кучевых облаках. В Sc в любое время года наблюдается хорошо выраженный суточный ход коэффициента турбулентности (табл.22).¹/

Таблица 22

Средние значения	и коэффициента	турбулен	ITHOCTH B
слоисто-кучевых	облаках в зав	N CH MOCT H	от време-
and the second	TTT AVENAR		

Время суток	Теплое полугодие	Холодное полугодне
Первая половина дня	54,3	42,1
Вторая половина дня	47,9	34,2

Данные табл.22 показывают, что в первую половину дня в облаке коэффициенты турбулентности больше, чем во вторую часть дня.Это

1/ Под первой половиной дня имеется в виду время до 14 час. 00 мин.

позволяет считать, что турбулентный обмен в облаках достигает максимального развития после полудня и уменьшается во второй половине дня.

У. Кучевые и кучево-дождевые облака

Среди большого многообразия облаков, наблюдающихся в свободной атмосфере, наиболее сложным объектом для изучения являются облака вертикального развития. Большая вертикальная мощность этих облаков, интенсивные конвективные и турбулентные движения резко ограничивают возможности использования самолета для исследования кучевых и в особенности кучево-дождевых облаков. Перегрузки, которые испытывают самолеты при полете в этих облаках, настолько велики, что полет часто становится небезопасным. Так, по данным С.М.Шметера [23], в верхней части кучево-дождевых облаков приращение перегрузки самолета Ту-104 может достигать ± 1,0 q , а иногда и больше. Несмотря на эти трудности, в настоящее время в Гос.НИИГВФ, ЦАО, ГГО, ЛГМИ и других учреждениях собран общирный материал по изучению упорядоченных движений и турбулентности в кучевых и кучево-дождевых облаках.

По материалам научно-исследовательских полетов выполнен ряд работ[5, 19, 23, 26 и 27], в которых исследованы конвективные движения, интенсивность и распределение турбулентных зон внутри и за пределами облака, а также зависимость турбулентного обмена от стадии развития облака.

В настоящей работе использованы акселерографические записи болтанки самолетов в указанных облаках при горизонтальном их пересечении. При этом следует заметить, что для исследования были взяты лишь случаи пролета самолета над наковальней и в отдельных случаях в нижних и верхних частях кучево-дождевых облаков.

Средние части кучево-дождевых облаков в работе не рассматриваются.

Всего рассмотрено 185 случаев, из них 154 случая в облаках и 31 вне облачного массива (под и над облаками). Основная часть полетов производилась в теплое время года над континентом и только в 15 случаях в Арктике. Для холодного времени года были исследованы 16 случаев над ЕТС (табл.23). Большая вертикальная мощность облаков, а также применявшаяся методика исследования не позволили провести изучение Св с помощью одного самолета. Обычно верхняя часть облаков обследовалась скоростными самолетами, а низкие облака и нижняя часть Св – винтомоторными.

Исходный материал не лишен некоторых недостатков, связанных с методикой исследования и ограничениями в производстве полетов в облаках вертикального развития. Поэтому результаты исследования носят ориентировочный характер, а полученные количественные характеристики турбулентного обмена являются несколько заниженными. Несмотря на это, можно полагать, что полученные в работе сведения

Количество горизонтальных площадок пересечений . на которых регистрировалась турбулентность в обла-Rax

Географический	Тип	Вобл	akax	Вне о	блаков	О б ще е
Сезон исследо- Вания	са м о- лета	Cu	cb	под обла- ком	над обла- ком	число случаев
Арктика, лето, 1957 г.	Ил-12	11	-	3	1	15
Центральная часть ЕТС, зима, 1957- 58 гг.	Ли-2	1	5	-	-	6
Центральная часть ЕТС, Средняя Азия, лето, 1958 г.	Ty-104	1	2	-		3
Центральная часть АТС, лето, 1959 г.	Ил-14	8	-	-	-	8
Дальний Восток, Средняя Азия,весна- лето, 1960 г.	Ту-104Б Ил-18	4	1	-	8	13
Дальний Восток,Сред- няя Азия, лето-осень, 1960 г.	Ту-104Б	1	29	-	13	43
Северо-западная и рго-западная часты ЕТС, зима-лето 1961 г.	Ли-2	17	4	6	•	27
Северо-западная часть ЕТС, лето, 1962 г.	Ли-2	50	20			70

о турбулентном режиме указанных облаков будут все же представлять некоторый интерес, поскольку в литературе таких сведений практически не имеется.

1. Перегрузки самолетов. Многочисленные исследования [5, 19, 23. 26 и 30] показывают, что наиболее опасным для современных самолетов является полет в кучево-дождевых облаках, так как в этих облаках наблюдаются перегрузки, которые по своим значениям близки к критическим величинам.

Однако повышенная турбулентность, а следовательно, и большие перегрузки самолетов могут наблюдаться и в кучевых облаках. Определяющим фактором в этом случае является стадия развития облака. Так, например, по данным автора, летом в Си med. наблюдались случаи, когда перегрузка самолета Ли-2 на высоте 2300 м была близка к единице. Данные о перегрузках современных самолетов, приводимые в настоящей работе, являются средними и могут быть в три-четыре раза меньшими, чем их максимальные значения.

Ниже отдельно рассмотрены низкие и высокие кучевые облака, как это рекомендуется в работах [19] и [23]. Основой такого деления является расположение облаков по высоте. В настоящей работе такое деление является удобным в связи с ограниченностью потол-

ка полета винтомоторных самолетов.

Низкие кучевые облака. К этому случаю отнесены полеты в облаках Си hum, Си med., а также частично в Св. Отнесение кучево-дождевых облаков в эту группу связано с тем, что на этих высотах ^{1/} они часто очень бливки по своим характеристикам к кучевым облакам. Повторяемость средних перегрузок самолетов Ли-2 и Ил-12 в облаках Си – Св приведена в табл.24.

Таблица 24

Повторяемость (в %)средних перегрузок самолетов Ли-2 (ETC) и Ил-12 (Арктика) в облаках Си - СС

Формя		Пе	eperpys	KM An	(в долях	8)	Циато
облаков	0,00- 0,05	0,06- 0,10	0,11- 0,15	0,16± 0,20	0,21- 0,25	0,26- 0,30	случаев
]	еплое	полугод	ие	007 N 2079	2 3 2 2
Cu - C6	-	-	12,2	32,9	43,9	11,0	82
•		Xc	лодное	полугс	дие		
Cu-Cb	: - :	•	13,4	53,2	20,0	12,4	15
		Теплое	полуг	одие (А	рктика)		
Cu	63,6	36,4	-		•		11

Из таблицы Видно, что в теплое время года турбулентность в облаках вертикального развития резко возрастает по сравнению с холодной частью года. Повторяемость средних перегрузок самолета Ли-2 более 0,20 g в теплый сезон достигает почти 55%, в холодное же полугодие она составляет 33%.

Сравнивая данные о перегрузках в умеренных широтах и в Арктике, можно заметить, что в последнем случае турбулентный обмен в рассматриваемых облаках развит слабо.

Отдельные данные о перегрузках под и над облаками свидетельствуют о том, что вне облаков, в особенности над кучевыми облаками, турбулентность не достигает вначительной интенсивности.

Высокие кучевые облака. Диапавон изменения перегрузок здесь примерно такой же,как и в низких облаках, но в данном случае исследования производились на более тяжелых скоростных самолетах и поэтому данные, помещенные в табл.25, указывают на довольно сильно раззитую турбулентность.

Данные табл.25 показывают, что в случае высоких кучевых облаков повторяемость перегрузок более 0,20 достигает 68,4%, это дает возможность считать турбулентный обмен в этих облаках более интенсивной по сравнению с формами, лежащими на более низких уровнях. Если выделить отдельно повторяемость перегрузок в кучево-дождевых

1/ Здесь имеются в виду высоты порядка 2000-3000 м.

Повторяемость (в %) средних значений перегрузок самолета Ту-104 в облаках Си-СВ в теплое полугодие

Форма	п	xg)	Число				
облаков	0,06-0,10	0,11- 0,15	0,16- 0,20	0,21- 0,25	0,26- 0-30	случа- ев	
Над облакеми	-	14,3	80,9	4,8	-	21	
Cu - CB	2,6	2,6	26,4	39,4	29,0	38	
В том числе СА	. 111	3,1	25,0	37,5	34,4	32	

облаках, как это сделано в таблице, то повторяемость больших градаций возрастает.

Рассматривая отдельные значения перегрузок в кучево-дождевых облаках, находящихся в разной стадии развития (стадии роста и диссипации), можно заметить ослабление турбулентности в Св inc. по сравнению с Cb colv. К таким же выводам пришел С.М.Шметер [23] по данным непосредственных наблюдений за болтанкой самолета Ту-104 в этих облаках.

Над облаками турбулентность слабее, чем в облаках, и она ослабевает по мере увеличения превышения исследуемого слоя над облачным массивом.

2. <u>Коэффициент турбулентности.</u> Если при рассмотрении перегрузок сравнение турбулентного обмена в низких и высоких облаках было недостаточно полным, то этот пробел можно восполнить, если рассмотреть коэффициент турбулентности. Повторяемость коэф фициента турбулентности в облаках вертикального развития приводится в табл.26. Таблица 26 не подтверждает высказанного ранее предположения о более интенсивном турбулентном обмене в высоких кучевых облаках по сравнению с низкими.

Приводимые средние значения коэффициента турбулентности хорошо дополняют приведенные выше данные о зависимости интенсивности обмена от времени года. Для холодного времени года значения К осреднены только для низких кучевых облаков, так как для высоких облаков такие данные отсутствовали.

Рассмотрение данных о стадии развития того или иного облака позволяет получить ориентировочные средние значения коэффициента турбулентности в облаках Cb calv: и Cb inc. Эти значения равны соответственно 76 и 64 м²/сек.

Сравнение значений К для разных географических районов, в частности для районов Арктики, показывает, что турбулентный обмен в облаках Сц - Св в умеренных широтах почти в два с половиной раза интенсивнее. Этот результат подтверждает влияние подстилающей поверхности (ее термического режима) на интенсивность турбулентного обмена в облаках.

В теплое полугодие отмечается резкий рост интенсивности тур-

булентного обмена в облаках вертикального развития по сравнению с ее интенсивностью в холодное время года. Повторяемость значений коэффициента турбулентности, превышающих 75 м²/сек., возрастает более чем в два раза, хотя максимум кривой повторяемости остается в тех ие пределах, что и в холодное полугодие. Турбулентный обмен в кучевых облаках арктических районов развит слабо.

Таблица 26

Форма	Козффициент турбулентности, м ² /сек.											
облаков	20,0- 30.0	30,1- 40,0	40,1- 50,1 50,0 75,		75,1- 100,0	100,1 - 125,0	125,1- 150,0	число случа- ев				
			Тепл	ре пол	угодые							
Husrne	-	3,3	8,9	32,2	41,2	13,3	1,1	90				
Высокие	2,6	2,6	13,1	50,1	23,7	7,9	-	38				
Под Cu - Cb	– .	20,0	-	80,0	-		🗕 (* 1	5				
Cu-C6	0,8	8,1	10,1	37,6	85,9	11,7	0,8	128				
Han Cu-Cb	19,1	38,0	23,8	19,1	-	-	•	21				
			Холоди	тое по	тугодие							
Cu - Cb	-		13,4	59,9	20,0	6,7	• · · ·	15				
		Te	и Плое по	лугод	e (Apr	ruka)						
Cu	63,7	27,2	•	9,1	-	•	•	11				

Повторяемость (в %) коэффициента турбулентности в облаках Сц. - Св

Значения коэффициентов турбулентности вдесь невелики. Максимум кривой повторяемости приходится на градацию 20-30 м²/сек. Максимальная повторяемость К над облаками приходится на градацию 30-40 м²/сек. Под облачным слоем турбулентность оказалась интенсивнее, чем над облаками.

Некоторым дополнением в этим результатам являются средние величины козффициенты турбулентности в облаках (табл. 27).

Таблица 27 показывает, что средние коэфрициенты турбулентности в облаках Си – Св в умеренных широтах почти в два с половиной раза больше, чем в арктических районах. Следует заметить, что вначения коэффициента турбулентности в Арктике, как это следует по данным наблюдений, заимствованным из бортовых журналов, в основном относятся к облакам Си huma med.

3. <u>Размеры турбулентных вихрей</u>. Средние размеры турбулентных образований Ил-12 и Ли-2 представлены в табл.28.

Данные табл.28 покавывают, что с увеличением удельной нагрувки самолетов отмечается и увеличение размеров турбулентных вихрей, вызывающих болтанку самолетов.

В холодное полугодие характерные размеры турбулентных образований, которые вызывают болтанку самолетов, уменьшаются (самолет Ли-2).

59 -

Средние значения козффициента турбулентности в облаках вертикального развития

Полугодше	Под облаками	Cu-Cb	Над облаками
Теплое	57	74	37
Холодное	37	65	-
Теплое (Арктика) 25	32	-

Таким образом, турбулентный обмен в облаках вертикального развития во все сезоны года развит значительно сильнее, чем в других формах облаков (рис.4). В кучевых облаках отдельные значения коэффициента обмена превышают 125 м²/сек., а повторяемость значений величины К > 100 м²/сек. достигает почти 13%. Таблица 28

Средние размеры турбулентных вихрей, вызывающих болтанку самолетов в облаках Си - СС

Форма облаков	Ty-104	Ил-14	Ил-12	Ли-2
	Тепло	е полуго	цие	
Под облаками	-	-	120	120
Cu-CB	440	140	130	120
Над облаками	400	-	· • ·	-
	Холодн	ое полуг	дие	
Под облаками	-	**		100
Cu-C6	-	-	-	110

Отсутствие исследований в центральной части кучево-дождевого облака не позволяет дать определенной оценки интенсивности турбулентного обмена таких облаков, хотя есть основание считать, что козффициенты турбулентности там могут достигать значения 200 м²/сек. и более.

У1. Турбулентный обмен в атмосфере

К исследованию турбулентного обмена в атмосфере привлечены материалы полетов Гос. НИИ ГВФ, ААНИИ и ГГО. Для удобства анализа исходные данные разбиты на три группы, соответствующие слоям атмосферы 0-2, 2-8 и 8-12 км. Такое деление на слои связано с физическими процессами, обуславливающими обмен в том или ином слое. Распределение рассмотренных случаев по географическим районам и слоям представлено в табл. 29.

Ив 231 случая, приведенного в табл.29, более 50% относится к самому нижнему слою атмосферы и только 87 случаев - к более высоким слоям.

Количество случаев с акселерографическими ваписами в зависимости от географического района и слоя атмосферы

Leo mentre eo-		Общее				
вые радоны	42	2-8	2-87	8-12	8-127	число случаев
Умеренные широты (Теплое полугодие)	32	17	-	8	9	66
Умеренные широты						
(холодное полугоди	e) 21	16	14	16	5	72
Арктика (теплое полугодие)	. 91	2	-	-	-	93
Всего случаев по слоям	144	35	14	24	14	231

69% проанализированных случаев характеризуют турбулентность в теплое полугодие в умеренных и арктических широтах, остальные случам относятся к холодной части года и к умеренным широтам.

Повторяемость козффициента турбулентности по слоям и географическим районам приведена в табл.30.

Рис.4. ПОВТОРЯЕМОСТЬ (в %) КОЭФФИЦИЕНТА ТУРБУ-ЛЕНТНОСТИ В ОБЛАКАХ НИЖНЕЦО, СРЕДНЕГО, ВЕРХНЕГО ЯРУСОВ И ВЕРТИКАЛЬНОГО РАЗВИТИЯ ДЛЯ ТЕПЛОГО ПОЛУГОДИЯ. Таблица 30 показывает, что наиболее интенсивная турбулентность в оба полугодия наблюдается в нижнем слое атмосферн. В

^{1/} Случан, когда наблюдались большие скорости воздушных потоков (струйные течения).

Повторяемость	(в	%) коэффициента	турбулентности	в
			атмосфере		10

Слой			Koa	эффицие	нт тур	булент	ности,	x ² /ce	K.	Число
феры, км	<10	10,1-20,0	20,1- 30,0	30,1-40,0	40,1- 50,0	50,1 - 75,0	75.1- 100.0	100,1- 125,0	125,1-	слу- чаев
				Тепло	е полу	тодле				
<2,0		21,8	68,8	9,4	-	-	-	•	•	32
<2,0 ^{2/}	1,1	36,3	45,1	, 16,4	1,1		-	-	-	91
2-8	-	64,7	11,7	5,9	17,7	-	-	-	-	17
8-12	-	62,5	25,0	12,5	-	– 1	.	· –.	- 1	8
8-127	-	-	-		22,2	55,6	22,2		· 🕳 🖓	9
				Колодно	ре пол	і у г одиє			•	
<2	4,8	52,4	19,0	14,3	9,5	-] -	· 🗕	-	21
2-8	50,0	16,6	· -	11,2	16,6	5,6	-	-	• •	18
2-8 ¹	-	-	-	16,7	41,7	33,3	8,3/	-		12
8-12	87,5	12,5	-	-	-	-	- /	/ -	1- 1 - 1	16
8-121/	-		-	20,0	20,0	40,0	20,0	•	- ,	5

тех случаях, когда в верхней тропосфере и нижней стратосфере наблюдаются большие скорости воздушного потока, турбулентность в этих слоях резко усиливается и максимум повторяемости сдвигается в сторону более высоких градаций величины К. В этом случае он находится в пределах 40,1-75,0 м²/сек.

В Арктике существенного различия интенсивности турбулентности по сравнению с умеренными широтами не обнаруживается.

Представляется интересным рассмотреть средние значения коэфициента турбулентности по слоям атмосферы в зависимости от времени года, географического района и скорости воздушного потока (табл.31)

Ив табл.31 следует, что существенного различия в средних значениях коэффициента обмена в слоях < 2 л 2-8 км для обоих полугодий не наблюдается. В верхней тропосфере и нижней стратосфере отмечается вначительное ослабление интенсивности обмена, в оссбенности в холодное полугодие. С увеличением скорости ветра возрастают и средние коэффициентн турбулентности. Так, в слое 2-8 км (холодное полугодие) К = 52 м²/сек., а в слое 8-12 км средняя величина К увеличилась в 10 раз и равна 60 м²/сек.

В Арктике интенсивность обмена в нижнем слое атмосферы оказалась примерно такой же, как и в умеренных широтах. Однако этот

^{1/} Рассметриваются случаи с сольшими скоростями воздушного потока (струйные течения).

Рассматриваются случаи, относящиеся к арктическим широтам.

Средние значения коэффициента турбулентности по слоям атмосферы в зависимости от географического района и скорости воздушного потока

Географичес-	Слой атмосферы, км									
кий район	¿ 2.	2-8	2-87	8-12	8-12 1					
Умеренные ши- роты (теплое полугодие)	24	22	-	18	61					
Умеренные ши- роты (холодное Полугодие)	22	20	52	6	60					
Арктика (теплое полугодие)	23	27	-	-	-					

ревультат, по-видимому, не вполне правильно отражает фактическую картину.

В заклочение следует указать, что полученные характеристики турбулентного обмена в атмосфере следует считать ориентировочными. Недостаточное количество рассмотренных случаев для нижнего слоя атмосферы не позволяет сделать каких-либо определечных выводов, в особенности для холодного полугодия. Для выяснения особенностей обмена в атмосфере требуется тщательное исследование на более общирном материале, чем это сделано в настоящей работе. Такое исследование выходит за пределы поставленной вдесь задачи.

Итак, в работе дана оценка интенсивности обмена в основных формах облаков и в атмосфере. Сводная таблица средних величин козффициента турбулентности в зависимости от формы облака, времени года и слоя атмосферы (табл.32) была бы неполной, если бы в ней не были представлены максимальные значения этого козффициента. Сравнение средних и максимальных величин показывает,что в отдельных случаях, например, в перистых облаках среднее значение исследуемой величины оказывается более чем в три раза меньше максимальной.

Представляет определенный интерес сравнение результатов, полученных в работе, с данными других авторов.

Таблица 32 показывает, что средние величины коэфициента турбулентности, вычисленные в настоящей работе, оказались большими, чем величины, вычисленные М.П.Чуриновой [20], но меньшими, чем полученные Н.З.Пинусом и В.Д.Литвиновой [16]. Одной из возможных причин расхождения является то, что для расчета коэффициента турбулентности М.П.Чуриновой и в настоящей работе использованы различные методы [11 и 8]. Другая причина, и может быть основная, - качество и методика получения исходных данных. Однако следует укавать, что средние величины коэффициента обмена, полученные в данной работе и в [16] на достаточно большом исходном

Средние и максимальные значения коэффициента турбулентности в облаках и внеоблачном пространстве

Исходные	Be	ержн	nä al	yc	Средний ярус			Нижний ярус			Облака верт. развития	BR	еобла	HOE R	простр	анство
данные	Ci	Cs	Ci ^V	Cs ¹⁷	Яc	As	Ns	Sc	St	туман	Cu - C8	42	2-8	2-8	8-12	8-12
		Теплое полугодие												•		
По данным М.П.Чуриновой		_	· ·	•	-	-	-	28	-	-		-	-	-	-	- · · ·
По данным Н.З.Пинуса и Д.Л.Литвино-		_	227	_	98	111	54		_	-	-	-	_		-	1.1 A Maria 1.1 Maria 1.1
По данным автора (средн.)	19	31	66	60	63	58	46	51	39	14	74	24	22		18	61
По данным автора (макс.)	39	101	111	109	109	89	92	88-	54	18	145	35	42	-	34	85
and a second	[Холо,	цное	полугоди	<u>te</u>					
По данным М.П.Чуриновой	-	_	-	-	_	-	18	21	21	-	-	18	-	-	-	-
По данным автора (средн.)	-		-	-	46	43	34	40	40	-	65	22	.20	52	6	60
По данным автора (макс.)	-	-	-	-	79	62	66	85	56		113	3 8	55	76	14	96
1/ Случаи	1/ Случаи с большими скоростями воздушного потока (струйные течения).															

2/ Арктические широты.

материале, для пограничного слоя оказались близкими и соответственно равны 18 и 22 м²/сек. Этот факт в некоторой степени делает реальными рассмотренные предположения.

Относительно небольшое число случаев, использованных в работе [16] для определения коэффициента турбулентности в облаках, а также привлечение более широкого спектра турбулентных вихрей затрудняет сравнение величин, представленных в табл.32.

Таким образом, В рассмотренных формах облаков в течение всего года наблюдается хорошо выраженная турбулентность, обычно усили Вающаяся в теплую половину года. Сравнение обмена в облачных слоях и вне облаков позволяет утверждать, что более интенсивна турбулентность в облаках. Обычно вначения К в облаках оказываются в 1,5-2,0 раза больше, чем над облаками.

В бевоблачных прослойках обмен развит слабо, коэффициенты турбулентности в этих случаях лежат в пределах 10-15 м²/сек., а большие значения К встречаются довольно редко.

Результаты расчета коэффициента обмена показывают, что в облаках и внеоблачном пространстве отмечается резкое усиление обмена при больших скоростях воздушного потока. К повышению интенсивности турбулентности приводят также и отдельные мезоструи, наблюдающиеся в свободной атмосфере.

Данные акселерографических записей болтанки самолета и результаты расчета коэффициента турбулентности показывают, что у большинства из рассмотренных форм облаков на верхней границе отмечается резкое увеличение интенсивности турбулентного обмена. На нижней же границе такое усиление отмечается не всегда.

Следует считать, что в основной части случаев (за исключением облаков струйных течений) под облачным слоем турбулентность развита сильнее, чем над облаками. Это факт является одновременно подтверждением теории обравования облаков.

В отношении турбулентности во фронтальных облачных системах и во внутримассовых облаках следует указать, что в первом случае она развита более значительно.

Сравнение значений коэффициента турбулентности в равное время суток показывает, что обычно во второй половине дня турбулентность ослабевает. Особекно хорошо это прослеживается по акселерографическим записям болтанки самолетов в слоистых и слоистокучевых облаках.

В заключение автор считает своим приятным долгом выразить благодарность старшему научному сотруднику ГГО А.С.Дубову, консультациями и советами которого он пользовался, и доценту А.М.Баранову, принявшему участие в обсуждении рукописи.

Литература

	1.	A	Ø	P	8	M	0	B	K q	F	(.r.	•	Характеристика турбулентности ат-
					۰.								мосферы в дни с низкой облачностью.
		÷.											Метеорология и гидрология, 1 9,1958.
	2.	Б	8	P	a	Ħ	0	в	A.	M.			Облака верхнего яруса и условия по-
													лета в них. Гидрометеоиздат, Л.,
													1960.
	3.	B	0	p	0	Ħ	Ц	0	B	Π.1	4.		Азрологические исследования погра-
													ничного слоя атмосферн. Гидрометео-
	1. 										• • • •		издат, 1960.
	4.	B	0	C	ĸ	p	e	с	e i	I C	ĸ	ий	t А.И. и Матвеев Л.Т. Вод-
													ность и турбулентный режим слоисто-
													образных облаков Арктики. Метеороло-
•	•					¥.,							гия и гидрология, 🛎 11, 1960.
V	5.	B	y	Л	ъ	ф	C	0	Ħ	H.I	Χ.		Исследование конвективных движений
													в свободной атмосфере. Изд.АН СССР,
e.					1.		•						M. , 1961.
	8.	· Г	e	p	M	8	Ħ	.)	4. A	• •	Ma	1 8	урин Н.И., Солонин С.В.
						· .							К вопросу об условиях полетов в пе-
													ристых облаках. Труды ЛГМИ, вып.12,
													1961
	7.	Д	y	б	0	B		A.(3.		÷		К вопросу определения вертикальных
			•••								÷.,		скоростей ветра по данным самолет-
				12									ного акселерографа. Труды ГГО, вып.
													81, 1959.
	8.		E y	. 0	1 0	B	1	A.(3.				Определение козффициента турбулент-
	. 7		• •										ного обмена по ускорению самолета.
	·			•									Труды ГГО, вып.98, 1959.
	9.	. 3	8	L 🖠	ц	e	в	1	B.A		Л	е	дохович А.А. Приборы и мето-
					•	÷.,							дика исследования облаков с самоле-
													та. Гидрометеоиздат, Л., 1960.
	10	H	()	τ). <u>M</u>	Л	10	B	a	10	В.		Исследование струйных течений в
											•		Центральной аэрологической обсерва-
		. ,			•								тории. Труды ЩАО, вып.26, 1959.
	11	Т	ور	·#	¥	Ţ.	м	я	н.	Л.	Π.		- Новый метоц определения козахон-
	1.5+	41			-	•	-						Шиента турбулентной влакости в
													пограничном слое атмосферы. "УУЛЫ
													ГГО. вып. 37 (99). 1952.
	10	π	0	쓥	Y	m	м	ß	Ħ	л.	Л	_ 1	Найдман В.А. Коитерии VC-
	14.	11	đ		•		-	u.	**		*	,	тановившейся турбулентности в
		••								•			струйных течениях. Метеорология
					· .								и гипропогия. 12. 1960.
	4.15	v				م	Δ	P	Л	. T.		R	о жарин В.С. Роль турбулентно-
	13.	DEL.	d	Т	Ð	. 2	ç	5	9 T	•	•	.	го переменивания в формировании
													структуры слонстоебразных обла-
													FA weather and the answer

	ков. Ивв.АН СССР, сер.геофия., # 11, 1956.
14. Матвеев Л.Т.	Некоторые вопросы теории образо-
	вания и эволюции слоистообразной
	облачности. Вопросы физики обла-
	ков и туманов. Труды ААНИИ, т.228, вып.1, 1959.
15. Матвеев Л.Т.	Структурная функция вертикальной
	скорости воздушного потока и но-
	вый способ расчета козффициента
	турбулентности в свободной атмос-
	фере. Труды ГГО, вып. 78, 1958.
16. Пинус Н.З. и Ли	твинова В.Д. Обинтенсивнос-
	ти турбулентности в облаках. Изв.
	AH CCCP, cep.reorp., 1, 1962.
17. Цинус Н.З.	Современное состояние вопроса о
	турбулентности атмосферы, вызы-
	вающей болтанку самолетов. Труды
	ЦАО, ВЫП.34, 1960.
ас. гещетов г.д.	Поличность в верхнеи тропосфере.
A 19 . "Ayoung conducts not be	д.н.н. р г и а п а . Гидрометеоиз-
20. Чуринова М.П.	Даг, л., 1901. Некоторые жарактеристики турбу-
	лентности в яни со слоистыми об-
•	
	1955.
21. Швец М.Е.	О конденсации водяного пара в ат-
	мосфере. Изв.АН СССР, сер.геофия.,
	₩ 6, 1955.
22. Шметер С.М.	Турбулентность в облаках верхней
	тропосферы. Труды ЦАО, вып.34,1960.
🖌 23. Шметер С.М.	Высокие кучевые облака. Труды ЦАО,
	вып.35, 1960.
94 III V D P P	Nomon w mnuconu ing nomulouve yoro-
<4• шур т.п.	MCTOM N HPNOOPH ANN HONYYCHNN NCRU-
	алиосфоры с самолета Туроулсттности
	вып. 24. 1958.
25. Юргенсон А.Н.	Исследование структуры турбулент-
	ных движений. вызывающих болтанку
	современных самолетов. Метеорология
	и гидрология, 1 10, 1960.
V 26. Ackerman B.,	Turbulence around tropical cumuli.
	J. Meteorol., v. 15., N I , 1958.

67 -

27. Andersen W.,

Turbulence in cb, Flight, v.65, N 2366, 1954.

28. Best. A.,

Effect of turbulence and condensation on drop-size destribution in cloud., J.Roy. Met. Soc. 78, 1952

29. Shaefer V.,

Cloud forms in the jet streams, Tellus, v.I N 5. 1953.

В. С. АНТОНОВ, Л. С. ОРЛОВА, В. С. ФИОНОВА РЕЗУЛЬТАТЫ РАСЧЕТА ОСАДКОВ ПО УПРОЩЕННОЙ СХЕМЕ ЛГМИ

1. В работе [1] на основе теоретических разработок [2,3,4] изложена методика расчета зон осадков из фронтальных облаков слоистых форм. Из указанных работ следовало, что при диагнозе осадков следует различать два основных случая: чисто водяные облака и облака, в верхней части которых имеет место заметная кристаллизация.

Для диагнова осадков из чисто водяных облаков необходимо точно знать распределение капель по размерам, температуру, водность, вертикальную мощность облаков и дефицит влажности воздуха под облаком.

В смешанных облаках доминирующее значение приобретает фактор кристаллизации капель в верхней части облака, так как снежинки растут с большой скоростью за счет перегонки пара с капли на кристалл и, таким образом, замерзшая капля преодолевает область замедленного роста в сравнительно короткое время.

Для расчета осадков из смешанных облаков в методе [1] используются в основном данные самолетного зондирования атмосферы.

Однако, несмотря на довольно строгую научную концепцию, предложенная в работе [1] методика расчета зон осадков встретила на пути внедрения в практику серьезные препятствия. Во-первых, отсутствие данных о водности облаков, распределении капель по размерам в них и другое не позволяет сделать диагностические расчеты осадков для чисто водяных облаков, не говоря уже о прогностических расчетах, так как прогноз перечисленных выше параметров облака совершенно не разработан. Поэтому автор работы [1], говоря о диагнозе и прогнозе осадков из капельных облаков, считал, что проблема прогноза осадков из таких облаков (хотя бы только самого факта выпадения или невыпадения) находится пока в такой стадии, что нет решения даже для такого случая, когда изменения температуры и вертикальной мощности облака заданы.

Это привело к тому, что в методике [1] диагностические расчеты осадков из чисто водяных облаков не делались. Правда, это существенно не ухудшило расчеты, так как были использованы такие случаи, когда достаточно мощные капельные облака не наблюдались. Возникла необходимость на экспериментальном материале рассмотреть водяные облака и, упрощая схему расчета, найти связи между такими параметрами облака, которые бы характеризовали процесс осадкообразования и были бы доступны для практического использования на оперативной сети службы погоды.

Во-вторых, для расчета осадков из смешанных облаков по методу [1], помимо распределения по вертикали температуры воздуха, необходимо знать высоты нижней и верхней границы облаков, что возможно было получить только из данных самолетного зондирования атмосферы.

Незначительная сеть такого зондирования не обеспечивает достаточно надежного диагноза вон осадков, так как при существующем в настоящее время расстоянии между пунктами самолетного вондирования атмосферы могут выпасть из анализа воны осадков, которые находятся между этими пунктами.

Наконец, диагноз вон осадков с помощью вертикальных разрезов и переход от разреза к синоптической карте занимают много времени.

Все это привело к необходимости отказа от вертикальных разрезов. Расчеты зон осадков выполнялись по данным самолетного зондирования атмосферы и более многочисленным данным радиозондирования.

Некоторые результаты исследований по расчету обложных осадков опубликованы в работах [5,6]. Ниже излагается упрощенная схема расчета вон осадков из облаков слоистых форм, которая отвечает предъявленным выше требованиям. Схема разработана В.С.Антоновым, расчеты конкретных случаев и проверка схемы были выполнены в Ленинградском бюро погоды инженерами Л.С.Орловой и В.С.Фионовой. П.Рассмотрим прежде всего смешанные облака, так как в средних широтах в подавляющем большинстве случаев обложные осадки выпадают ив таких облаков.

В работах [1,2] показано, что учет внутриоблачных физических процессов при расчете осадков из смешанных облаков типа A_{S} , S_{L} и S_{C} в первую очерець будет сводиться к расчету условий, при которых наступает кристаллизация в верхней части облака, так как в етом случае замерзшие вблизи верхней границы облака капли начинают падать вниз, практически почти не поднимаясь выше уровня замерзания, и укрупняются при своем падении до размера "долдевых", проходя незначительный слой переохлажденного облака.

Как было показано в работе [5], для смешанных облаков, а они, как правило, наблюдаются при температурах на верхней границе облака ниже -8°, мощность облака, равная 400 м, является критической мощностью, при которой выпадают заметные для наблюдателя осадки. Такие мощности в общирных зонах переохлажденных облаков слоистых форм встречаются постоянно, поэтому основным условием, характеризующим коллоидальную устойчивость облаков и, таким образом, выпадение осадков, будет являться процесс

70 -

кристаллизации в верхней части переохлажденного облака.

В работах [1,3] показано, что замерзание облаков, влияющее на развитие их коллоидальной неустойчивости (образование осадков), начинается при достижении верхней границей облака температуры интенсивной кристаллизации (T_L)^{1/}.

Из сказанного нетрудно записать условия выпадения осадков из переохлажденных облаков слоистых форм.

Пусть К – некоторый параметр, характеризующий эти условия Z_{вго} – высота верхней границы облака, Z_т – высота температуры интенсивной кристаллизации, тогда

$$K = Z_{Bro} - Z_{T_i}$$
 (1)

Из (1) видно, что, если $Z_{BFO} \ge Z_{T_i}$ (кристаллизация в верхней части облака) и, следовательно, $\kappa \ge 0$, то существуют условия для выпадения осадков, если K < 0 - то без осадков.

Исходя из работ [7,8,9] и исследований, выполненных студентами ЛГМИ, можно принять, что при разности

$$T - \tau \leq 2^{\circ}, \qquad (2)$$

(3)

где Т – температура воздуха, **С** – температура точки росы на взятом уровне, имеются благоприятные условия для существования облаков. В этом случае диагноз вон осадков можно производить с использованием данных о температуре воздуха и точке росы по высотам, полученных из наблюдений методом радиозондирования атмосферы.

Если использовать только данные Т и au на главных изобаричесских поверхностях из карт барической топографии, то для расчета превышения Z_{Bro} над Z_{Ti} необходимо получить экстраполяционные формулы.

Совместное решение уравнений кривых стратификации температуры воздуха и температуры точки росы относительно Z_{вго} при

 $T - \tau = 2^{\circ} = \Delta$

 $Z_{BFO} = H_o + \left(\frac{\underline{T_o - T_o + \Delta}}{\overline{T_o} - \overline{T_o}} \right).$

дает

Здесь H_o - высота исходного уровня изобарической поверхности, где T - T $\leq 2^{\circ}$, $\overline{\sigma}$ - средний вертикальный температурный градиент в слое воздуха между исходным уровнем H_o и первым вышележащим уровнем, где T - T > 3°; $\overline{\sigma}_{T}$ - средний вертикальный гра-

1/Термин "температура интенсивной кристаллизации" был введен Л.Г.Качуриным в 1956 г. [1]. Им была предложена формула для расчета Т_і и построен теоретический график. Позднее втот график был подтвержден и уточнен материалами радио- и самолетного зондирования атмосферы [6]. диент точки росы в том же слое. Для $\tilde{\mathcal{T}}$ и $\tilde{\mathcal{D}}_{r}$ можно записать

$$\overline{\vec{\sigma}} = \frac{T_o - T_h}{H_{\frac{P_h}{P_o}}}, \qquad (4)$$

$$\overline{\vec{\sigma}}_c = \frac{T_o - T_h}{H_{P_h}}, \qquad (5)$$

где значок h означает, что данные относятся к первому вышеле**хащему** уровню, Н_{Рь} - толщина слоя между рассматриваемыми изобарическими поверхностями в геопотенциальных метрах (г.п.м.). Подставляя в (3) 7 и 5, ив (4) и (5), получим

$$Z_{\text{Bro}} = H_{o} + \left(\frac{T_{o} - T_{o} + \Delta}{T_{o} - T_{h} - T_{o} + T_{h}}\right) H_{\frac{P_{h}}{P_{o}}}$$
(6)

Решая уравнение кривой стратификации температуры воздуха относительно 2 , при заданном значении Т. имеем

$$Z_{T_{i}} = \left(\frac{T_{o} - T_{i}}{T_{o} - T_{h}} \right) H_{\frac{P_{h}}{P}} + H_{o}, \qquad (7)$$

где Т_і - температура интенсивной кристаллизации, которая рассчитывается по графику, изображенному на рис.1.

Рис.1. ГРАФИК ДЛЯ РАСЧЕТА Т_і (график вависимости между температурой на уровне, где Т-Т = 2°, W 700 и осадками по [6])

Подставив (6) и (7) в (1), окончательно получим

$$K = \left(\frac{T_{o} - T_{o} + \Delta}{T_{o} - T_{h} - T_{o} + T_{h}} - \frac{T_{o} - T_{i}}{T_{o} - T_{h}}\right) H_{\frac{P_{h}}{P_{o}}}$$
(8)
Так как нам важен только знак К, то (8) упрощается:

$$K = \left(\frac{\overline{T_o} - \overline{T_o} + 2}{\overline{T_o} - \overline{T_o} + \overline{T_h}} - \frac{\overline{T_o} - \overline{T_h}}{\overline{T_o} - \overline{T_h}}\right).$$
(9)

Формула (9) повволяет быстро рассчитать по данным температуры и точки росы на главных изобарических поверхностях знак К и, таким образом, определить подготовленность атмосферы к выпадению осадков на каждой отдельно взятой станции.

Рассмотрим теперь условия осадкообразования в капельных облаках. Анализ уравнения для суммарной скорости роста падающей капли, ваятого из [2], если его упростить для случая монодисперсного облака и постоянства водности облака, вертикального градиента температуры в нем и вертикальной скорости, показал, что основными параметрами, характеризующими процесс образования осадков в таких облаках, будут являться вертикальная мощность и средняя температура облака [13].

Делая такие упрощения, мы исходим из того, что в природе достаточно развитые по вертикали слоистые облака обычно наблюдаются в хороно выраженных циклонах, где порядок величины упорядоченных вертикальных движений один и тот же. Изменение вертикального температурного градиента в облаках AS - NS с высотой незначительное [11], что позволяет принять 7 постоянным.

Что же касается Водности облака, то изменение ее, по всей вероятности, будет пропорционально изменению мощности и средней температуры облака, что должно более четко подчеркнуть связь между осадками, мощностью и температурой облака.

Аналия данных около 1000 самолетных подъемов в слоистых чисто водяных облаках подтвердил теоретические выводы.

Была обнаружена хорощо выраженная зависимость между мощностью, средней температурой облака и умеренными осадками (моросящие или очень слабые дожди во внимание не принимались).

В частности, для районов Европейской территории СССР получены следующие данные: при средней температуре облака $+5^{\circ}$ умеренные осадки могут выпадать только при мощности облака 2200 м, при $\bar{t} = +0^{\circ}$ необходима мощность облака 2400 м, при $\bar{t} = -5^{\circ}$

△ H = 2600 M.

На основании вышеизложенного схему диагностического расчета можно представить следующим образом.

1. С карт АТ₈₅₀, АТ₇₀₀ и АТ₅₀₀ для каждой станции снимаются данные о температуре и точке росы.

2. Для этих станций вычисляются вертикальные скорости для уровня поверхности 700 мб.^{1/}

^{1/}Данные о вертикальных скоростях также передаются в сводках передач радиометеорологических центров[10].

3. По графику рис.1, используя вычисленную вертикальную скорость, рассчитывается значение температуры интенсивной кристаллизации Т:.

4. По формуле (9) рассчитывается К .

5. Если К > О - осадки,

К < О - без осацков,

К = 0 - осадки,

К =+ 0 - осадки,

К =- - без осадков.

6. Все расчеты К производятся только тогда, когда существуют облака, что соответствует наличию на одной из главных изобарических поверхностей условия Т – T $\leq 2^{\circ}$.

7. Если на всех главных изобарических поверхностях $T - T \ge 3^{\circ}$, то расчет не производится и считается что осадков не будет, так как предполагается, что облака отсутствуют.

8. Если Т – $\tau \leq 2^{\circ}$ имеет место на уровне изобарической поверхности 850 мб, а T_i – на уровне изобарических поверхностей 700 или 500 мб и на этих уровнях Т – $\tau \geq 3^{\circ}$, то расчет не производится, так как явно видно, что верхняя граница облаков лежит ниже уровны температуры интенсивной кристаллизации. В этом случае по (1) К \leq 0 – "без осадков".

9. Если на двух главных изобарических поверхностях, следующих одна за другой, $T - T \leq 2^{\circ}$ и уровень, где находится T_i , лежит между ними, то независимо от знака К , полученного по(9), осадки будут . Это такой случай расчета, когда от нижней к верхней изобарической поверхности разность $T - \tau$ уменьшается. Так как (9) получено только при увеличении или постоянстве разности $T - \tau$ с высотой, то при уменьшении этой разности с высотой мы будем иметь не превышение $Z_{\rm BFO}$ над $Z_{\rm T_i}$, а превышение $Z_{\rm HFO}$ (нижней границы облака) над $Z_{\rm T_i}$. В этом случае из (1) очевидно, что К > 0.

10. Учет мощности облаков производится следующим образом:

а) если разность $T - T = 2^{\circ}$ наблюдается только на одной из трех главных изобарических поверхностей, то даже при K > 0следует считать, что осадков не будет, так как в этом случае мощность облаков незначительная, менее 400 м [5];

б) если на уровнях поверхностей 850 и 500 мб $T - T \le 2^{\circ}$, а на уровне поверхности 700 мб $T - T = 3^{\circ}$ и T_i отмечается вблизи уровня поверхности 700 мб, то в этом случае даже при получении $K \le 0$ осадки будут (безоблачная прослойка незначительной толщины);

в) если на уровнях поверхностей 850 и 500 мб $T - T \leq 2^{\circ}$, на уровне поверхности 700 мб $T - T \geq 4^{\circ}$, а T_i наблюдается не выше уровня поверхности 700 мб, осадки определяются по знаку К. Если же T_i наблюдается выше уровня поверхности 700 мб, то независимо от знака К следует считать, что осадков не будет.В этом случае наблюдается значительная по вертикали безоблачная прослодка. Имеет место кристаллизация облаков, которые располагаются вблизи уровня поверхности 500 мб. Хотя они и дают осадки, но, проходя значительный и сухой безоблачный коридор, испаряются, не вызывая коллоидальной неустойчивости нижележащего облачного слоя;

г) если Т – $T \leq 2^{\circ}$ отмечается только на уровне поверхности 500 мб, на уровнях поверхностей 700 и 850 мб Т – $T \geq 3^{\circ}$, осадков не будет при любых значениях К

(Большая высота расположения нижней границы облаков. Осадки испаряются, не доходя до земли).

д) если Т $-T < 2^{\circ}$ находится на уровнях поверхностей 700 и 500 мб, а на уровне поверхности 850 мб Т $-T \ge 3^{\circ}$, то следует рассчитать высоту нижней границы Т $-T = 2^{\circ}$. Если Н \ge 2500 м, осадков не будет, если меньше, то следует ожидать осадки [13].

11. Если Т - $T < 2^{\circ}$ имеется только на уровне поверхности 850 мб, а на уровных поверхностей 700 и 500 мб Т - $T \ge 3^{\circ}$ и температура на уровне поверхности 850 мб ниже температуры интенсивной кристаллизации, следует привлечь для расчета нижележащую изобарическую поверхность (например 900 или 1000 мб), с которой снять данные Т и T, и по формуле (10) произвести расчет мощности облаков

$$\Delta H = \left(\frac{T_o - T_o + 2}{T_o - T_h - T_o + T_{h+}}\right) H_{\frac{h+}{0}} + \left(\frac{T_o - T_o + 2}{T_o - T_h - T_o + T_{h-}}\right) H_{\frac{o}{h}}, \quad (10)$$

 $\begin{bmatrix} 0 & -$ данные относятся к поверхности 850 мб, h_+ - к вышележащей поверхности (700 мб), h_- - к нижележащей поверхности (900 или 1000 мб)]. Если расчетъ Н дает величину 400 г.п.м. и более, следует считать, что осадки будут, если менее 400 м - то без осадков.

12. Если Т - T<2⁰ имеет место на уровнях поверхностей 850 и 700 мб одновременно, а Т_і располагается выше уровня поверхности 700 мб, К будет меньше нуля. Однако здесь мы имеем дело с мощными водяными облаками. Поэтому необходимо рассчитать мощность их и по значению Δ H и \overline{t} решить вопрос о выпадении осадков [13].

При реальных для Европейской территории СССР средних температурах облаков и при мощности их более 2500 м будут выпадать осадки. В наших расчетах эти условия выполняются при существовании разности Т - T < 2° одновременно на уровнях поверхностей 850 и 700 мб.

Для более оперативного использования изложенных правил диагноза осадков разработана и прилагается специальная таблица, где в удобную для работы форму сведены эти правила.

Ш. По описанной выше схеме в расчетной группе Ленинградского бюро погоды в 1961 г. были произведены как диагностические, так и прогностические расчеты осадков для четырех пунктов: Ленинград,

Таблица

для расчета осадков по значениям разностей Т - С и T_i на уровнях изобарических поверхностей

	T	-Т гра,	۹.	Слой ме: кими пов распола	жду изоба ерхностя гается Т	аричес- и, где	Необ- ходи- мость	Ожидае- мое явле-
щ/ ц	850 mg	700 мб	500 MQ	вемля- 850 мб	850 - 700 Mg	700 - 500 mg	расче- та К	ние
1	≥3	≫ 3	⋧ з	_		-	Het	бев осадков
2	42	≥3	23	-	-	+		99
3	42	42	≥3	*** +	-	-	N	осадки
1 . T	52	42	≥ 3	-	+	-	11	n
	≤2	42	≥ 3	-	-	+	да	К≥О- осадки,
								К < 0 - бев осадков
4	≥ 3	62	52	+	-		нет	осадки
	≥3	<u></u>	42	-	+	-	11	n
	≥ 3	≤2	<u> </u>	-	-	+	n	ii ii
5	=2	≥3	> 3	Вл	юбом сло	19	бев (осадков	
6	>3	=2	≥ 3	Te	ae 🦾	1	я,	
7	≥ 3	≥3	€2		11	· · · ·		n
8	>3	< 2	< 2		11		надо рассчи- тать Н,где Т-т =2	если Н≽ >2500 м- без ссадков, Н<2500м- осадки
9	4 2	= 3	62		M		нет	осадки
10	62	≥4	4 2	+	-		>> .	े र म
	42	>4	é 2	-			да	К≥О- осадки, К<О- без осадков
11	42	≥4	42	-	-	+	Het	без осадков
12	< 2	≥3	≥ 3		+	+	tt .	82
				+	-	-	надо рас- считати д Н	Н≥ 400м- осадки; н< 400м- без осадков
13	<2	< 2	≥ 3	без уче та	- Τ _ι		осадки	

1/ "+" - температура интенсивной кристалливации наблюдается в этом слое, "-" - не наблюдается. Хельсинки, Рига, Петрозаводск за период с 14/1Х по 10/ХП 1961 г. • Дополнительно для Ленинграда диагностические расчеты были сделаны с сентября по декабрь 1960 г. и с января по март 1961 г.^{1/} Всего, таким образом, было сделано для всех пунктов 295 диагностических и 239 прогностических расчетов. Отдельно для Ленинграда – 141 диагностических и 73 прогностических расчета. Результаты диагностических расчетов представлены в табл.1.

Таблица 1

(11)

	Общее число расчетов	И з них оп- равдалось	Не оправ- далось	% оправ- дываемости
По 4 пунктам без учета п.12	295	247	48	84
По г.Ленин- граду без учета п.12	141	120	21	8 5
граду с уче- том п.12	141	125	16	89

Для сценки по всем пунктам фактические данные об осадках брались из приземной карты в З часа, что соответствовало данным о температуре воздуха, точке росы и вертикальных токах карт барической топографии в этот же срок. Данные об осадках для Ленинграда брались в интервале времени З часа <u>+</u> 30 мин. по наблюдениям метеорологической станции Ленинград-город.

Для того, чтобы составить прогноз осадков, необходимо на срок любой заблаговременности (12 или 24 часа) предвычислить значения Т, Т и W и по схеме рассчитать осадки.

Нами производился такой расчет для указанных пунктов с заблаговременностью 24 часа, т.е. к З час следующих суток от исходных данных в З часа текущих суток.

Использовались прогностические карты, передаваемые ЦИПом для земной поверхности, а также для уровней поверхностей 700 и 500мб Исходные данные снимались с карт барической топографии, которые составлялись в Ленинградском бюро погоды.

Данные о вертикальных токах как в исходный момент, так и к моменту прогноза брались из сводок, передаваемых ЦИПом. Для уровня поверхности 500 мо вертикальные токи вычислялись, исходя из предположения, что с высотой они изменяются линейно и, таким образой, величина вертикальных токов на этом уровне может оыть рассчитана по формуле.

 $W_{500} = W_{700} + (W_{700} - W_{850})$

1/ Пункт 12 изложенных выше правил учитывался только при диагностических расчетах осадков для Ленинграда.

- 77 -

Так как в сводках ЦИПа эначения величин W передаются в миллибарах за 12 час., а мы составляли прогнов на 24 часа, то для расчета температуры величины будущих вертикальных токов удваивались. Для определения Т_і будущие W , как и для диагностических расчетов, брались для уровня поверхности 700 мб неудвоенными.

Прогнов температуры осуществлялся методом переноса с учетом только вертикальных движений. Трансформационные изменения не учитывались. Траектории частиц строились так, как это рекомендуется в работе [9].

Предполагалось далее, что удельнан влажность воздуха до момента конденсации остается неизменной. При дальнейшем охлаждений всегда остается постоянным равенство T = T. Результаты прогностических расчетов представлены в табл.2.

Таблица 2

	Общее чис- ло расче- тов	Из них оп- равдалось	Не оправ- далось	% оправды- ваемости
Для 4 пунк- тов	239	173	66	72
Для г.Ленин- града	73	56	17	76
Диагности- ческие рас- четы для г.Ленинграда	73	64	9	88

В табл.2 в последней графе приведены данные диагностических расчетов для тех же 73 случаев прогноза осадков по Ленинграду.

Из сравнения этих данных видно, что результат улучшился на 12% и равен 88%. Таким образом, при достаточно точном прогнозе температуры воздуха, точки росы и вертикальных токов мы бы имели высокообеспеченный прогноз осадков.

Как показали выполненные расчеты, прогнов вертикальных токов, если учитывать только знак их, имеет удовлетворительную оправдываемость, с учетом не только знака, но и величины прогнозов вертикальных движений на 24 часа остается все еще недостаточно надежным, а это в свою очередь вызывает значительные ошибки в прогнозе температуры и влажности. Поэтому нами была произведена оценка прогноза величины и знака вертикальных движений. Допускалась в этой оценке ошибка <u>+</u> 30% от ожидаемсй величины W при совпадении знака. Для случаев с оправдавшимися таким образом вертикальными токами в указанных пунктах была произведена оценка прогноза осадков.

Результат значительно улучшился. Так, для 4 пунктов оправдываемость повысилась до 82%, а для г.Ленинграда - до 80%.

1У.В последние годы для расчета осадков многими исследователями используется график из работы [12]. Этот график был построен на материале радиовондирования атмосферы и устанавливает связь между осадками, разностью Т - Т на уровнях поверхностей 700 или 850 мби вертикальными токами на соответствующей изобарической поверхности. Используя уже имеющийся у нас материал, мы провели сравнение методов расчета осадков ЛГМИ и американского метода [12] (диагностические расчеты) для г.Ленинграда.

Результаты этого сравнения даны в табл.З.

Таблица З

Метод	Число случаев	Оправда- лось	Не оправ- далось	% оправды- ваемости
Метод [12]	141	115	26	82
ЛГМИ без учета мощ- ности облаков, ц.12	141	120	21	85
ЛГМИ с учетом мощности обла- ков, п.12	141	125	16	89

Из таблицы видно, что качество расчета осадков по методу [12] несколько ниже (на 7%), чем по методу ЛГМИ.

Особенно плохие результаты при использовании американского метода получаются тогда, когда на уровне изобарической поверхности, по которой производится расчет, наблюдаются нисходящие движения воздуха. Этот метод совершенно не оценивает условия для выпадения осадков из облаков, расположенных ниже или выше уровня той изобарической поверхности, по которой производится расчет даже и при наличии восходящих токов.

Совершенно очевидно, что при наличии капельножидких облаков толщиной менее 2000 м при восходящих токах по методу [12] будут ожидаться осадки, в то время как из таких облаков осадки не выпадают.

В табл.4 приведено несколько примеров, которые характеризуют те условия, при которых по методу [12] нельзя оценить правильно процесс осадкообразования. В первом примере - мощные облака, простирающиеся вплоть до уровня поверхности 500 мб. Облака смешанные, так как их верхняя часть находится при температурах более низких, чем температура интенсивной кристаллизации. Несмотры на имеющиеся слабые нисходящие движения воздуха, такая облачность дает осадки. Расчет по методу ЛГМИ также дает "осадки". По методу [12] в этом случае осадков не ожидалось, что не соответствовало действительности.

Во втором примере облачность менее мощная, толщина ее была несколько больше 400 м, однако эти облака лежали в области температур интенсивной кристаллизации, что вызывало коллоидальную неустойчивость и выпадение осадков даже при нисходящих токах около 70 мб /12 час. Очевидно, что в данном случае по методу [12]

- 79 -

Таблица 4

₩₽	//omo	85	50 MQ	700) MQ	500	мб	W MQ/1	2 час.	Pac	ver	Фактическая
n7n	дата	T	τ	T	τ	T	τ	850 MQ	700 MG	ЛГМИ	[12]	погода
1	28/1X 1960	+1	0	-8	-8	-23	-25	+10	+10	осадки	без осадков	осадки
2	16/1 1961	-21	-22	-28	-33	-32	-46	+70	+50	11		
З	31/X 1960	-6	-7	-12	-18	-22	-32	-30	-40	без осадков	осадки	без осадков
.4	10/X1	-1	-2	-6	-8.	-22	-30	-90	-100	H	19	91
5	29/1X	-2	-2	-10	-11	-28	-32	-30	-40	осадки	11	осадки
6	17/X1	-2	-2	-7	-7	-26	-28	-10	-30	n	11	Ħ

осадков не следовало ожидать. Фактически наблюдался снегопад, образование которого предсказывается методом ЛГМИ.

В третьем и четвертом примерах приведены случаи с облачностью толщиной менее 2000 м, верхняя граница которой не достигла температур интенсивнои кристаллизации. Это говорит о том, что облака были капельными. По методу ЛГМИ для этих примеров, несмотря на значительные восходящие движения, нет условий для выпадения осадков, что в действительности и наблюдалось. По методу [12] при разности на уровне поверхности 850 мб Т – $\tau = 1^{\circ}$ и $W_{850} = -30$ и -90 мб/12 час. расчеты указывали "осадки". Нагонец, в последних двух примерах приведены случаи, когда по обоим методам расчеты совпадают. Видно, что это совпадение бывает тогда, когда имеются восходящие движения воздуха и верхняя граница облаков располагается на уровне температуры интенсивной кристаллизации или выше его.

Таким образом, приходим к следующим выводам.

1. Для диагнова и прогнова осадков в одинаковой степени важен не только учет термодинамических процессов, приводящих к насыщению воздуха водяным паром и образованию облаков, но и учет внутриоблачных физических процессов, которые непосредственно формируют осадки в существующем облаке.

2. Метод, построенный только на чисто статистических зависимостях, в среднем при большом числе испытаний может давать удовлетворительный результат, однако при конкретных расчетах не отображает действительной картины процесса осадкообразования.

3. Восходящие вертикальные движения воздуха сами по себе еще не могут характеризовать условия выпадения осадков даже при наличии облаков, что хорошо видно из примеров сравнения метода ЛГМИ с методом [12]. Однако точность прогностических расчетов осадков зависит главным образом от точности прогностических расчетов вертикальных токов, так как характер и величина последних, за исключением случаев мощной адвекции и трансформационного изменения температуры воздуха, обуславливает формирование облаков и вертикальное распределение облаков и температуры воздуха.

Литература

1.	К	a	q	У	р	M	H	Л.	г.	,	A	Л	е	Ш	N	H	8	I	r.1	1.	,	÷Б	e	Л	я	ш	0	в	a	M.A.,
	З	a	л	И	Ė	И	Ħ	8	Β.	И.	• •	К	у	д	р	я	В	ц	е	В	a	j	B.1	И.,	,	Η	e	С	т	e-
	р	0	в	a	1	1.1	1.,	С	e	p	e	٥	р	я	ĸ	0	в	a	Ì	۹.,	Α.,	,	C	e	р	я	ĸ	0	-	
	B	a		Л,	П.								Á	Ha	INS	3 8	OB	I C)C 8	ад:	кол	5 1	81	ф	DOF	ITƏ	NI F	5H1	хĸ	
	•								• .				00 Bt	оле ап.	1 K (ов -6,	сл 1	101 95	4C) 56.	рЫ	xy.	po]	рм	•	l'pJ	ГДВ :	i J	111	И,	•
2.	К	a	4	У	p	N	H	Л.	Γ.				OC MI C C	opa M H Spi	азо Эеј (я	DB8 DTV Fe	HH IR 200	ie Di l Di l Di l	о. ьнь з.,	ca, IMI	цко и т ⊯ 2	95 101 2,	в кал 19	о ми 956	бла . И 5.	1K8 88	.x ••A	C H	ма СС	лы- CP,
з.	K	a	प	У	р	И	н	Л.	Γ.				0 нс Ме	п м эте	epe po eor		ще се	HI Ra NJ	AM Altie H M	п эл 1	ара ь в гид	a 1 3 1 1 D O	и вој ол(кон Цян 0 г и	цде њих 1.н.,	HC CO	aມ 001 - 8	цис (ан 3 , 1	н- ал 95	53.

4.	Ka	α∵y	ри	н Л.Г.	Замерзание переохлажденных вод-
		•	-		ных аэрозолей. Изв.АН СССР, се-
					рия геофия., 🛎 2, 1951.
5.	A H	T O	H O	в В.С.	Анализ условий выпадения осадков
					ив облаков слоистых форм. Сб.ра-
			. •		бот по региональной синоптике,
					₽ 6, M., 1962.
6.	A H	TOT	но	в В.С.	О зависимости между вертикальными
	. ·				токами и температурой интенсивной
			•		кристаллизации во фронтальных об-
				$(a_1,b_2,\ldots,b_{n-1},\ldots,b_{$	лаках слоистых форм. Метеорология
			5 ÷		и гидрология, 🖡 5, 1962.
7.	A O	p a	MO	вич К.Г.и	Хргиан А.Х. Исследование ус-
					ловий возникновения слоистообраз-
					ной облачности нижнего яруса. Тру-
					дн ЦАО, вып.28, 1960.
8.	8 B	e p	ев	A.C.	Синоптическая метеорология. Гидро-
					метеоиздат, Л., 1957.
9.	Me	рц	а л	ов А.И.	Внчисление и использование данных
					об ожидаемых вертикальных движе-
				1	ниях воздуха. Методические указа-
					иля ЦИПа, вып.33, 1959.
10.	Рук	оводо	ство	по краткосрочны	и прогновам погоды, часть 1. Гидро-
	Met	eons'	цат,	Л., 1955.	
11.	Бо	рo	ВИ	ков А.М., I	райворонский И.И.,
	3 a	R]	Е.Г.	, Костаре	в В.В., Мазин И.П., Ми-
	не	рв	ИН	В.Е., Хрги	ан А.Х., Шметер С.М.
					Физика облаков. Гидрометесиздат,
					Л., 1961.
12.	Lev	vis	₩.		Forecating 700 mb dewpoint depression
					by a 3-dimesional trajectory technique
					Monthly Weather Review. vol.85,9,1957.

82

13. Антонов В.С. Обучете внут ких процессов

Об учете внутриоблачных физических процессов при диагнове и прогнове обложных осадков. См.в настоящем сборнике.

Б. М. ГАЛЬПЕРИН, Л. П. СЕРЯКОВА

83

ДНЕВНЫЕ ВЕЛИЧИНЫ РАДИАЦИОННОГО БАЛАНСА ЗА БЕССНЕЖНЫЙ ПЕРИОД ПРИ РАЗЛИЧНОЙ ОБЛАЧНОСТИ

Данные о величине радиационного баланса используются в климатологии, гидрологии, океанологии, гидромелиорации и при решении ряда вопросов физики приземного слоя воздуха. В связи с запросами практики рядом авторов [3,4,11] разрабатывалась методика приближенных климатологических расчетов отдельных составляющих радиационного баланса. С помощью такой методики в ГГО построены карты средних месячных сумы радиационного баланса континентов и океанов. Но при исследованиях теплового баланса деятельной поверхности за короткие периоды, когда необходимо оценить радиационный баланс при конкретных условиях погоды, исходя из совокупности наблюдаемых или прогнозируемых метеорологических факторов, методика климатологических расчетов уже неприменима. Особенно важна подобная оценка при решении задач, свяванных с трансформацией воздушных масс, при расчетах суточного хода тепло- и влагообмена подстилающей поверхности с атмосферой. Однако до сих пор такие данные отсутствуют. Это обусловлено тем, что измерения радиационного баланса по единой методике на сети станций начаты сравнительно недавно и лишь за последние годы появились работы, обобщающие эти наблюдения, но носящие в основном климатологический характер [9,10].

В настоящей работе была поставлена задача получить количественные жарактеристики дневных величин радиационного баланса поверхности суши за бесснежный период при различных метеорологических условиях. Ночные величины радиационного баланса невелики и для приближенной их оценки можно пользоваться и расчетными методами.

С этой целью были использованы материалы срочных дневных измерений радиационного баланса и альбедо естественной поверхности, покрытой травой, в течение бесснежного периода, а также сопутствующие им метеорологические наблюдения на следующих двух группах станций СССР, находящихся в резко отличающихся климатических условиях:

Евронейская территория СССР

1) Boetkobe (1955-1957 rr.);

2) Каунас (1957-1959 гг.);

3) Минск (1956-1960 гг.);

4) Para (1956-1958, 1960 rr.);

5) Tapty (1956-1958, 1960 rr.);

Авнатская территория СССР

1) Владивосток (1956-1957 гг.);

2) Высокая Дубрава (1956-1957, 1960 гг.);

3) Иркутск (1955, 1958-1960 гг.);

4) Новосибирск (1957-1960 гг.);

5) OMCK (1957-1960 FF.);

6) Якутск (1956-1960 гг.);

Обработка и анализ материалов для каждой из указанных групп станций проводились отдельно.

Для исследования основных причин изменений радиационного баланса были обработаны также данные срочных измерений суммарной и рассеянной солнечной радиации по нервой группе станций, но за божее длительный период.

В обработке материалов принимали участие студенты ЛГМИ: Л.Сурыгина, Л.Пушкарева, Х.Уразаева и др.

В результате проведенного анализа оказалось, что при одинаковых высоте солнца и метеорологических условиях нет отчетливе выраженного различия в интенсивности солнечной радиации и радиационного баланса на разных станциях одной группы. Это позволило объединить наблюдения на разных станциях одной группы. Можно лишь отметить, что несколько заниженные величины баланса наблюдаются при облаках нижнего яруса (St, Ns, CB) во Втадивостоке.

Дневные величины радиационного баланса подстилающей поверхности определяются большим количеством факторов, Влияющих на его отдельные составляющие, среди которых основными являются: высота солнца, количество, форма, высота, вертикальная мощность и водность облаков, интенсивность солнечного сияния, прозрачность атмосферы, альбедо поверхности и разность температур почвы и воздуха (Δt°). Как показала Е.П.Барашкова [1,2], непосредственное влияние изменений температуры поверхности почвы и воздуха в отдельности на величину длинноволнового баланса невелико по сравнению с влиянием их разности.

Для оценки влияния этих факторов на величины радиационного баланса по данным срочных измерений балансомером Янишевского строились графики зависимости радиационного баланса от высоты солнца. По эмпирическим точкам с учетом их кучности проводилась корредяционная кривая $B=q'(h_{\bullet})$. Такие графики составлялись для нескольжих интервалов значений альбедо поверхности точвы для безоблачного неба и при наличии облаков. Поскольку ошибка в определении количества облаков составляет ± 1 балл, были взяты следующие градации: 2-3, 4-5, 6-7, 8-9, 10 и 10 баллов при различной интенсивности солнечного сияния (ϕ^2 , ϕ , ϕ , (\neg)). Рассматривались основные формы облаков и их наиболее часто встречающиеся сочетания. Аналогичные графики, только бев учета альбедо, были получены для суммарной и рассеянной радиации. Для безоблачного неба они строились за отдельные месяцы, а при наличии облаков - но сезонам.

Следует указать, что не для всех облачных форм и баллов облачности удалось получить зависимости $B=\mathcal{F}(h_{\odot})$. Некоторые из облаков вообще редко наблюдаются, как, например Сс , другие же большей частью наблюдаются в сочетании с другими формами. Так, например, Ac, Sc и Cs в "чистом виде" встречаются преимущественно при облачности 10 баллов. Поскольку процессы образования Ac и Sc одинаковы, то для получения жарактеристики радиационного баланса при "волнистых облаках" и облачности меньше 8-9 баллов наблюдаются в основном при вначительной облачности, причем обычно в сочетании с Fund или Sc , а при наличии прямой солнечной радиации, чаще с Си . Для облачности [10] и 10 баллов составлены отдельно графики для случаев, когда C6 преобладают (C6 , Fz n6; C6, Sc : C6, Cu) и C6 не преобладают (Sc, C6; Cu, C6).

Вследствие разного количества данных точность полученных в работе средних значений радиационного баланса при разной облачности и интенсивности сияния солнца неодинакова и некоторые из них нуждаются в уточнении. В табл.1 эти величины даны в скобках.

Необходимо отметить, что при неизменной высоте солнца и прочих равных условиях интенсивность радиационного баланса может менять ся в значительных пределах. Это характерно также для суммарной и особенно для рассеянной солнечной радиации и обусловлено колебаниями вертикальной мощности, микроструктуры облаков, их распределением по небосводу и относительно солнца. В случае преобладания прямой солнечной радиации при $h_{\odot} = 45^{\circ}$ отклонения крайних величин от средних менее 20%, а при $h_{\odot} = 25^{\circ}$ составляют 20-35%. При отсутствии солнечного сияния, когда величины баланса малы, абсолютные значения отклонений меньше, но относительные очень велики, приближаясь в отдельных случаях к 100%.

1. В процессе выполнения работы прежде всего исследовалась роль факторов, определяющих расходные составляющие радиационного баланса. Для выяснения того, насколько отчетливо наблюдения по балансомеру позволяют выявить влияние изменений разности температур почва-воздух на дневные величины радиационного баланса, были специально обработаны наблюдения при безоблачном небе, когда колебания в приходе радиации минимальны, а разности температур почва-воздух (Δt) велики.

Все наблюдения были разделены по следующим интервалам вначений разности температур почва-воздух:

-5,1	- 0,0°	;	10,1	-	15,0 ⁰	;	
0,1	- 5,0 ⁰	;	15,1	-	20,0 ⁰	;	
5,1	-10,0 ⁰	;	20,1	-	25,0 ⁰	N	ВЫШ

По данным наблюдений как на ЕТС, так и на АТС зависимости радиационного баланса от Δt обнаружить не удалось; при одной и той же высоте солнца, альбедо поверхности и градации Δt колебания радиационного баланса больше, чем при изменении Δt от одной градации к другой. Это обстоятельство можно объяснить тем, что, помимо свойств почвы, дневные величины Δt определяются в основном приходом солнечной радиации, и изменения Δt , обусловленные изменением высоты солнца при данном альбедо, значительно превосщодят колебания, вызванные изменением состояния почвы. Кроме того, величина Δt определена по измерениям термометром, установленным на обнаженной почве. а наблюдения по балансомеру проводятся над естественной поверхностью, покрытой растительностью, где разность Δt вначительно меньше, особенно при хорошо развитом травостое

Эти результаты позволили при построении графиков $B=f(h_o)$ не производить разделения их по значениям Δt : косвенным образом влияние Δt уже учитывается зависимостью радиационного баланса от высоты солнца.

Для количественной оценки влияния изменений альбедо подстилающей поверхности на ее радиационный баланс, как было уже указано, все графики $B = f(h_e)$ составлялись для разных интервалов значений альбедо, встречающихся в бесснежный период: 11-15,16-20, 21-25 и 26-30%. Наиболее часто на рассматриваемых станциях наблюдаются величины альбедо 16-20%. Альбедо 11-15% встречается преимущественно весной, когда почва влажная и растительный покров слабо развит; вначения A > 25% наблюдаются очень редко и главным обравом при бевоблачном небе.

Сравнение средних значений радиационного баланса при разных градациях альбедо, но прочих одинаковых условиях показало,что влияние изменений алвбедо от одной градации к другой (на 5%) на величину баланса можно обнаружить лишь при сильном или умеренном сиянии солнца, т.е. при большой роли коротковолновой радиации. В этом случае изменение баланса составляет 7-8%. При отсутствии прямой солнечной радиации, т.е. при небольшом приходе коротковолновой радиации, не удалось выявить закономерных изменений средних величин радиационного баланса с изменением альбедо.

Для косвенной оценки влияния изменения альбедо поверхности на радиационный баланс были вычислены величины эффективного излучения при разной облачности путем сопоставления соответствующих средних вначений В и Q при альбедо 18% и соотношения

При безоблачном или облачном небе, чо при значительной роли прямой солнечной радиации это соотношение уменьшается с увеличением высоты солнца, особенно при малых высотах солнца. При $h_0 > 25^{\circ}$ изменение его уже сравнительно невелико. Используя средние величины о при $h_0 > 25^{\circ}$, можно оценить влияние изменений альбедо (А) для разных условий, исходя из соотношения $B=Q(I-A-a_{cp})$. При силошном покрове облаков нижнего яруса $E_{popp} \approx 0$ и мотно считать, что $B \approx Q(I-A)$. Использование этих соотношений позволило получить следующие результаты.

При любой облачности разных форм, за исключением сплошного покрова облаков нижнего яруса, изменение альбедо на 5% (при h > 25°) вызывает изменение радиационного баланса на 7-8%, а при изменении на 10% отклонение величины баланса составляет 16-17%, что согласуется с приведенными выше выводами. При облачности 10/10 Сб ,Ns, St , когда эффективное излучение мало, эти изменения несколько меньше и составляют 6-7 и 12-14%.

Влияние изменения альбедо на высоту солнца, при которой радиационный баланс меняет свой знак, не обнаружено.

При безоблачном небе радиационный баланс переходит через нулевое значение при высоте солнца 8-10⁹. При наличии облаков смена знака радиационного баланса происходит при меньшей высоте солнца, но вследствие сравнительно малого количества данных и небольшой точности измерений при малых высотах солнца не получается простой четкой зависимости между этой высотой солнца и количеством облаков. В связи со сказанным выше в дальнейшем мы приводим средние значения радиационного баланса, наиболее характерные для альбедо 16-20%.

Таким образом, факторы, влияющие на расходную часть радиационного баланса, – разность температур почва-воздух и альбедо поверхности – на дневные величины радиационного баланса в бесснежный период оказывают небольшое влияние, часто меньшес точности измерений балансомером.

2. Основными факторами, определяющими приходную часть дневного радиационного баланса, являются высота солнца, облачность, интенсивность сияния солнца и прозрачность атмосферы.

Зависимость дневных величин радиационного баланса от высоты солнца при $h_0 < 50^{\circ}$ практически линейна. Это обусловлено соответствующей зависимостью суммарной радиации от высоты солнца. При $h_0 > 50^{\circ}$ возрастание суммарной радиации и радиационного баланса с увеличением высоты солнца замедляется.

Как видно из рис.1, вследствие годового хода козффициента прозрачности атмосферы радиационный баланс при безоблачном небе (B_o) испытывает отчетливо выраженные изменения от месяца к месяцу, соответствующие изменениям суммарной солнечной радиации (Q_o). При наличии облаков, даже при открытом диске солнца, не выявляется влияние годового хода козффициента прозрачности на средние величины радиационного баланса. Не обнаруживается в большинстве случаев и

87 -

88

Рис.1. ГОДОВОЙ ХОД ИНТЕНСИВНОСТИ СУММАРНОЙ СОЛНЕЧНОЙ РАДИАЦИИ И РАДИАЦИОН-НОГО БАЛАНСА ПРИ ЯСНОМ НЕБЕ И ВЫСОТЕ СОЛН-ЦА ЗО И 40°.

1 - суммарная солнечная радиация,

2 - радиационный баланс.

влияние изменений свойств облачного покрова в течение бесснехного периода. Лишь при St , NS и As происходит понижение радиационного баланса от весны к лету, обусловленное соответствующим уменьшением рассеянной радиации вследствие увеличения водности и вертикальной мощности облаков. От лета к осени радиационный баланс мало меняется. При тумане, наоборот, рассеянная радиация и радиационный баланс летом больше, что, вероятно, обусловлено меньшей вертикальной протяженностью ночных радиационных инверсий.

Все указанные выводы были получены для кащой из рассматриваемых групп станций в отдельности. Сравнение средних для каждой из групп станций величин радиационного баланса при равных высотах солнца и прочих одинаковых условиях показало их практическое совпадение. Поэтому в дальнейшем эмпирические графики обеих групп, относящиеся к одинаковым условиям, были объединены. Очевидно, различие в радиационных свойствах облаков одной и той же формы в разных районах умеренных широт СССР в бесснежный период невелико. Этот результат хорошо согласуется с выводами, полученными нами при сопоставлении отношения действительных суточных сумм солнечной радиации к возможным при различных облаках в Павловске и Свердловске [6] и подтверждается также сравнением интенсивности суммарной и рассеянной солнечной радиации в Павловске и обсерватории Блю-Хилл по данным h.H.Калитина [7] и Б.Гаурвица [12].

В табл.1 приведены средние величины радиационного баланса при различных условиях облачности и интенсивности солнечного сияния для разных высот солнца, соответствующие альбедо поверхности 16-20%. Данные этой таблицы позволяют исследовать влияние формы облаков, их количества и интенсивности сияния солнца на дневные величины радиационного баланса.

Сопоставление радиационного баланса при облачности 10 баллов разных форм и отсутствии сияния солнца (рис.2) показывает, что минимальные значения наблюдаются при Ns.^{1/}

При высотах солнца, больших 20°, радиационный баланс при Ns составляет 20% от среднего за бесснежный период баланса при безоблачном небе.

Наибольший средний радиационный баланс при облачности 10/10 получается при Sc (31% от B_o). Промежуточные и бливкие между собой вначения радиационного баланса наблюдаются при St и C6 (27 и 26% от B_o). При облаках среднего яруса – 10/0 Ac ор. и As ор. радиационный баланс больше, чем при облаках нижнего яруса, и составляет в среднем соответственно 35 и 31% от баланса при отсутствии облаков.

Обработка данных наблюдений по пиранометру показала, что по величине рассеянной радиации все указанные облака располагаются в таком же порядке. Лишь при St рассеянная радиация меньше, чем при C6. Очевидно, сближение средних величин баланса при St и C6 обусловлено большим излучением атмосферы при более низких, чем C6, и сопровождающихся температурной инверсией, St.

Как видно из рис.2, при $h_{\odot} \zeta$ 25° радиационный баланс при тумане больше, чем при сплошном облачном покрове нижнего и среднего ярусов, что частично обусловлено повышенной рассеянной радиацией при тумане (лишь при Ас рассеянная радиация больше, чем при тумане). Кроме того, как показывает сопоставление данных по балансу и рассеянной радиации, это должно быть связано и с меньшим эффективным излучением при наличии тумана. При высотах солнца, больших 30°, наблюдений при тумане мало и провести такое же сопоставление нельзя.

При появлении просветов в сплошном облачном покрове Ac, Sc, C6 и их сочетаний (отметка 10) радиационный баланс возрастает

1/ Заметное отклонение зависимости $B=\#(h_0)$ при этих облаках от линейной обусловлено тем, что на рис.2 представлены средние значения за весь бесснежный период, а при больших высотах солнца они преимущественно относятся к лету, когда радиационный баланс минимальный.

Таблица 1

Средние вначения радиационного баланса (кал/см²мин.) при различных условиях

00	tara	Cura_		ho	5	10	15	20	25	30	35	40	45	50	55	60
баллы	форма	ние	Период	при В=0	Ŭ	10	10	20		00	50			00		
1	2	3	4	5	6	7	8	9.	10	11	12	13	14	15	16	17
0/0		O ²	17	9	-0,05	0,03	0,12	0,23	0,34	0,44	0,54	0,64	0,74	.+	-	-
	· · ·		У	÷ Ş		0,01	0,09	0,19	0,30	0,39	0,48	0,57	0,67	0,74	0,80	[- [
		1	· ¥1		•	- 1 1	0,09	0,19	0,28	0,37	0,46	0,55	0,65	0,73	0,79	0,84
			y II	•	•	0,01	0,09	0,18	0,27	0,36	0,44	0,53	0,62	0,70	0,78	0,83
			УШ	8	-0,04	0,04	0,12	0,21	0,30	0,38	0,48	0,56	0,65	0,74	0,82	0,88
			- 1X	8	-0,03	0,04	0,12	0,21	0,31	0,40	0,50	0,58	0,67	0,75	0,82	-
			X	8	-0,01	0,02	0,12	0,23	0,34	-	-	-			-	-
2-3	CiuCi,Cs	0²	Средн. за бес-	-	. - • • • •	0,03	0,12	0,21	0,29	0,38	0,47	0,55	0,64	0,72	0,80	0,90
			снежный период								•					
		O .	To ze	9	-0,04	0,01	0,10	0,20	0,29	0,38	0,47	0,55	0,64	0,72	0,80	-
	Ci, Ac u Ac, Ci	0, 0 [°]	¥	10	-0,03	0,02	0,11	0,20	0,29	0,38	0,47	0,55	0,64	0,73	0,81	-
	Acusc	O ²	11.	8	•	0,03	0,11	0,20	0,29	0,38	0,48	0,57	0,66	0,75	n en 1	-
		0	•	9		0,01	0,10	0,20	0,29	0,39	0,48	0,56	-	-		-
a de la composición de la comp	Cu	O°	- 2. ₩		-	-	0,11	0,21	0,31	0,40	0,49	0,59	0,68	0,76	0,82	-
		0	W	.9	-0,04	0,01	0,11	0,20	0,30	0,39	0,48	0,58	0,67	0,74	0,82	0,87
4-5	Ci u Ci , Cs	(O²)	N		-	-	-	0,22	0,32	0,40	0,48	0,56	0,64	0,72	0,80	-
		0		9	-0,08	-0,01	0,09	0,18	0,28	0,37	0,46	0,55	0,63	0,68	0,70	-
	CinAcu Ac,Ci	0, 0²	H	8	-	0,03	0,12	0,21	0,30	0,39	0,48	0,57	0,66	0,75	-	-
	Cu; Ac u Sc	ື	17	9	+	0,02	0,12	0,24	0,34	0,44	0,55	0,65	0,74	0,82	0,88	0,92

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
4-5	Ac u Se	Ο	Средн.	7	-0,02	0,03	0,12	0,21	0,30	0,39	0,48	0,57	-	-	-	-
	Cu	O	88.0ес-	7.	-0,03	0,05	0,15	0,24	0,33	0,42	0,52	0,61	0,71	0,80	0,88	-
		(ວໍ)	период	-	· -	-	-	0,05	0,07	0,09	0,11	0,13	0,14	0,16	0,18	0,20
		(п)		-	-	0,00	0,01	0,03	0,05	0,07	0,08	0,10	0,11	0,13	0,14	-
8-7	Ci u Ci,Cs	6	TO RE	10	-0.04		0 08	0 12	0.90	0 97	0 47	0 56	0 69	0 60	0.74	
	CL. AC U			10	-0,01	0,00	0,00	0,11	0,20	0 40	0.50	0,50	0,00	0,05	0,74	
	Ac, CL	9,0				0,02	0 10	0.92	0,30	0 10	0,00	0.55	0,00	0,70		
	Heuse				<u> </u>	·	0,10	0,22	0.94	0,40	0,40	0,00	0,02	-	0.02	
	Cu .	0	. 11				0 15	0.95	0.95	0,46	0,56	0,00	0,70	0,00	0,92	0.02
		(0)					0.06	0,09	0,12	0 14	0,17	0.20	0,70	0,02	0,00	0,92
· ·		П	· w		_	_	0.03	0.06	0.08	0.11	0.13	0.16	0.18	0.20	0.22	-
8_0	Ciu Ci,Cs	(o^2)	н	· -	_	0.08	0.14	0.21	0.80	0.39	0.50	0.60	0.70	0 80		
		ι ο΄	".	10	-0.05	0.00	0.08	0.18	0.28	0.37	0.47	0.56	0.64	0,70	0 74	
	Ci. Ac u	0.02	11	7	-0.05	0.05	0,13	0.22	0.30	0.39	0.50	0.57	0.66	0 72	0.77	-
· · · ·	Ac Ci	00		10	-0.04	0.00	0.05	0.10	0.15	0.20	0.24	0.27	0.31	0.33	-	_
		п	· · n-	9	-0.02	0.00	0.04	0.08	0.13	0.18	0.23	0.27	0.31	0.33	_	_
	Sc	(0)	"	5	0.00	0.03	0.10	0.17	0.26	0.38	0.49	0.59	0.70	0.80	· _	
1	Cuu	0	"	-	-	0,06	0,15	0,25	0,34	0,44	0,54	0.63	0.73	0.81	0.88	-
•	Cu, C8	(o°)	ń	7	-0,01	0,02	0,05	0,09	0,12	0,16	0,19	0,23	0,26	0.30	0.33	
	· .	Ln_	11	-	-	0,01	0,03	0,06	0,08	0,11	0,13	0,16	0,18	0,20	0,22	-
10 - 10	Ci u Ci,Çs	0	n	8	-0,04	0,02	0,10	0,19	0,27	0,36	0,44	0,52	0,61	0,68	0,74	-
	Cs u Cs,Ci	(0)	11	6	-0,01	0,03	0,09	0,17	0,26	0,34	0,42	0,49	0,56	0,62	0,65	-
	Ac, Ci u	0	m	- 8	-0,02	0,02	0,09	0,17	0,25	0,33	0,41	0,49	0,57	0,65	-	-
10	Ci, Sc	0	"	10	· · •	0,00	0,04	0,10	0,15	0,20	0,25	0 ,2 9	0,33	0,37	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
10			ср.за оесснеж ный период	10	-0,03	0,00	0,04	0,07	0,11	0,15	0,18	0,22	0,25	0,29	0,33	-
	Sc; Sc, Ac u Ac, Sc	П	тоже	5	0,00	0,03	0,07	0,10	0,14	0,17	0 ,21	0,25	0 ,2 8	-	-	-
	CB c Cu	(ວໍ)	n	6	-0,01	0,02	0,06	0,11	0,15	0,20	0,24	0,28	0,33	0,37	-	-
	unu Sc	п	Ħ	8	_	0,02	0,05	0,08	0,10	0,13	0,16	0,19	0,21	0,24	0,26	
10	Ac=Sc	(o°)	11	-	-		14 I	0,11	0,18	0,24	0,30	0,36	0,42	0,48	-	-
	Ac;Ae,Scu Sc,Ae		11	7	0,00	0,01	0,04	0,07	0,10	0,14	0,17	0,20	0,23	0,26	-	-
	Sc	Π	9 9	5	0,00	0,02	0,04	0,07	0,10	0,13	0,15	0,17	0,20	0,22	0,25	0,28
	Св (не преобл)		50	-	0,01	0,02	0,04	0,06	0,09	0,11	0,13	0,15	0,18	0,20	0,23	-
	Св (преабл.)	Π	11	6	-	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,16	0,18	0,20	
	Яs	(□)	1У-У У1-УШ	-	-	0,01 0,02	0,04 0.04	0,07	0,10	0,13 0.11	0,16 0.13	0,20 0.16	0,23 -	0,26	-	-
		Π	У1-УШ 1X-Х	-	-	0,03	0,07	0,10	0,14	-	1				- 1- 1	-
	St.	Π	1 <i>У</i> -У	-	-	0,02	0,04	0,07	0,10	0,12	0,15	0,17	0,18	-	-	-
		· .	У1-УШ 1Х-Х	* -	0,01	0,03 0,02	0,05 0,04	0,07	0,08	0,10 0,10	0,12 0,11	0,13	0,15 -	0,16 -	1	-
	NS	Π	1¥-y ¥1-x		0,01 0,02	0,02 0,02	0,04 0,04	0,06 0,05	0,08 0,07	0,09 0,08	0,11 0,09	0,12 0,10	0,13 0,11	0,14 0,12	- 0,13	_ 0,13

Рис.2. ЗАВИСИНОСТЬ РАДИАЦИОННОГО БАЛАНСА ОТ ВЫСОТЫ СОЛНЦА ПРИ ОБЛАЧНОСТИ 10 БАЛЛОВ РАЗНЫХ ФОРМ. 1 - ясно, 2 - Ас, 3 - Sc, 4 - туман, 5 - С8,

6 - Ns .

за счет увеличения рассеянной солнечной радиации.

При облачности 10 баллов любых форм радиационный баланс меньше, чем при безоблачном небе, но при таких тонких облаках, как Сі и С*s*, при которых наблюдается умеренное сияние солнца, он достигает в среднем 91 и 85% от наблюдающегося при безоблачном небе. При слабом сиянии солнца радиационный баланс гораздо меньще (при C6 – 50% и при Ac - 59% от B_{c}).

Вследствие малого числа измерений балансомером графики B= $f(h_0)$ при отметках \mathfrak{O} и П и облачности, меньшей 10 баллов, удалось получить лишь для Cu. Но на основании результатов обработки более длительных рядов наблюдений суммарной (\mathfrak{O}) и рассеянной (\mathfrak{n}) радиации можно предполагать, что, как и при облачности 10 баллов, в случае основной роли рассеянной радиации максимальный баланс будет при Ac и Sc. При преобладании прямой солнечной радиации

- 93

наибольшая суммарная радиация и радиационный баланс наблюдаются при Си ; наиболее отчетливо вто проявляется при умеренном сиянии солнца (рис.3). Сравнение соответствующих средних вначе-

4 -Си мСв; 5 - Sc, СвиСи, Св; 6 - Св; Св, Sc и Св, Си

ний суммарной и рассеянной радиации показало, что в данном случае при Си прямая радиация больше, чем при Ас, Sc и Ci. Это, очевидно, связано с тем, что Си являются наиболее плотными облаками и отметка об умеренном сиянии солнца ставится тогда, когда край облака лишь коснется диска солнца.

Наименьшие значения суммарной солнечной радиации и радиационного баланса при отметках о сильном и умеренном сиянии солнца наблюдаются при облаках верхнего яруса, что обусловлено минимальной рассеянной и атмосферной радиацией при этих облаках.

Сопоставление средних значений радиационного баланса при неизменных количестве и форме облаков, но при различной интенсивности солнечного сияния показывает, что при умеренном сиянии солнца в среднем радиационный баланс лишь немного меньше, чем при открытом диске солнца. Это же подтверждается и для суммарной солнечной радиации и объясняется тем, что параллельно с уменьшением интенсивности прямой солнечной радиации при прохождении ее сквозь облако возрастает рассеянная радиация в околосолнечной области в связи с различием в индикатрисе рассеяния на молекулах воздуха и каплях или кристаллах.

Наименьшее снижение суммарной радиации и радиационного баланса при переходе от сильного к умеренному сиянию солнца по указанным ранее причинам происходит при кучевых облаках - на 2-3%, тогда как при остальных облаках на 10-13%.

Особенно сильно уменьшаются суммарная солнечная радиация и радиационный баланс при переходе от умеренного к слабому солнечному сиянию. Последующее снижение их при полном исчезновении прямой солнечной радиации значительно меньше (рис.3).

Исследуя с помощью полученных эмпирических данных зависимость радиационного баланса от количества облаков при неизменных прочих условиях можно придти к выводу, что наиболее отчетливо оня выражена при слабом сиянии солнца и его отсутствии, т.е. тогда, когда основную роль в приходе солнечной радиации играет рассеянная радиация (рис.3). Возрастание радиационного баланса с увеличением количества облаков идет в основном в соответствии с результатами, полученными для суммарной (при ⊙°) и рассеянной (при П) радиации. Некоторое различие в изменениях радиационного баланса и рассеянной радиации наблюдается при переходе от облачности 8-9 баллов к 10; рассеянная радиация при Сц. СВ уже немного уменьшается, а радиационный баланс еще продолжает возрастать (рис.3), что обусловлено увеличением излучения атмосферы. При менее мощных облаках - Нс и Sc - возрастание рассеянной радиации происходит непрерывно до облачности 10 и, очевидно, то же должно происходить с радиационным балансом.

При преобладании прямой солнечной радиации (отметки ©² и O) возрастание радиационного баланса с увеличением количества облаков отчетливо выражено лишь при Си (рис.3).

Изменения радиационного баланса в связи с изменением количества волнистых облаков и облаков верхнего яруса менее отчетливы,чем для суммарной радиации.

Из табл.2 и рис.З можно видеть, что при облачности, меньшей 10 баллов, радиационный баланс может быть больше, чем при безоблачном небе. При открытом диске солнца это наблюдается при всех облачных формах за счет большей, чем при безоблачном небе, рассеянной и атмосферной радиации, а при умеренном его сиянии - лишь при конвективных облаках, когда, как уже указывалось прямая солнечная радиация мало снижается. Так, при облачности 6-7 и 8-9 баллов Си (Сб) радиационный баланс в среднем на 13% больше, чем при безоблачном небе.

Полученные результаты показывают, что изменения дневных величин радиационного баланса в бесснежный период определяются в основном изменениями в приходе солнечной радиации.

Сопоставляя роль различных факторов, можно придти к выводу, что лишь при преобладании рассеянной радиации необходимо учитывать форму и количество облаков. При основной роли прямой солнечной радиации (отметки O^2 и O) недоучет этих факторов вносит уже малую относительную погрешность в определение радиационного баланса. Основную роль наряду с высотой солнца играет наличие прямой солнечной радиации.

Интересно было сопоставить полученные нами средние величины радиационного баланса естественной поверхности с данными других авторов. С этой целью в табл.З приведены средние величины радиационного баланса поверхности тундры (альбедо 13-17%) при безоблачном небе и облачности 10/10 (без указания формы облаков) из статьи Л.Ф.Овчинникова [8]. К сожалению, в литературе нет других данных по зависимости радиационного баланса от высоты солнца при различных условиях. В эту же таблицу внесены результаты настоящей работы: радиационный баланс при безоблачном небе за апрель и при нижней облачности, средний за бесснежный период, для Stu Sc, поскольку в Арктике эти облака являются преобладающими.

Таблица 2

Радиационный баланс (в кал/см²мин.) при различных высотах солнца на о.Котельном [1] и в умеренных широтах СССР [2]

Облачность	h⊚ район	5 ⁰	10 ⁰	15 ⁰	20 ⁰	25 ⁰	30 ⁰	35 ⁰
0/0 10/10 (?) 10/10 St 10/10 Sc	1 2 1 2 2	-0,04 -0,05 0,0 0,01 0,0	0,05 0,03 0,02 0,02 0,02	0,15 0,12 0,07 0,04 0,04	0,26 0,23 0,11 0,07 0,07	0,36 0,34 0,16 0,09 0,10	0,47 0,44 0,21 0,11 0,13	0,57 0,54 0,26 0,13 0,15

Можно видеть, что, несмотря на различное влагосодержание атмосферы, температуру и температурную стратификацию нижних слоев атмосферы, радиационный баланс естественной поверхности при безоблачном небе в Арктике сравнительно мало отличается от наблюдаемого в умеренных широтах. Аналогичный результат был получен и при сравнении суммарной радиации при безоблачном небе [5]. Наоборот, при облаках нижнего яруса радиационный баланс в высоких широтах гораздо выше, чем в умеренных, что обусловлено в первую очередь большей рассеянной радиацией при менее плотном, чем в умеренных широтах, облачном покрове в Арктике [5].

Совиадение средних величин радиационного баланса, полученных для запада и северо-запада Европейской территории Союза и для Сибири, позволяет предполагать, что эти значения радиационного баланса могут быть использованы и для других районов СССР. Повидимому, наибольшая погрешность при этом будет допущена для юга и особенно юго-востока СССР, где почва сухая, вертикальная мощность облаков меньше, а альбедо выше, чем в рассмотренных нами районах.

Питература

1.	Ба	p a	9. 14	K	0	в	a	Е.П.	Длинноволновый баланс подстилающей поверхности по наблюдениям в Карада-
									re. Труды ГГО, вып.100, 1960.
2.	Ба	ра	9 U	K	0	B	a	Е.П.	Длинноволновый баланс в некоторых
									сунктах СССР. Труды ГГО, вып.109,
									1961.
3.	Бр	8. (È A	8	в	c	ĸ	ий Л	А.П. и Викулина З.А. Нормы
						`			испарения с поверхности водохранилищ.
									Гидрометеоивдат, 1954.
4.	Бу	дн	I K	0	D	И.И	l.,	Беј	лянд Т.Г. и Зубенок ЛИ.
									методика климатологических расчетов
						÷.,			составляющих теплового баланса. Труды
									ГГО, вып.48, 1954.
5.	Га	Л	ьп	е	р	M	Ħ	Б.М.	О суммарной и рассеянной радиации в
					·				Арктике. Труды ААНИИ, т.229, 1961.
6.	Га	л	ьп	e	р	И	Ħ	Б.М.	Суточный приход суммарной солнечной
									радиации при различных облаках. Труды
									ГГО, вып.125, 1962.
7.	Ка	л	T I	М	H	Н	[.E	Ι.	Суммарная радиация в Павловске.Труды
									ГГО, вып.19, 1949.
8.	0 в	म् ।	I H	Ħ	И	к	0	в Л.Ф	Радиационный баланс Новосибирских
									островов. Труды ААНИИ, т.229, 1961.
9.	Пи	в	о в	8	р	0	в	a 3.1	I. Радиационный баланс деятельной по-
									верхности и методика его обработки.
	•								Труды ГГО, вып.61, 1956.
10.	пи	в	о в	8	p.	0	в	a . 3.1	1. Основные характеристики радиацион-
					-				ного режима Европейской территории
									СССР. Труды ГГС, вып.115, 1960.
11.	Ca	м	n n	л	e	Ħ	к	o B.(. Формирование температурного режима
									морей. Гидромечеоиздат, М., 1959.
12.	Hau	rwit	z e	3.					Insolation in relation to cloud type.
									Journal of Meteorology, vol.5,N 3, 1948.

- 97 -

М. А. ГЕРМАН

К ВОПРОСУ ВЫЧИСЛЕНИЯ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК В ОБЛАКАХ ПО ДАННЫМ АКСЕЛЕРОГРАФИЧЕСКИХ ЗАПИСЕЙ С ПОМОЩЬЮ ВЫЧИСЛИТЕЛЬНОЙ МАШИНЫ "УРАЛ"

Изучению энергетического спектра турбулентности свободной атмосферы посвящен ряд работ [1,3,9,10,12 и 13].

В настоящей работе рассматривается методика расчета структурных и энергетических характеристик турбулентности в облаках по материалам акселерографических записей болтанки самолета с помощью универсальной автоматической цифровой машины "Урал".

Известно, что определение спектральной плотности $S(\omega)$ может быть выполнено несколькими методами. Наиболее распространенными из них являются те, которые дают возможность вычислить величину $S(\omega)$ путем несложных расчетов непосредственно по экспериментальным данным.

Так, например, при исследовании характеристик систем автоматического регулирования часто используют метод, который заключается в определении коэффициентов α_{κ} и β_{κ} ряда Фурье исследуемой функции и вычислении значений по формуле

$$S(\omega_{\kappa}) \approx \frac{1}{2T} \left(a_{\kappa}^{2} + b_{\kappa}^{2} \right), \qquad (1)$$

где Т - некоторый конечный промежуток времени.

Точность полученной величины в этом случае в определенной степени зависит от интервала времени Т, для которого вычисляется спектральная плотность. Определить же заранее оптимальный интервал времени для подобных расчетов не всегда удается.

Для определения энергетического спектра турбулентности наиболее удобным является метод, основанный на предварительном определении вида корреляционной зависимости рассматриваемой функции и получении *S*(ω) с помощью преобразования Фурье:

$$\bar{s}(\omega) = \frac{1}{2\pi} \int_{0}^{\infty} \rho(\tau) \cos \omega \tau d\tau,$$

где $\vec{S}(\omega) = \vec{R}(\omega)$ нормированная спектральная плотность, $\rho(t) = \hat{R}(\omega)$ нормированная или автокорреляционная функция, R(T) - вначение корреляционной функции для временного интервала T, R(o) - вначение корреляционной функции для нулевого промежутка времени.

При исследовании турбулентности в свободной атмосфере с помощью самолета самолет можно рассматривать как динамическую систему. Входными сигналами этой системы являются вертикальные порывы ветра, а выходными – вертикальные колебания самолета. В этом случае спектральная плотность турбулентности с учетом выражения (2) может быть записана в виде следующего соотношения:

$$S_{w}(\omega) = \frac{\overline{S}_{n}(\omega) \Re(0)}{|\mathcal{F}(i \omega)|^{2}}, \qquad (3)$$

(2)

где $S_n(\omega)$ - нормированная спектральная плотность перегрузок самолета, $|\mathcal{F}(\omega)|^2$ - передаточная функция для самолета.

Не останавливаясь на способах определения передаточной функции для самолета, которые достаточно полно изложены в работе [4], рассмотрим подробно методику определения параметров турбулентности по данным акселерографических записей.

Спектральную плотность перегрузки будем искать через корреляционную функцию. Этот метод по сравнению с методом, основанным на определении коэффициентов разложения заданной экспериментальной кривой в ряд Фурье, имеет некоторые преимущества. В частности, зная вид корреляционной функции, можно правильно выбрать длительность интервала времени Т, достаточную для получения требуемой точности, в то время как не зная этой функции, величину Т необходимо брать с большим запасом.

Аналиэ большого числа корреляционных функций турбулентности, полученных по данным акселерографических записей болтанки самолета, показывает, что при С > 10 сек.корреляционная функция удовлетворяет неравенству

$$\frac{\Re(\tau)}{\Re(0)} \leq 0,05$$

Это овначает, что функцир В (т) вполне достаточно вычислять для значений Т 20-25 сек., тогда, согласно работе [8], интервал Т можно выбрать равным 100-125 сек.

Исходя из этих соображений, в работе использованы интервалы времени 120-180 сек.

Рассмотрим связь между указанными функциями, которая может быть получена из преобразования выражения структурной функции для стационарного процесса:

 $\mathcal{D}_{q}(\tau) = \left[f(t+\tau) - f(\tau)\right]^{2} = \left[f(t+\tau)\right]^{2} + \left[f(t)\right]^{2} - 2f(t+\tau)f(t). \quad (5)$

Для случея стационарности функции f(t) можно зацисать $\left[f(t)\right]^2 = \left[f(t+T)\right]^2 = \Re f(0)$.

Тогда окончательно

$$\mathcal{D}_{\varphi}(\tau) = 2 \left[\mathcal{R}_{\varphi}(0) - \mathcal{R}_{\varphi}(\tau) \right],$$

с учетом соотношения $\int_{t}^{t} (\tau) \simeq \frac{R(\tau)}{R(o)}$ нормированная корреляционная функция может быть представлена в виде выражения

$$\int f(\tau) = \frac{2 R_{e}(0) - D_{e}(\tau)}{2 R_{e}(0)} \cdot$$
 (7)

Переходя непосредственно к ординатам, снятым с акселерограммы, формулу нормированной корреляциенной функции можно записать в следующем виде:

$$P(\tau) = \frac{2\left[\frac{1}{n}\sum_{i=1}^{n}h_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}h_{i}\right)^{2}\right] - \frac{1}{m}\sum_{i=1}^{m}\left[h(t_{i}+\tau) - h(t_{i})\right]^{2}}{2\left[\frac{1}{n}\sum_{i=1}^{n}h_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}h_{i}\right)^{2}\right]}, (8)$$

где h; - значение ординаты, снятой с акселерограммы, в мм; n и m - количество реализаций рассматриваемой величины.

Нетрудно видеть, что при необходимости, испольвуя отдельные элементы формулы (8), можно получить не только автокорреляционную функцию, но также среднее значение вертикальной пульсации скорости ветра, структурную и корреляционную функции.

С учетом этого формула (8) была запрограммирована для производства расчетов на универсальной автоматической цифровой машине "Урал-1". Исходными данными для этих расчетов явились материалы самолетных зондирований в облаках различных форм, [2].

Для произведства расчетов отобраны акселерографические записи с временным интервалом 120 сек.и более. Распределение случаев по формам облаков представлено в табл.1.

Таблица 1

(6)

Количество акселерографических записей с болтанкой самолетов в различных облаках

Верхний	ярус	Средни	ий ярус	Нияний ярус			Облака верти-	Нижняя Страто-	Общее число
Ci	Cs	As	Ac	Ns	St	Sc	го раз- вития Сц-Св	сфера	eB
22	36	21	30	24	67	61	28	16	305

В работе было построено и проанализировано 305 кривых автокорреляционных и структурных функций. Анализ такого большого числа кривых потребовался для решения вопроса их типизации и сведения в родственные по конфигурации группы. В результате исследования оказалось возможным всю совокупность кривых разделить на три группы. Типовые кривые этих групп представлены на рис. 1.

Рис.1. ЭКСПЕРИМЕНТАЛЬНЫЕ КРИВЫЕ АВТОКОРРЕЛЯЦИОННЫХ ФУНКЦИЙ ВЕРТИКАЛЬНОЙ ПУЛЬСАЦИИ СКОРОСТИ ВОЗДУШНОГО ПОТОКА В ОБЛАКАХ. 1 - тип монотонно убывающей функции, не пересекающей ось абсцисс; П - тип функции, резко убывающей при малых значениях временного интервала; Ш - тип убывающей функции с нескользими промежуточными максимумами.

Принятая типизация корреляционных функций удобна для дальнейшего подбора аналитических выражений, с помощью которых можно будет произвести аппроксимацию, необходимую для интегрирования выражения спектральной плотности.

Рассмотрим некоторые выражения, которые оптипально аппроксимируют корреляционные функции вертикальных пульсаций скорости ветра.

Наиболее простым способом представления экспериментальной кривой функции $\rho(\tau)^{V}$ является аппроксимация несколькими экспонентами

$$\rho(\tau) = \Re(0) \left[\Re e^{-\alpha \tau} \Re e^{-\beta \tau} \Re e^{-\beta \tau} \right], \qquad (9)$$

^{1/} В этом и в других случаях аппроксимируется нормированная корреляционная функция, что вызвано возможностью дальнейшего сопоставления данных о распределении энергии по спектру при различной интенсивности турбулентности в облаках.

- 101 -

где Я; , «С , β и 7 - козффициенты, зависящие от вида кривой, рассчитанной непосредственно по данным вертикальных пульсаций скорости ветра, определяются методом наименьших квадратов.

На рис.2 дано аналитическое представление средней кривой автокорреляционной функции для случая полета в высококучевом облаке на высоте 3000 м. Значения коэффициентов для рассчитанной кривой приведены в табл.2.

Рис.2. КРИВАЯ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ ВЕРТИКАЛЬНОЙ ПУЛЬСАЦИИ СКОРОСТИ ВЕТРА В ВЫСОКО-КУЧЕВОМ ОБЛАКЕ.

1 - аналитическое представление, 2 - расчетн непосредственно по акселерографическим записям.

Таблица 2

Значения козффициентов аппроксимированной автокорреляционной функции

A,	Az	A3	ď	β	T
0,415	0,865	0,975	0,523	0,633	1,150

103

Аналитическая кривая (рис.2) достаточно хорошо стилизует данные, полученные по непосредственным расчетам, однако несколык о экспонент, употребленных при расчете, могут быть заменены одной при условии дробного показателя степени.

Подставляя соотношение (9) в выраление для спектральной плотности (2) и учитывая переход к пространственной частоте, получим следующую формулу:

$$\overline{S}_{n}(\Omega) = \frac{V R(0)}{\pi B^{2}} \iint (A_{1} e^{-d\tau} + A_{2} e^{-\beta\tau} - A_{3} e^{-\sigma\tau}) \cos \omega \tau d\tau, (10)$$

яля после ваятия квадратур можно записать

$$\overline{S}_{n}(\Omega_{j}) = C_{1}\left[\int_{1}\frac{\sigma}{\sigma^{2}+\omega_{j}^{2}} + \int_{2}\frac{\beta}{\beta^{2}+\omega_{j}^{2}} - \int_{3}\frac{\sigma}{\sigma^{2}+\omega_{j}^{2}}\right], \quad (11)$$

где $C_1 = \frac{V h(0)}{J f g^2}$, V - воздушная скорость полета самолета, 8 - тангенс угла наклона тарировочной кривой датчика перегрувок.

Однако ваметим, что рассмотренный тип автокорреляционной функции встречается относительно реже, чем другие кривые, представленные на рис.1. В этом отношении более общим случаем является стилизация автокорреляционных функций аналитическим выражением

$$\rho(\tau) = e^{-\mu\tau} \cos \vartheta \tau, \qquad (12)$$

которая отличается от только что рассмотренной функции наличием множителя соъ $v \tau$, придающего $f(\tau)$ вид затухающего гармонического колебания.

Для определения коэффициентов M и \mathcal{V} можно потребовать, чтоон аппроксимирующая функция имела он первый нуль в той же точке, что и $\rho(\tau)$, а в точке τ_i имела он ту же ординату, что и $\rho(\tau_i)$. Выполнение этих условий обеспечивает достаточно легкое определение μ и \mathcal{V} с помощью выражений

$$v = \frac{\pi}{2\tau_2}$$
, $\mu = \ln \frac{\cos v\tau_i}{P(\tau_i)}$.

Значения козффициентов для этого случая M = 0,500; V = 0,392.В табя.З приведены значения автокорреляционной функции в сло-

истом облаке (Арктика) на высоте 270 м, рассчитанные по формулам

(8) и (12).

Подставляя соотношение (12) в формулу (2) и интегрируя, получим расчетную формулу спектральной плотности

$$\overline{S}_{n}(\Omega_{j}) = \frac{C_{i} \mu (\mu^{2} + \vartheta^{2} + \omega_{j}^{2})}{\left[\mu^{2} + (\vartheta + \omega_{j})^{2}\right] \left[\mu^{2} + (\vartheta - \omega_{j})^{2}\right]} \cdot (18)$$

Формулы (10) и (13) являются достаточно простыми, поэтому их удобно использовать в тех случаях, когда необходимо быстро выполнить расчеты энергетического спектра турбулентности. Заметим,что форма кривых спектральной плотности, в особенности при низких частотах окавывается в определенной степени зависящей от вида аналитического выражения и интервала, на котором производится аппроксимирование.

Эти соображения указывают на целесообразность представления кривой автокорреляционной функции каким-либо аналитическим выражением на элементарных (минимальных) участках.

В случае автокорреляционных функций, полученных по акселерографическим записям болтанки самолетов, элементарный участок впол-

Таблица З

	1				1.00			
T cek.	По формуле (8)	По формуле (12)	T cer.	По формуле (8)	По формул (12)	T e cer.	По формуле (8)	По формуле (12)
0,5	0,759	0,762	6,0	-0,100	-0,045	17,5	0,046	-0,002
1,0	0,517	0,561	7,0	-0,008	-0,038	20,0	-0,046	-0,004
1,5	0,334	0,392	8,0	0,018	-0,026	22,5	-0,100	-0,004
2,0	0,248	0,260	9,0	0,118	-0,015	25,0	0,186	-0,002
2,5	0,171	0,160	10,0	0,186	0,007	27,5	0,105	0,001
3,0	0,107	0,086	11,0	0,161	0,012	30,0	0,046	0,002
3,5	0,046	0,034	12,0	0,214	0,024	32,5	0,046	0,001
4,0	0,001	0,004	13,0	0,259	0,012	35,0	-0,046	0,001
4,5	-0,046	-0,020	14,0	0,279	0,008	37,5	-0,001	0,000
5,0	-0,047	-0,035	15,0	0,174	0,002	40,0	0,001	0,000
		1 .	ľ ·		•	1 ⁻		

Значения автокорреляционных функций вертикальных пульсаций скорости в слоистом облаке

104 -

105 -

He MOXET ONTE OUDERENCH $\Delta T = 0.5$ cer.

Действительно, если обратиться к рис.1, то видно, что на участках, соответствующих этому интервалу времени, кривая автокорреляционной функции с достаточной точностью может быть представлена прямой линией или параболической дугой.

Остановимся на методах, которые повволяют произвести численное интегрирование выражения (2).

Аппроксимация экспериментальной кривой функции $\rho(\tau)$ на элементарных участках может быть произведена уравнением прямой линии

$$\rho(\tau) = \rho(\tau_{i-1}) + K_{i}(\tau - \tau_{i-1}), \qquad (14)$$

$$K_{i} = \frac{\rho(\tau_{i}) - \rho(\tau_{i-1})}{\tau_{i-1}}.$$

где

 $T_i - T_{i-1}$ Представляя выражение (2) в виде суммы интегралов на влементарных участках функции $\rho(T)$ в пределах от T_{i-1} до T_i , где $\Delta T = 0.5$ сек, получим

$$\overline{S}_{n}(\Omega) = C_{i} \sum_{i=1}^{n} \int_{\tau_{i-1}}^{\tau_{i}} \left[\rho(\tau_{i-1}) + \kappa_{i}(\tau - \tau_{i-1}) \right] \cos \omega \tau d\tau.$$
(15)

Проинтегрировав выражение (15), получаем формулу

$$\overline{S}_{n}(\Omega_{j}) = \frac{C_{i}}{\omega_{j}} \left[\rho(T_{n}) \sin \omega_{j} T_{n} + \sum_{i=1}^{n} \frac{P(T_{i}) - P(T_{i-1})}{\omega_{j}(T_{i} - T_{i-1})} (\cos \omega_{i} T_{-1} \cos \omega_{j} T_{i-1}) \right].$$
(16)

Для большей точности автокорреляционную функцию на элементарных участках иногда представляют в виде параболической дуги

$$\rho(\tau) = \mathcal{J} + \mathcal{B}(\tau - \tau_{\rho}) + c(\tau - \tau_{\rho})^{2}, \qquad (17)$$

где р - целое число. Выполняя интегрирование по частям, после несложных преобразований можно получить формулу, удобную для производства расчетов:

$$\overline{S}_{n}(\mathcal{R}_{j})=c_{i}\int_{p}^{p}(\tau)\cos\omega_{j}\tau d\tau=c_{i}h\left\{a'\left[P(\boldsymbol{\theta})\sin\omega_{j}\boldsymbol{\theta}-\right.\right.\right.\right.$$

$$\left.\left.\left.\left.\right.\right.\right.\right]_{p}(a)\sin\omega_{j}a_{j}+\beta'c_{2p}+\sigma'c_{2p-1}\right\}_{p}$$

$$(18)$$

rge h=
$$\frac{B-\alpha}{2n}$$
 интервал интегрирования,
 $d' = \frac{\omega_j^2 h^2 + \omega_j h \sin \omega_j h \cos \omega_j h - 2 \sin^2 \omega_j h}{\omega_j^3 h^3}$
 $\beta' = \frac{2 [\omega_j h (1 + \cos^2 \omega_j h) - 2 \sin \omega_j h \cos \omega_j h]}{\omega_j^3 h^3}$
(19)
 $\sigma' = \frac{4 [\sin \omega_j h - \omega_j h \cos \omega_j h]}{\omega_j^3 h^3}$

 C_{2P} - сумма всех четных ординат кривой у=P(T)соз ω T, находящихся между О и В, за исключением половины первой и последней ординат; C_{2P-1} - сумма всех нечетных ординат.

Эти формулы были впервые предложены Филоном [11] и приводят по существу к методу Симпсона.

<u>Метод М.В.Николаевой</u>. Идея метода заключается в том, что при помощи интерполяционных полиномов аппроксимируется часть подынтегральной функции, в частности $\rho(\tau)$, как это было сделано в первом и во втором случаях.

М.В.Николаева рассматривает интеграл

$$S = \int f(z) \varphi(dz) dz, \qquad (20)$$

допуская, что функция f(z) может сыть достаточно точно анпрожсимирована на промежутке (0,1) полиномом n-й степени $P^{(n)}(z)$, совпадающим cf(z) в n+1 равностоящих увлах интерполяции (0, $\frac{1}{n}$, $\frac{2}{n}$,..., $\frac{1}{n}$, ..., 1), можно записать, что

$$f(z)\varphi(az)dz\approx\int p^{(n)}(z)\varphi(az)dz, \qquad (21)$$

при этом погрешность в основном определяется порядком точности аппроксимации функции f(z) полиномом $P^{(n)}(z)$.

Значение этого интеграла можно выразить через ординаты У: в узлах интерполяции, т.е. представить этот интеграл в виде

$$\int \rho^{(n)}(z) \varphi(a, z) dz = A_0 y_0 + A_1 y_1 + \dots + A_n y_n .$$
(22)

Коэффициенты Я; не зависят от значений У, , Ф., значит и от вида полинома Р⁽¹⁾(2). Они должны быть определены так, чтобы формула (20) была справедлива для любого полинома Р(2) степени меньшей или равной VI. Для этого достаточно, чтобы она была справедлива для полиномов P(2) = 1; 2;...; 2.

Обозначая через

$$V^{(L)} = \int z^{L} \varphi(\alpha z) dz$$

(23)

можно увидеть, что при P(z) = 1 все $Q_{j} = 1$ и

$$N^{(0)} = \mathcal{A}_{1} + \mathcal{A}_{2} + \dots + \mathcal{A}_{j} + \dots + \mathcal{A}_{n}$$
(24)

При $P(z) = 2^{L}$ имеем $Y_{c} = 0$ и все остальные $Y_{j} = \frac{1}{n^{L}}$ Поэтому

$$N^{(L)} = \frac{1}{n^{(L)}} \mathcal{J}_{1} + \frac{2^{L}}{n^{(L)}} \mathcal{J}_{2} + \dots + \frac{3^{L}}{n^{(L)}} \mathcal{J}_{3} + \dots + \mathcal{J}_{n} \cdot (25)$$

Решая систему уравнений, Николаева получила для n = 0, 1 и 2 следующие значения коэффициентов:

n = 0	прямоугольник	$\mathcal{H}_{o} = \mathcal{N}^{(0)}$
n = 1	трапеция	A₀=N ⁽⁰⁾ -N ⁽¹⁾ A₁ = N ⁽¹⁾
n = 2	парабол а	$ \begin{array}{l} \mathcal{A}_{o} = \mathcal{N}^{(o)} - 3\mathcal{N}^{(i)} + 2\mathcal{N}^{(2)} \\ \mathcal{A}_{i} = 4 \left(\mathcal{N}^{(i)} - \mathcal{N}^{(2i)} \right) \end{array} $
		$A_2 = 2 N^{(2)} - N^{(1)}$

Известно, что любые пределы интегрирования (с, d)можно привести к пределам (0,1) подстановкой

x=c+(d-c)z.

$$\int_{c}^{d} f(x) \Psi(cx) \approx \int_{c}^{d} \rho^{(n)}(x) \Psi(cx) dx = (d-c) \int_{c}^{d} \rho^{(n)}[c+(d-c)z] \Psi[d, [c-(d-c)]z] dz = (d-c)(B_{o} y_{o}+B_{1} y_{1}+B_{2} y_{2}+\cdots+Bn y_{n}), \quad (26)$$

В этом случае коэффициенты В; зависят не только от с, параметров, но также и от пределов интегрирования. Они определятся также из системы уравнений, как и в первом случае, свободными членами будут интегралы

$$\mathcal{M}^{(1)} = \int_{0}^{1} z^{i} \varphi \left\{ \alpha_{1} \left[c + (d - c) \right] z \right\} dz, \qquad (27)$$

Интегралы (27) вычисляются интегрированием по частям.

Испольвуя метод М.В.Николаевой [7], представим решение интеграла (2) в форме, удобной для вычислений. С этой целью ограничимся случаем, когда n = 1, промежуток (b - a) разбит на равные части; полагая степень интерполяционных полиномов одинаковой на всех промежутках интегрирования и $\Psi(4x) = \cos \omega \tau$, b - a = mh, получим, что

$$S(Q_{j})=C_{4}\left\{\left[-\frac{1}{\omega_{j}}\sin\omega_{j}^{\alpha+\frac{2}{\omega_{j}^{2}h}}\sin\frac{\omega_{j}h}{2}\sin\omega_{j}(\alpha+\frac{h}{2})\right]\beta+\frac{4}{\omega_{j}^{2}h}\sin^{2}\left(\frac{\omega_{j}h}{2}\right)\sum_{k=1}^{m-1}\cos\omega_{j}(\alpha+\kappa h)\beta+\left[\frac{1}{\omega_{j}}\sin\omega_{j}b-\frac{2}{\omega_{j}^{2}h}\sin\omega_{j}b-\frac{2}{\omega_{j}^{2}h}\sin\omega_{j}(b-\frac{h}{2})\right]\beta-\frac{2}{\omega_{j}^{2}h}\sin\omega_{j}(b-\frac{h}{2})\right]\beta-(28)$$

Численные вначения спектральной плотности определялись для круговых частот, представленных в табл.4.

С помощью рассмотренных формул произведен расчет нормированной спектральной плотности перегрузки самолета Ил-12 в слоистом облаке. Для сопоставления результаты расчета представлены на рис.З.

Из анализа кривых (рис.3) вытекает следующее.

1. Все кривне с увеличением частоты стремятся к нулю, хотя и не достигая его. Это означает, что для возмущений малого масштаба плотность энергии не приводит к возникновению столь существенных ускорений, которые вызывали бы интенсивную болтанку самолета Ил-12. Наоборот, с уменьшением частоты (с увеличением размеров возмущений) спектральная плотность перегрузок растет, достигая максимума при волновом числе $\mathfrak{R} = 1,78^{\circ}10^{-3}$ рад/м.

Заметим, однако, что максимум энергетического спектра наблюдается не на всех кривых, в частности, он отсутствует на кривой S_n (Ω), рассчитанной по формуле (11), а по данным расчета с помощью формулы (13) он сдвинут обычно влево, в сторону высоких частот.

Этот факт, несомненно, связан со степенью точности принятой той или иной аппроксимации кривой автокорреляционной функции. Вместе с этим это указывает на нецелесообразность использования формуя (11) и (13) для относительно точных расчетов энергетического спектра турбулентности.

2. При использованном интервале аппроксимирования, равном Т = 0,5 сек., результати расчетов оказываются практически одинаковыми и не зависят от представления части подынтегральной функции выражения (2) прямой линией, дугой параболы или интерполяционным полиномом. Это обстоятельство позволяет принять для расчетов спектральной плотности вертикальных пульсаций скорости ветра выражение (17), которое является в определенной степени простым и удобным из всех рассмотренных формул для программирования расчетов на электронно-вычислительных машинах.

₩ п/п	ω <u>pan</u> cer.	₽ u/u	ω <u>рад</u> сек	F n/u	ω pan cer.	
1	0,063	7	0,780	13	3,142	
2	0,126	8	1,047	14	4,190	
3	0,157	9	1,256	15	6,284	
4	0,210	10	1,570	16	8,420	
5	0,314	11	2,100	17	9,670	
6	0,628	12	2,510			

Значения круговой частоты ($\omega \frac{\text{рад}}{\text{сек}}$)

Следует указать, что при необходимости получения более высокой точности вычислений интеграла (2) целесообразно использовать метод, предложенный М.В.Николаевой [7] дяя числа n = 2 и более. В случае расчета энергетического спектра турбулентности по данным акселерографических записей (с учетом точности получения исходных данных) расчет по формуле (17) вполне соответствует необходимой точности получения конечных результатов.

С учетом высказанных ранее соображений был выполнен расчет энергетического спектра турбулентности в основных формах облаков.

Таблица 4

Рис.3. ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ПЕРЕГРУЗОК САМОЛЕТА ИЛ-12. 1 - по формуле (11), 2 - по формуле (13), 3 - по формулам (16), (18), (28).

Все вычисления производились на электронно-вычислительной мавине "Урал-П".

На рис.4 приводится пучок кривых энергетического спектра вертикальных пульсаций скорости ветра в перисто-слоистом облаке ¹⁷. Если осреднить эначения кривой автокорреляционной функции, которая входит в выражение (2), то средняя спектральная плотность вертикальных пульсаций скорости ветра примет вид кривой, которая также представлена на рис.4.

1/ В атом случае при расчете энергетического спектра турбулентности значение козффициента С₁ принималось равным

$$C_{1} = \frac{2 v R(0) |F(iw)|^{2}}{R^{2}}$$

109 -

Таким образом, полученная средняя кривая энергетического спектра турбулентности дает возможность судить о распределении плотности энергии в перисто-слоистом облаке в зависимости от волнового числа. Однако надежными данными следует считать величины спектральной плотности в пределах волновых чисел от $\Omega = 2,7\cdot 10^{-3}$ до $\Omega = 2,7\cdot 10^{-2}$ рад/м.

Это обстоятельство связано прежде всего с тем, что при малых частотах, как показал A.C.Дубов [5], определение спектральной плотности турбулентности по перегрузкам самолета оказывается недостаточно надежным. В этом участке спектра более эффективным оказывается привлечение в качестве исходных данных для расчета записи колебания угла тангажа. В рассматриваемом случае нижний предел частоты примерно равен $\omega = 0,628$ рад/сек. На этой частоте еще можно пользоваться передаточной функцией, связывающей вертикальную скорость турбулентного порыва и вертикальную перегрузку. В этом случае передаточная функция уже отлична от нуля и может быть практически определена с достаточной точностью.

Верхний предел ограничивается частотой ω =6,28 рад/сек.,что связано с техническими характеристиками датчика перегрузок МП-66, которым регистрировались перегрузки самолета.

Рассмотренная методика расчета автокорреляционных функций, как ранее указывалось, удобна тем, что на отдельных этапах вычислений обеспечивает получение ряда других важных характеристик, в частности структурных функций.

По результатам вычислений выполнен анализ структурных функций во всех формах облаков.

Так же как в случае корреляционных функций, были построены графики, но в билогарифмическом масштабе. Все случаи, для которых построены структурные функции, можно разделить на три основные группы (рис.5).

Заметим, что для различных форм облаков характерны определенные типы кривых структурных функций.

Так, например, наиболее характерным для слоистых и слоистокучевых облаков является 1 тип, структурная функция которого имеет один максимум с дальнейшим ровным ходом. Для некоторой части слоисто-кучевых облаков характерны П и Ш типы структурных функций.

Аппроксимация структурной функции производилась с помощью степенного выражения

$$\mathcal{D}(\tau) \sim \mathcal{A}\tau^{\mathsf{T}}, \qquad (29)$$

где m - безразмерный показатель степени.

В этом случае она производилась только дишь до точки насыщения. т.е.до максимального значения функции $\mathfrak{D}(\tau)$.

Методом наименьших квадратов для каждого случая были определены вначения коэффициента А и показатель степени m. Результаты расчетов для некоторой части случаев приведены в табл.5. Данные величины m, приведенные в табл.5, показывают, что она подвержена колебаниям и изменяется от 0,25 до 1,03. Среднее значение m для облаков всех форм составляет 0,70.

Наличие достаточно большого числа структурных функций позволяет дать приближенную оценку диссипации турбулентной энергии в инерционном интервале спектра. Для этого воспользуемся выражением "закона двух-третей" Колмогорова-Обухова в виде

$$\mathfrak{D}(\tau) = C_2 \, \varepsilon^{2/3} \tau^{2/3}, \qquad (30)$$

где C₂ - безразмерная постоянная, *E* - диссипация энергии в единицу времени на единицу массы.

Таблица 5

Параметры структурных функций вертикальной пульсации воздушного потока в облаках

∎ ¤∕u	Дата	Форма облака	Высота, м	m	apr/r cem.
1	2/УШ 1957	St	700	0,95	332,0
2		St	600	0,34	292,0
3		St	500	1,02	278,0
4		St	400	0,88	193,0
5		St	300	0,94	112,0
6		Nog St	190	0,93	12,0
7		Hay St	500	0,82	382,0
8	•	St	450	0,94	351,0
9	· · · · · · · · · · · · · · · · · · ·	St	400	0,98	345,0
10		St	340	0,53	25,6
11		St	290	1,03	12,2
12		St	650	0,69	518,0
13	1/УШ	Sc	2700	0,65	0,2
14		Sc	2600	0,88	0,2
15	29/УП	SC	400	0,30	1110,0
16		SC	300	0,25	299,0
17		Flog Sc	350	0,27	198,0
18		Hag SC	200	0,66	260,0
19	28/ У П	Sc	600	0,45	0,2
20		Sc	600	0,63	477,0
21	1	Cu hum.	700	0,69	1025,0
22		Cu hum.	800	0,71	453,0
23	la su	Cu hum.	900	0,41	356,0
24		Cu hum,	900	0,88	4,9
25	- 54 -	Cũ hum	700	0,57	458,0
26		Cu hum.	850	0,96	481,0

m = 0,70

Рис.5. ТИПОВЫЕ КРИВЫЕ СТРУКТУРНЫХ ФУНКЦИЙ В ОБЛАКАХ. 1 - тип функции, имеющей после максимума ровный ход; П - тип монотонной функции; Ш - тип функции, которая после достижения максимума резко падает.

При вычислении скорести диссипации турбулентной энергии в облаках значение безразмерной постоянной C₂ принято равным 1,⁶6, как это было сделано в работе Тейлора [14].

Результаты расчета энергетических характеристик для некоторой части случаев представлены в табл.5.

Просмотр приведенных в табл.5 значений диссипации показывает, что она в определенной степени зависит от превышения рассматриваемого уровня по отношению к границам облака.

Действительно, этот факт становится более понятным из тех соображений, что облачный массив в различных слоях стратифицирован по-разному. Поэтому очевидно, что в устойчиво стратифицированном слое облака диссипация энергии от крупных вихрей к мелким затруднена, и, наоборот, при неустойчивой стратификации она выражена более ярко.

Однако заметим, что существенное влияние на величину энергии диссипации могут оказывать и динамические факторы возбуждения турбулентности, это наводит на мысль о весьма сложном механизме эволюции диссипации турбулентной энергии в облаке.

По предварительным данным, полученным автором, интенсивность скорости диссипации в облаке, оказывается, имеет еще одну особенность. В частности, при сравнении данных величин & на различных уровнях в облаке обнаруживается тенденция увеличения энергии диссипации с высотой в тех облаках, у которых обычно водность также растет с высотой, и наоборот. Это нетрудно заметить, если сравнить результаты расчета величины & по высотам в облаке (табл.5).

113 -

Наиболее отчетливо замеченная тенденция выражена в слоистых облаках (рис.6). Эта интересная связь энергии диссипации с водностью в облаке требует тщательного исследования на более обширном материале, чем использовано в работе.

Рис.6. РАСПРЕДЕЛЕНИЕ СКОРОСТИ ДИССИ-ПАЦИИ ТУРБУЛЕНТНОЙ ЭНЕРГИИ В СЛОИСТОМ ОБЛАКЕ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ.

Наличие некоторых данных о диссипации энергии в атмосфере [6,14] позволяет сравнить результаты расчета. Значения величин & полученные в облаках, в большинстве случаев имеют такой же порядок, что и для пограничного слоя [6]. Однако некоторые величины диссипации в облаках отличаются в сторону увеличения & на один порядок. Этот результат не противоречит существующим представлениям о диссипации турбулентной энергии в облаках.

Принятые в работе приближения в вычислении величины \mathcal{E} , безусловно, сказываются на точности значений, но, к сожалению, отсутствие достаточно надежных методов и качественного исходного материала осложняет проведение точных расчетов.

Литература

Теория однородной турбулентности, ИЛ, 1955. Некоторые количественные характеристики турбулентного обмена в облаках. См. в настоящем сборнике. Частотные спектры и функции распределения вероятностей вертикальной компоненты скорости ветра. Изв.АН СССР, сер. геофия., # 7, 1960.

1.	Б	9	T	4	e	Л	ор	Дж. с
2.	Г	e	p	M	8	H	M.A	•
3.	Г	У	р	B	И	4	A.C	•

- 114 -

4.	Ду	Q	OB	3 A.C.	К вопросу определения вертикальных скоростей ветра по данным самолетно- го акселерографа. Труды ГГО, вып.81, 1959.
5.	Ду	đ	OE	3 A .C.	К вопросу определения спектральной плотности вертикальных порывов ветра по колебаниям самолета. Труды ГГО, вып.135, 1962.
6.	Ив	â	H C	в В.Н.	Диссипация турбулентной энергии в атмосфере. Изв.АН СССР, сер.геофиа., и 9, 1962.
7.	"Ни	R	0 1	паева М.В.	О приближенном вычислении осциллирую- щих интегралов. Труды Математического ин-та им.В.А.Стеклова, АН СССР, т.28, 1949.
7.	Co	Л	οŢ	цовников	В.В. Введение в статистическую дина- мику систем автоматического управле- ния. Гостехтеоривдат, 1952.
9.	T s	T	ar	рский В.И.	Теория флуктуационных явлений при рас- пространении волн в турбулентной ат- мосфере. Изд.АН СССР, М., 1959.
10.	Цв	.	H I	т Л.Р.	Измерение частотных спектров темпера- турных пульсаций в приземном слое ат- мосферы. Изв.АН СССР, сер.геофив., # 8, 1960.
11. 12.	T F W y	a P	н	гер К.Дж. .Н.	Интегральные преобразования в матема- тической физике. Гостехтеориздат,1956. Приборы для исследования спектра ат-
					мосферной турбулентности методом гар- монического анализа с использованием магнитной памяти. Труды ЦАО, вып.31, 1959.
13.	Mac	C1	ead	у Р.,	Structure of stmospheric turbulence. J. of Meteorol. v.IO, N 6, 1953
14.	Tay	101	c R.	,	A new approach to the measurement of turbu- lent fluxes in the lower stmosphere. J. of Fluid Mech.,v.IO, N 3, 1961.

С. В. СОЛОНИН, Г. Г. ТАРАКАНОВ

МЕТОДИКА ИССЛЕДОВАНИЯ ОБЛАЧНОСТИ ВЕРХНЕГО ЯРУСА С САМОЛЕТА И НЕКОТОРЫЕ ВОПРОСЫ ЕЕ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ

Введение

В последнее время исследованию облачности верхнего яруса уделяется много внимания. Это обстоятельство можно объяснить двумя причинами: во-первых, облака верхнего яруса являются хорошим индикатором атмосферных процессов, происходящих в верхней тропосфере, и, во-вторых, они располагаются на высотах, совпадающих с основными зшелонами современных скоростных пассажирских самолетов.

Несмотря на вначительное число работ, посвященных пространственной структуре облачности и условиям полетов в них, многие важные вопросы пространственной структуры верхней облачности, процессов ее образования и вопросы диагноза и прогнова остаются еще не до конца выясненными. Это не случайно, так как детальное исследование облачности верхнего яруса осложняется тем, что в настоящее время нет достаточного количества надежных данных о верхней и нижней ее границах, о расположении в ней прослоек, практически отсутствуют данные о ее микрофивической структуре и ряд других важных физических характеристик.

Одним из источников информации об облаках верхнего яруса являются данные донесений экипажей самолетов, выполнявших полеты на больших высотах. С 1956 г. наблюдения за облаками верхнего яруса проводились метеорологами ЦИП и ЦАО, совершавшими полеты на транспортных самолетах ГВФ Ту-104 и Ил-18. С 1958 г. в полетах стали принимать участие сотрудники других метеорологических учреждений, в частности авторы настоящей статьи.

В данной статье рассмотрены вопросы пространственной структуры перистой облачности на основе анализа 82 полетов, выполненных авторами на самолетах Ту-104 в период с 1958 по 1961 г. по воздушным трассам Москва-Ленинград, Ленинград-Киев, Ленинград-Свердловск, Свердловск-Ташкент, Ленинград-Харьков-Адлер, Ленинград-Симферополь. Полученный в полетах материал обладает рядом недостатков: собранные данные являются неоднородными (различные географические районы, время суток и время года), время полетов не всегда совпадает со временем температурно-ветрового зондирования атосферы, отдельные участки воздушных трасс недостаточно освещены азрологическими данными, большинство наблюдений – визуальные, полеты происходили, как правило, на постоянной высоте по барометрическому высотомеру. Все это затрудняет, а иногда и исключает, возможность проведения глубокого и всестороннего анализа.

Вместе с тем исследование облачности с самолетов обладает целый рядом достоинств. Изучая облачность с самолета, наблюдатель в реде случаев в известном смысле приближается к условиям лабораторного эксперимента, анализируя пространственное распределение облачности не по синоптической карте, а в резльных условиях. Создаются благоприятные условия для натурной проверки некоторых физических гипотез, связанных с условиями образования и развития облаков и других атмосферных процессов и явлений.

Прежде чем приступить к непосредственному анализу результатов исследования облаков верхнего яруса, остановимся кратко на методике получения исходных данных. Это позволит дать оценку материала наблюдений, которым располагали авторы, и критически подойти к полученным результатам.

§ 1. Методика исследования облачности

В полетах производились наблюдения за комплексом метеорологических элементов: облачностью (количество, форма, высота нижней и верхней границ, вертикальная и горизонтальная протяженность, наличие прослоек, плотность), видимостью (горизонтальная, наклонная и вертикальная), турбулентным состоянием атмосферы (болтанка), ветром (направление и скорость), температурой воздуха, атмосферными явлениями. Наблюдения за количеством и формой облачности проводились визуально с одновременным фото- и кинематографированием ее. Высота нижней и верхней границ облачности при пробивании облаков определялась при помощи барометрического высотомера. при полете на зацанном эшелоне верхняя и нижняя границы обязчности по возможности также определялись инструментально. Для этой цели использовался наряду с барометрическим высотомером навигационный визир. Таккак шкала барометрического высотомера рассчитана для стандартных условий, и давление на исходном уровне при полете на заданном эшелоне устанавливалось 760 мм, то в показания высотомера вводились соответствующие поправки. Горизонтальная протяженность облачных полей определялась по величине путевой скорости и времени полета самолета в облаках, над или под облаками соответственно. Вертикальная мощность облаков определялась при наборе высоты или снижении. как разность отсчетов по барометрическому высотомеру между высотой верхней и нижней границ облачности. При полете на постоянной высоте мощность облаков оценивалась приближенно.

Дальность видимости в облаках определялась визуально. Плот-

ность облачности также оценивалась визуально в зависимости от дальности видимости в облаках. При полете над облаками и под облаками наряду с визуальными наблюдениями за видимостью использовались инструментальные методы (радиолокатор, навигационные визиры).

Турбулентное состояние атмосферы оценивалось качественно по явлению болтанки. При етом использовалась шкала интенсивности болтанки в баллах: σ^1 - слабая, σ^2 - умеренная, σ^3 - сильная, σ^4 - очень сильная.

Направление и скорость ветра рассчитывались, как правило, по величине путевой скорости и углу сноса. Указанные навигационные элементы определялись инструментально.

Температура воздуха на высоте полета измерялась бортовым термометром, при этом вводилась поправка на динамический нагрев.

Наблюдения за атмосферными явлениями производились визуально. Исключение составляют грозовые явления, наблюдения за которыми осуществлялись визуально, а также при помощи радиолокаторов и других радиотехнических средств.

Все записи в полете велись в специальном бортовом журнале, в котором фиксировались дата и время взлета, маршрут полета, время, местонахождение самолета в момент производства метеорологических наблюдений, высота по барометрическому высотомеру, курс, воздушная и путевая скорости, температура воздуха, скорость и направление ветра на высоте полета, результаты метеорологических наблюдений, погода в пунктах взлета и посадки.

При обработке и анализе материалов полетов наряду с материалами наблюдений с борта самолета широко привлекались приземные синоптические и кольцевые карты, карты барической топографии различных уровней, наиболее близкие по срокам ко времени полета, данные температурно-ветрового зондирования атмосферы, а также вертикальные разревы атмосферы по маршруту, выдаваемые экипажу на АМСГ перед вылетом.

В данной статье использованы отдельные материалы наблюдений, характеризующие пространственную структуру перистой облачности. Остальные вопросы им предполагаем рассмотреть после завершения полной обработки всех собранных в полетах материалов.

\$ 2. <u>Некоторые вопросы пространственной структуры</u> <u>перистой облачности</u>

Аналив материалов полетов показывает, что облака верхнего яруса наиболее часто отмечаются в области приземных циклонов, ложбин и связанных с ними атмосферных фронтов.

Повторяемость перистой облачности над центрами циклонов составила 100%. Это хорошо согласуется с данными И.Г.Пчелко [6] В.И.Унукова [7], Г.Д.Решетова [8] и других авторов.

На атмосферных фронтах также имеет место очень высокая повторяемость верхней облачности. Если учитывать все формы облаков, достигающих верхней тропосферы, то над теплыми фронтами и фрон-

тами окклюзий во всех полетах наблюдалась верхняя облачность. На колодном фронте только в одном из полетов, выполненном зимой (январь) не была зарегистрирована верхняя облачность. Однаво в интерпретации и этого случая необходимо отнестись осторояно, поскольку полет совершался не вдоль фронтального раздела. а под большим (близким к прямому) углом к нему. Поэтому результа ты наблюдений характеризуют лишь сравнительно небольшой участок фронтальной поверхности. Эти данные несколько отличаются от количественных характеристик повторяемости облачности, приводимых И.Г.Пчелко [6]. Согласно И.Г.Пчелко, на фронтах перистая облачность наблюдается в среднем в 89,6% случаев, внутримассовая облачность верхнего яруса в 34,4% случаев. Последнее можно объяснить тем, что верхняя облачность на фронтах обычно имеет больщую горивонтальную протяженность и нередко распространяется до тыловых районов приземных антициклонов и гребней, а также наблюдается в их передних частях. При анализе и сравнении данных о полях перистой облачности, собранных на основе сообщений и донесений летных экипажей, с положением фронтов и барических образований на приземных синоптических картах эту облачность иногда ошибочно относят к внутримассовой.

Накопление фактических данных о вертикальной структуре перистых облаков позволяет уточнить вопрос о положении их верхней границы.

Аналив работ, посвященных пространственной структуре облаков верхнего яруса, наводит на мысль о существовании достаточно хорошей связи между высотой уровня максимальной скорости ветра и высотой верхней границы перистой облачности. Это положение в неявном виде подтверждается рядом авторов. По цанным А.М.Баранова [1], исследовавшего связь верхней границы перистых облаков над ЕТС с высотой тропопаузы, верхняя граница облачности в среднем располагается ниже тропопаузы на 1,2-1,4 км.

Среднее расстояние от верхней границы облаков до уровня тропопаузы по Клоджену [10] составляет 1,3 км.

По Г.Д.Решетову [7], верхняя граница перистой облачности располагается ниже тропопаузы в пределах от 0,4 до 1,0 км.

В.И.Унуков [8] на основе обработки донесений экипажей получил это расстояние в среднем равным 1,5 км.

Аналогичные выводы следуют из анализа работ А.Е.Курбатовой, О.В.Козловской, Н.И.Мазурина [4]и Н.В.Лукьянова [5].

Обобщая данные указанных авторов, можно придти к заключению, что в среднем верхняя граница облаков находится на 1 км ниже уровня тропопаузы. Эта величина совпадает с расстоянием между уровнем максимальной скорости в етра в тропосфере и положением тропопаузы, на что обращается внимание в исследованиях И.Г.Пчетко [6], Фауста [11], В.Г.Цверава [9].

Такое совпадение не является случайным. Между распределением ветра по высотам (профилем ветра) и пространственной структурой верхней облачности, т.е. высотой ее верхней и нижней границ, расслоенностью, должна существовать определенная связь. В особой степени это относится к уровню, точнее поверхности, на которой наблюдаются максимальные (по высоте) скорости ветра, так как на уровне максимальной скорости ветра, как показал Фауст [1] на статистическом материале, вертикальные движения обращаются в нуль ("нулевой слой").

Последнее следует и из анализа уравнений динамики атмосферы. В прямоугольной системе координат уравнение движения в векторной форме имеет вид

$$\frac{d\vec{c}}{dt} = -\frac{1}{P}\nabla P - 2[\vec{\omega} \times \vec{c}] - \nabla \phi + \vec{F}, \qquad (1)$$

где $\vec{c}(u, V, W)$ - вектор ветра со своими проекциями соответственно на оси x, y, z; t- время; ρ - плотность воздуха; ρ - атмосферное давление; ∇ - оператор набла $\left(\frac{\partial}{\partial x}i + \frac{\partial}{\partial y}j + \frac{\partial}{\partial z}K\right)$; $\vec{\omega}$ - угловая скорость вращения Земли; Φ потенциал ньютоновского притяжения; F - сила трения, отнесенная к единице массы.

Если умножить уравнение (1) скалярно на \tilde{C} и принять во внимание свойства векторного и скалярного произведений ($\tilde{c}\cdot \tilde{c} = c^2$; $\tilde{c}\cdot [\tilde{\omega} \times \tilde{c}] = 0$),а также пренебречь в правой части силой трения и членом, содержащим вертикальную скорость, то выражение (1) примет вид

$$\frac{d}{dt} \left(\frac{c^2}{2}\right) = -\frac{1}{\rho} \vec{c} \nabla P. \qquad (2)$$

В общем случае направления изогипс (изобар) и линий тока не совпадают между собой и

$$\vec{c} \nabla P = c \frac{\partial P}{\partial s}, \qquad (3)$$

где $\frac{\partial P}{\partial s}$ - изменение давления вдоль линии тока. Принимая во внимание (3),выражение (2) можно записать так:

$$\frac{\partial c}{\partial t} + U \frac{\partial c}{\partial x} + V \frac{\partial c}{\partial y} + W \frac{\partial c}{\partial z} = -\frac{1}{P} \frac{\partial P}{\partial s} \cdot (4)$$

Для удобства анализа в качестве масштаба для измерения высоты возьмем высоту поверхности максимальной скорости ветра H = ||(x,y,t).

Таким образом, $Z = \eta H(x,y,t)$, где η - новая переменная. При Z = 0 новая переменная $\eta = 0$, на уровне поверхности максимальной скорости ветра Z = H(x,y,t), $\eta = 1$.

Перейдем от декартовых сс, у, z к натуральным координатам s, n, q. Для какого-то постоянного уровня η = const формулы, связывающие производные в натуральных координатах с производными в прямоугольных координатах, оудут иметь обычный вид [2]

120 -

$$\frac{\partial}{\partial s} = \cos \beta \frac{\partial}{\partial x} + \sin \beta \frac{\partial}{\partial y}, \qquad (5)$$

$$\frac{\partial}{\partial n} = -\sin\beta \frac{\partial}{\partial x} + \cos\beta \frac{\partial}{\partial y}, \qquad (6)$$

где (3 - угол, который образует вектор ветра с положительным направлением оси ассиисс. В общем случае $\beta = \beta(s, n, h, t)$.

121

Продифференцируем (5) по вертикальной координате η

$$\frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial s} \right) = \frac{\partial \beta}{\partial \eta} \left(-\sin \beta \frac{\partial}{\partial x} + \cos \beta \frac{\partial}{\partial y} \right) +$$

$$+ \left(\cos \beta \frac{\partial}{\partial x} + \sin \beta \frac{\partial}{\partial y} \right) \frac{\partial}{\partial \eta} \cdot$$

$$(7)$$

Привлекая соотношения (5) и (6), выражение (7) окончательно примет вид

$$\frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial s} \right) = \frac{\partial \beta}{\partial \eta} \left(\frac{\partial}{\partial \eta} \right) + \left(\frac{\partial}{\partial s} \right) \frac{\partial}{\partial \eta} . \tag{8}$$

Запишем уравнение (4) в натуральных координатах S, n , η :

$$\frac{\partial c}{\partial t} + c \frac{\partial c}{\partial s} + \eta' \frac{\partial c}{\partial \eta} = \frac{1}{f} \frac{\partial P}{\partial s} , \quad (4')$$

где $\eta' = \frac{d\eta}{dt}$ - вертикальная скорость.

Продифференцируем соотношение (4) также по вертикальной координате η

$$\frac{\partial}{\partial \eta} \left(\frac{\partial c}{\partial t} \right) + \frac{\partial c}{\partial \eta} \frac{\partial c}{\partial s} + c \frac{\partial}{\partial \eta} \left(\frac{\partial c}{\partial s} \right) + \frac{\partial n}{\partial \eta} \frac{\partial c}{\partial \eta} + \eta \frac{\partial^2 c}{\partial \eta^2} = - \frac{\partial}{\partial \eta} \left(\frac{1}{P} \frac{\partial P}{\partial s} \right).$$

На поверхности максимальной скорости ветра $(\eta = 1) \frac{\partial c}{\partial \eta} = 0$. Тогда, принимая во внимание соотношение (3) и условие обращения в нуль производной от скорости по вертикальной координате, для поверхности максимальной скорости ветра получим

$$c\frac{\partial\beta}{\partial\eta}\frac{\partial c}{\partial n_{2}} + \eta' \frac{\partial^{2} c}{\partial \eta^{2}} = -\frac{\partial}{\partial\eta}\left(\frac{1}{\beta} - \frac{\partial \rho}{\partial s}\right). \qquad (9')$$

Так как $\frac{\partial C}{\partial \eta^2} \neq 0$, вертикальная скорость η' ности максимальной скорости ветра на поверх-

122

Из соотношения (10) следует, что на поверхности максимальной скорости ветра вертикальные движения должны отсутствовать. В самом деле, величина $\frac{\partial}{\partial \eta} \left(\frac{\hbar}{\rho} \frac{\partial P}{\partial S}\right)$, стоящая в числителе, представляет собой производную по вертикали от составляющей силы барического градиента в направлении линии тока. Известно, что на уровне максимальной скорости ветра агеострофические составляющие ветра достигают максимального значения. Это дает основание полагать, что при $\eta = 1$ $\frac{\partial}{\partial \eta} \left(\frac{\hbar}{\rho} \frac{\partial P}{\partial S}\right) = 0$. Второе слагаемое в числителе при $\eta = 1$ также обращается в

(10)

Второе слагаемое в числителе при $\eta = 1$ также обращается в нуль, поскольку при переходе черев поверхность максимальной скорости ветра, как показывает просмотр вертикальных разревов атмосферы, направление ветра остается практически постоянным или ветер принимает прежнее направление. Таким образом, при $\eta = 1$ справедливо условие $\frac{\partial B}{\partial \eta} = 0$. В частном случае, непосредственно на оси струйного течения, обращается в нуль также величина $\frac{\partial c}{\partial n}$, однако на некотором удалении от оси горизонтальные градиенты скорости ветра будут очень большими.

Отсутствие вертикальных движений на поверхности максимальной скорости ветра объясняет, по нашему мнению, достаточно хорошее совпадение уровня максимальной скорости ветра с положением верхней границы перистой облачности.

При наличии восходящих движений ниже указанного уровня он выполняет роль задерживающего слоя.

Однако выводы, вытекающие из уравнения (10), не являются абсолютно надежными, поскольку при выводе формулы мы пренебрерли силой турбулентной вязкости и слагаемым, характеризующим изменение потенциальной энергии единицы массы во времени.

Поэтому представляет интерес получить более убедительное подтверждение существования такой связи на основе обработки материалов фактических наблюдений. Чтобы каким-то образом уменьшить влияние погрешностей измерений высоты верхней границы облаков с самолета (ошибки в показаниях барометрического высотомера и при определении поправок на отклонение реальных условий от стандартных и другие) лучше всего эту связь проверить на статистическом материале. Для этих целей был отобран 31 случай наблюдений за верхней границей перистой облачности, когда высоты тропопаузы и высоты уровня максимальной скорости ветра были определены с большой корректностью.

Согласно расчетам, среднее расстояние между высотами уровня максимальной скорости ветра и тропопаузы и высотой верхней границы соответственно составили 0,47 и 1,63 км. Учитывая погрешности при определения высоты верхней границы облаков, можно полагать, что их верхняя граница достаточно удовлетворительно совпадает с высотой уровня максимальной скорости ветра.

Об этом также свидетельствуют коэффициенты корреляции, рассчитанные для анализируемых случаев. Коэффициент корреляции между высотой тропонаузы и верхней границей облачности составил 0,6, а для уровня максимальной скорости ветра - 0,8.

Таким образом, верхняя граница облаков лучше согласуется с уровнем максимальной скорости ветра, чем с положением тропопаувы.

Литература

1.	Б	8	p	a	HO	В	A. M.	. О вертикальной протяженности облаков
								верхнего яруса. Метеорология и гидро-
								логия, 🗜 4, 1960.
2.	Г	8.	H	д	КH	J	.C.	, Лаёхтман Д.Л., МатвеевЛ.Т.,
	0	п	K	Ħ	M.	И.		Основы линамической метеорологии. Гид-
							•	рометеожалат. Л., 1955.
3.	P.	6	n	м	A H		f. A	Мавурин Н.И., Солонин С.В.
	•	•	F					
	tr -		-	~	- -	4	-	
. **	л.,	у. 	P.	บ ย	ar T	υ.	ва	
	P		Ħ		. • 1/1 •			пекоторые пространственные характерис-
								тики облаков верхнего яруса над северо-
								вападом Европеиской территории СССР,
							·	Труды ліми, вып. 12, 1961.
5.	Л	y	K	Ь	ян	0	BH	.В. Обобщение результатов метеорологичес-
								ких наблюдений на больших высотах. Ме-
								тодическое письмо, 🛿 39, ГУГМС, 1959.
6.	Π	q	е	Л	KO) , I	ί.Γ .	Метеорологические условия полетов на
								больших высотах. Гидрометеоиздат, Л.,
								1957.
7.	Ρ	e	山	е	т О	В	г.д	. Облачность в верхней тропосфере. Тези-
								сы докладов на научной конференции по
		. •						авиационной метеорологии. Гидрометео-
÷								издат, М., 1960.
8.	У.:	H	y	ĸ	о в	E	З.И.	Авросиноптические условия образования
			•					и прогнов облаков верхнего яруса. Те-
								ансы докладов на научной конференции
					· .			по авиационной метеорологии. Гидроме-
								теоиздат. М., 1960.
0	n ·	Þ	6	n	AR	. A	В. Г	О СВязи Уровня максимальных скоростей
σ.	. 4	٠	Ξ.	P	-	-		ветра с положением тропопаузы. Труды

129

IO. Clodman J.

Some statistical aspects of cirrus cloud. Met.Res.Papers.Air Ministry, N933,London,1955.

II. Faust H.

Die Nullschicht, der Sitz des troposphärischen Hindmaximums. Met.Rundschau, H 1/2, 1953.

А. М. БАРАНОВ

ХАРАКТЕРИСТИКИ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ ОБЛАКОВ ХОЛОДНЫХ ФРОНТОВ

Макрофизические характеристики облаков холодных фронтов, среди которых одними из наиболее важных являются характеристики пространственной структуры, все еще изучены мало. Наименее полно при этом изучена та часть фронтальной облачной системы, которая простирается в верхнюю половину тропосферы, поскольку сетевым самолетным вондированием, дающим основной исходный материал для исследования, до сих пор охватываются высоты преимущественно до 6 км. Сведения об облаках верхней половины тропосферы в настоящее время получаются в основном от экипажей реактивных самолетов, а до появления реактивной авиации надежных средств получения массового материала об облаках на больших высотах по существу не было.

Обработка и анализ данных разведок погоды, производившихся во всей тропосфере и нижней стратосфере, позволили автору в 1954 г. выявить, что макрофизические характеристики облаков холодных фронтов существенно отличаются от соответствующих характеристик, полученных только по материалам сетевого самолетного зондирования [1,2]. Было показано, например, что над ЕТС облака холодных фронтов с высотой верхней границы более 5 км имеют повторяемость летом 42%, зимой 18%, весной и осенью по 28%. Наибольшая вертикальная протяженность облаков при этом имеет место вблизи линии фронта; повторяемость толщины более 5 км составляет в теплое полугодие 26%, а в холодное – 15%. За линией фронта вертикальная протяженность облаков уменьшается и на расстоянии 200 км указанная градация имеет повторяемость в названные периоды года соответственно 14 и 4%.

В 1955 г. К.Г.Абрамович по донесениям экипажей высотно-скоростных самолетов получила данные, близкие к вышеуказанным данным автора.

Накопленные к настоящему времени сведения об облаках на больших высотах повволяют получить такого рода данные для конкретных районов.

125

1. Материал и методика его обработки

В основу работы положены донесения экипажей реактивных самолетов и отчасти сетевого самолетного зондирования, осуществлявимх в 1953-1959 гг. полеты в районе Ленинграда и имевших возможность провондировать всю облачную систему холодного фронта. Было проанализировано 273 самолетных подъема, из которых 161 относится к теплому периоду года (апрель-сентябрь) и 112 к холодному (октябрь-март). Материал анализировался по основным синоптическим и кольцевым картам, а также по картам барической топографии, регулярность которых повволяла точно определить место зондирования в воне фронта.

Обработка и аналив материала производились по такой же методике, какая была применена автором в 1954 г. для анализа облаков основных атмосферных фронтов (в том числе холодных) и в 1958 г. для анализа облаков вторичных холодных фронтов . Данные анализировались для равличных расстояний от линии фронта.

Повже такую же методику применили В.Я.Лобанова и М.В.Соколова [3] для характеристики облачности в зоне атмосферных фронтов. Разница лишь в том, что при определении повторяемости различных градаций высоты облаков на разном расстоянии от линии фронта за 100% они приняли общее число наблюдений во всей зоне фронта. Такой подход к обработке материала, как в работе [3], нам представляется менее удачным, поскольку число зондирований на различном удалении от линии фронта является неодинаковым, и, следовательно, трудно сопоставлять данные о повторяемости высоты облаков в равличных частях фронтальной зоны.

Чтобы сравнивать повторяемость высот облаков на различном удалении от линии фронта, более целесообразно при обработке материала принимать за 100% число подъемов на соответствующем удалении от линии фронта, а не во всей фронтальной зоне в целом. Именно так мы и поступали в данном случае.

Статистический анализ данных об обязках холодного фронта был произведен для той части фронтальной зоны, которая охватывает его ширину от линии фронта до 200 км за фронтом. На расстоянии более 200 км число подъемов было небольшим и произвести достаточно надежный статистический анализ материала не представлялось возможным. Таким образом, анализировались главным образом облака тех холодных фронтов, которые имели зафронтальную облачную систему.

Следует подчеркнуть, что котя число зондирований вблизи линии фронта было наибольшим по сравнению с другими участками фронта, "головная" часть фронтальной облачной системы исследована неполностью. Переднюю часть облачной системы холодного фронта нередко составляют мощнокучевые и кучево-дождевые облака, особенно в теплую половину года. Судя по работе [4], в облаках указанных форм экипажи могут встретить весьма трудные условия для пилотирования самолетов, поэтому полеты в таких облаках категорически запреща-

ются.

Анализ материала показал, что распределение зондирований по времени суток в теплое и холодное полугодия было примерно одинаковым и суточные изменения температуры не могли существенно сказаться на данных о макрофизических характеристиках облаков холодного фронта.

П. Макрофизические характеристики облаков

1. Высоты облаков

а) Высота нижней границы облаков холодного фронта как в теплое, так и в холодное полугодие изменяется в широких пределах (от нескольких сот метров до нескольких километров) (табл.1). В теплое полугодие при этом имеет место не менее низкая облачность, чем в холодное, хотя повторяемость ее и несколько меньше. Так, например, повторяемость высоты облаков до 600 м для всей зоны фронта в теплую половину года составляет 52,7%, а в холодную половину - 70,4%. Это же наблюдается и на отдельных участках фронта. В частности, вблизи линии фронта повторяемость высоты нижней границы облаков до 600 м в теплое полугодие 53,3%, а в холодное -73,5%.

Обращает на себя Внимание тот факт, что максимум повторяемости высоты более определенно выражен только для зысот, характеризующих нижнюю границу облаков вбливи от линии фронта. За линией же фронта наблюдается несколько максимумов, приходящихся на различные градации высот. Такое явление обнаружено нами не только для основных, но также и для вторичных холодных фронтов Оно связано с тем, что изменение высоты нижней границы облаков за линией фронта происходит не плавно, а волнообразно. Повышение нижней границы облаков после прохождения линии фронта в ряде случаев сменяется вследствие усиления приземной конвергенции трения и турбулентного перемешивания вторичным их понижением за фронтом, т.е. за основной погодной зоной холодного фронта может следовать дополнительная зона с низкой обжачностью. Такие зоны характеризуются усилением осадков, а в тех случаях, когда осадки уже прекратились, их возобновлением.

Аналия материала показывает, что высота нижней границы облаков существенным образом зависит от синоптической обстановки. В углубляющихся циклонах и ложбинах она значительно ниже, чем в заполняющихся циклонах и ложбинах. Особенно низкими облака бывают на тех фронтах, которые замедляют свое движение и на них образуются волны. Зона волны жарактеризуется наиболее низкой облачностью.

б) Высота верхней границы облаков холодното фронта изменяется также в больших пределах, обуславливающихся главным образом макросиноптической обстановкой, особенностями стратирикации воздуха и профиля фронта. При этом, как видно из данных рис.1 и табл.2, имеет место хорошо выраженный годовой ход: в теплое полугодие вы-

128

Рис.1. ПОВТОРЯЕМОСТЬ ВЫСОТЫ ВЕРХНЕЙ ГРАНИЦЫ ОБЛАКОВ ХОЛОДНОГО ФРОНТА В ТЕПЛОЕ (α) И ХОЛОДНОЕ (δ) ПОЛУГОДИЯ. 1 - волизи линии фронта, 2 - во всей воне фронта.

сота бойьше, чем в колодное. Повторяемость высоты более 5 км в указанные полугодия соответственно равна 47,2 и 34,8%, а в среднем за год 42,3%. Предельные высоты, на которых была зафиксирована верхняя граница облаков в зоне колодного фронта, в теплое полугодие оказались более значительными, чем в колодное.

В распределении высот вержней границы облаков в каждом из нолугодий наблюдаются два максимума. Первый максимум (3,1-4,0 км в теплый период, 1,1-2 км в холодный период), очевидно, связан с теми высотами, которые для верхней границы облаков являются преобладающими при образовании фронтального облачного массива. Вторичный максимум (соответственно 9,1-10,0 и 7,1-8,0 км) объясняется наличием в верхней тропосфере задерживающих слоев (с уменьшенным вертикальным температурным градиентом) и в особенности такого мощного задерживающего слоя, как тропопауза.

Два указанных максимума хорошо выражены не только для фронтальной зоны в целом (рис.1), но и для отдельных ее участков (табл.2). Из этих данных видно также, что по мере удаления ва линию фронта высота верхней границы в общем уменьшается. Наибольшая высота имеет место вблизи линии фронта.

Такое распределение повторяемости высоты верхней грачицы облаков объясняется тем обстоятельством, что, поскольку в передней части фронтальной зоны профиль фронта является более крутым, здесь при прочих равных условиях создаются более благоприятные условия для подъема относительно теплого воздуха в более высокие слои тропосферы и образования облачности с более

Таблица 1

Повторяемость (в %) высоты нижней границы облаков в зоне колодного фронта (Ленинград)

Период	Расстояние		Высота, м											Число
года	фронта	до 100	110- 200	210- 800	310- 600	610- 1000	1010- 1500	1510- 2000	2010- 2500	2510- 3000	3010- 4000	4010- 5000	5010 6000	ваний
Теплое полуго- дие (апрель- сентябрь)	Вблизи линим фронта 100 км 200 км	4,4 6,5 2,5	5,6 6,5 7,5	16,7 16,1 12,5	26,6 32,2 22,5	14,5 16,1 15,0	7,8 6,5 22,5	10,0 6,5 5,0	6,7 3,2 2,5	1,1 2,5	4,4 3,2 5,0	3,2	2,2 - 2,5	90 31 40
Холодное полугодие (октябрь- март)	Вблизи линии фронта 100 км 200 км	4,4	10,8 23,1 11,1	25,0 11,5 -	33,8 34,6 50,0	17,7 19,2 22,2	5,9 7,7	- 3,9 -	- - 11,1	2,9 - -	-	-	- 5,6	68 26 18
Год	Вся зона фронта	3,7	9,2	16,4	30,7	16,4	8,8	5,1	3,7	1,5	2,6	0,4	1,5	273

129

.

бначительной высотой верхней границы облаков. При этом следует иметь в виду сделанное выше замечание о том, что головная часть фронта требует еще более детального исследования. Грозовая облачность, развивающаяся в летнее время в передней части фронта, может охватывать всю тропосферу и даже пробивать тропопаузу, а ее верхняя граница – проникать в нижнюю стратосферу [5].

В углубляющихся циклонах и ложбинах высота верхней границы облаков холодного фронта расположена на более высоких уровнях тропосферы, чем в заполняющихся циклонах и ложбинах, что объясняется более крутым профилем фронта и более вначительной ролью упорядоченного подъема воздуха за фронтом в первом из названных синоптических положений. Наиболее низко высота верхней границы облаков располагается на фронтах, связанных с периферией области повышенного давления, где интенсивность фронтальной зоны значительно слабее и подъем воздуха осуществляется в основном до высот нижней половины тропосферы.

2. Вертикальная протяженность облачной системы холодного фронта

Вертикальной протяженностью облачной системы холодного фронта будем считать расстояние по вертикали от нижней до верхней границы облаков (в случае однослойных облаков), а в том случае, когда фронтальная облачная система расслоена, - расстояние по вертикали от нижней границы первого слоя облаков до верхней границы последнего облачного слоя.

Толщина облачных слоев и безоблачных прослоек, составляющих вертикальную протяженность фронтальной облачной системы, будет рассмотрена отдельно с тем, чтобы более детально прознализировать макрофизические характеристики облаков холодного фронта.

Данные о вертикальной протяженности облачной системы рассматриваемого фронта представлены в табл.З и на рис.2. Они позволяют сделать два главных заключения: во-первых, в теплое полугодие вертикальная протяженность облачной системы холодного фронта больше, чем в холодное полугодие; во-вторых, как в теплое, так и в холодное полугодие наиболее значительная по вертикали система облаков имеет место вблизи линии фронта, по мере же удаления за линию фронта вертикальная протяженность облачной системы уменьшается.

Действительно, повторяемость вертикальной протяженности облаков более 5,0 км составляет в теплое полугодие 25,8%, а в холодное – 17,5%, в том числе более 9,0 км соответственно 4,0 и 0,9%. Это равличие имеет место не только для фронтальной зоны в целом, но и для отдельных ее участков. Так, вблизи линии фронта повторяемость вертикальной протяженности облачной системы более 5,0 км составляет в теплое полугодие 35,6%, а в холодное – 20,6%.

То, что по мере удаления ва линию фронта вертикальная протяженность облаков уменьшается, видно из следующего. Если в теплом полугодии вертикальная протяженность более 5,0 км составляет на расстоянии 100 км 29,1%, то на расстоянии 200 км за фронтом она равна 25,0%. В холодное полугодие повторяемость в указанных градациях равна соответственно 14,3 и 11,1%. Еще более значительные

ПРОТЯЖЕННОСТИ ОБЛАЧНОЙ СИСТЕМЫ ХОЛОДНОГО ФРОНТА В ТЕПЛОЕ («)И ХОЛОДНОЕ (б)ПОЛУГОДИЯ. 1 - Вблизи линии фронта, 2 - во всей зоне

различия имеют место при сопоставлении этих данных с теми, что указаны для участка фронта, характеризующего его переднюю часть. Повторяемость вертикальной протяженности облаков, например, более 7,0 км равна в этом случае для теплого полугодия соответственно 22,3; 16,2; 10,0%, а для холодного соответственно ¹⁰,3, 3,6, 0%.

Обращает на себя внимание также тот факт, что в ряде случаев на расстоянии до 200 км (а иногда и больше) за линией фронта наблюдаются облака большой вертикальной протяженности. Аэросиноптический анализ этих случаев показывает, что подобное явление имеет место тогда, когда холодный фронт замедляет свое движение и за счет увеличения циклонической кривизны изобар происходит усиление конвергенции трения.

Результаты аэросиноптического анализа позволнот заключить,что в углубляющихся циклонах и ложбинах вертикальная протяженность облаков холодного фронта более значительная, чем в заполняющихся циклонах и ложбинах, и особенно по сравнению с облаками холодного фронта, проходящего по периферии области высокого давления (табл.4).

З. Расслоенность облаков

Облака холодного фронта, особенно в вафронтальной части, нередко бывают расслоенными. В передней части фронта расслоенность менее значительная; здесь однослойные облька большой вертикальной протяженности более вероятны, чем в остальной части фронтальной зоны. Однако и здесь, особенно в холодное полугодие, иногда наблюдается несколько слоев облаков.

Повторяемость (в %) высоты верхней границы облаков в зоне холодного фронта (Ленинград)

Период	Расстояние			Высоз	ra, 1	CM .				:				Число
года	фронта Фронта	до 1,0	¹ ,1- 2,0	2,1- 3,0	3,1- 4,0	4,1- 5,0	5,1- 6,0	⁶ ,1- 7,0	7,1- 8,0	8,1- 9,0	9,1- 10,0	10,1- 11,0	11,1- 12,0	рова- ний
Теплое по-	Вблизи линии фронта	1,1	6,7	14,4	13,3	8,9	6,7	7,8	8,9	8,9	14,4	7,8	1,1	90
(апрель-	100 RM	-	19,3	9,7	12,9	16,1	12,9	6,5	3,2	3,2	9,7	6,5	-	31
сенты брь)	200 km	-	7,5	17,5	27,5	15,0	10,0	7,5	5,0	2,5	5,0	2,5	-	40
	Вблизи линии фронта	2,9	3 3,8	10,3	5,9	5,9	7,4	11,8	13,2	5,9	2,9	٩.	-	68
Холодное	100 RM	11,5	34,5	15,4	7,7	7,7	7,7	3,9	7,7	3,9	-	-	-	26
(октябрь- март)	200 km	5,6	27,7	16,6	16,6	5,6	5 ,6	5,6	11,1	-	5,6	-	-	18
Год	Вся зона фронта	2,6	19,0	13,4	13,2	9,5	8,1	8,1	8,8	5,5	7,7	3,7	0,4	273

132

Повторяемость (в %) вертикальной протяженности облачной системы холодного фронта (Ленинград)

Период	Расстояние от	Be	ертикальн	ая протяя	енность,	RM		Число вон-	
года	линия фронта	до 1,0	1,1-3,0	3,1-5,0	5,1-7,0	7,1-9,0	9,1-11,0	дирований	
Теплое полуго- дже	Вблизи линии фронта	10,0	32,2	22,2	13,3	14,5	7,8	90	
(апрель-	100 KM	16,1	32,2	22,6	12,9	9,7	6,5	81	
	200 km	15,0	40,0	20,0	15,0	7,5	2,5	40	
Холодное	Вблизи линии фронта	23,6	39,6	16,2	10,3	8,8	1,5	68	
октябрь-	100 RM	35,7	35,7	14,3	10,7	3,6	-	26	
Mapt)	200 RM	44,5	33,3	11,1	11,1	-	-	18	
Год	Вся зона фронта	19,7	35,6	18,9	12,3	9,5	4,0	273	

133

Таблица 4

Повторяемость (в %) вертикальной протяженности облачной системы холодного фронта при различной синоптической обстановке в холодное полугодие (Ленинград)

Сипонтическая	Ber	тикальна	ая протял	кенность	, KM	
OCCTAROBRA	до 1,0	1,1-3,0	3,1-5,0	5,1-7,0	7,1-9,0	9,1-11,0
УГЛУбляющиеся Циклон и лож- бина	25,0	25,0	9,0	16,0	9,0	16,0
Заполняющиеся циклон и лож- оина	29,0	38,0	12,0	13,0	8,0	_
Периферия облас- ти высокого дав- ления	62,0	25,0	6,5	6,5	_	-

Если рассматривать всю зону фронта в целом, то расслоенность облаков жарактеризуется следующими данными. В теплое полугодие однослойная облачность имеет повторяемость 51,5%, двухслойная – 33,3%, трехслойная – 13,4%, четырехслойная – 1,2%, пятислойная – 0,6%. В холодное полугодие указанные слои жарактеризуются повторяемостью соответственно 53,9; 34,4; 10,9; 0,7; 0,1%, а в среднем за год повторяемость облаков с названным выше числом слоев равна соответственно 52,5; 33,8; 12,4; 1,0; 0,3%.

Как видим, расслоенность облаков холодного фронта довольно значительная. При этом, если даже учесть, что определенная часть однослойных облаков большой вертикальной протяженности, располагающихся в "голове" фронта, не была провондирована, все же наличие двухслойных и более многослойных облаков не является исклочением.

В то же время при сравнении расслоенности облаков холодного и теплого фронтов видна существенная разница: облака холодного фронта являются более компактными, менее расслоенными, чем облака теплого фронта.

4. Толщина облачных слоев и безоблачных прослоек

Данные о толщине облачных слоев приведены в табл.5. Они показывают, что в зоне холодного фронта наблюдаются облака, имеющие в общем довольно значительную толщину. Повторяемость облаков сравнительно небольшой толщины (до 1 км) составляет 50-60%. Повторяемость облаков толщиной более 3,0 км равна в теплое полугодие 14,0%, а в холодное около 11,0%. Наибольшей толщиной облачных слоев характеривуются углубляющиеся ложбины и циклоны.

О толщине безоблачных прослоек можно судить уже на основании сопоставления данных таблиц 2 и 5. Наибольшую повторяемость (от 30 до 50%) имеют безоблачные прослойки толщиной до 1 км, особенно

	Расстояние от	T	Толщи	на облачн	юго слоя,	KM		Число обланини	
период года	линии фронта	до 1,0	1,1-3,0	3,1-5,0	5,1-7,0	7,1-9,0	9,1-11,0	слоев	
Теплое по-	Вблизи линии фронта	52,4	30,8	10,5	4,9	1,4	-	143	
апрель-	100 км	60,0	33,3	1,7	3,3	1,7	-	60	
сентнорь)	200 км	47,2	41,9	9,5	1,4	-	-	74	
Холодное	Вблизи линии фронта	60,7	26,5	10,2	2,6	-	-	117	
ПОЛУГОДИЕ (ОКТЯОРЬ-	100 RM	57,0	34,4	5,7	2,9	-	-	35	
март)	200 RM	48,2	40,7	7,4	3,7	-	2 - A - - A	27	
Год	Вся вона фронта	54,8	32,6	8 ,6	3,3	0,7	-	456	

Повторяемость (в %) толщины облачных слоев в зоне холодного фронта (Ленинград)

135

вблизи линии фронта. Повторяемость безоблачных прослоек более 3,0 км сравнительно небольшая.

выводы

1. Высота нижней границы облаков холодного фронта изменяется в больших пределах, однако наибольшая повторяемость приходится на высоты в несколько сот метров. Например, для всей зоны фронта повторяемость высоты облаков до 600 м в тенлую половину года равна 52,7%, в холодную половину - 70,4%, а в среднем за год -60,0%.

2. Высота верхней границы облаков обусловливается макросиноптической обстановкой, особенностями профиля фронта и стратификации воздуха. Она имеет хорошо выраженный годовой ход: в теплую половину года - выше, в холодную половину года - ниже. В распределении повторяемости высоты верхней границы облаков наблюдаются два максимума, первый из которых приходится на нижнюю половину тропосферы, второй - на верхнюю тропосферу. Наиболее значительная высота верхней границы облаков наблюдается вблизи линии фронта. За фронтом высота постепенно понижается.

3. Вертикальная протяженность облачной системы холодного фронта более вначительная в теплую половину года. В оба полугодия по мере удаления за линию фронта она постепенно уменьшается. В частности, в теплое полугодие вблизи линии фронта повторяемость ее более 5,0 км составляет 35,6%, на расстоянии 100 км - 29,1%, на расстоянии 200 км - 25,0%.

4. Облака холодного фронта нередко бывают расслоенными, особенно в зафронтальной части. В холодное и теплое полугодия повторяемость однослойной и двухслойной облачности составляет B сумме 85%. Наибольшую повторяемость имеют слои облаков и безоблачные прослойки толщиной до 1 км. Повторяемость облачных слоев толщиной от 3,1 до 5,0 км также значительная и составляет 30-42%.

1. Зак Е.Г.

2. Зак Е.Г.

4. Kappil L.C.

5: Mensuir P.

Литература

Характеристика фронтальной облачности по данным самолетных подъемов. Метеорология и гидрология, # 8, 1937. Фронтальные облачные системы. Труды НИУ ГУГМС, сер.П, вып.14, 1946. З. Лобанова В.Я., Соколова М.В. Характеристика

низкой облачности в зоне атмосферчых фронтов. Труды НИИАК, вып.5, 1958. Operational feasibility of aircraft through thunderstorus. Aeron. Engin. Rev. IO. vol.9, 1950. Observation of cumulonimbus top extending into the stratosphere. Meteorol. Mag. 89, N 1051,1960.

C. B. 3BEPEBA

ВИДИМОСТЬ ПОД ОБЛАКАМИ ПРИ ВЫПАДЕНИИ ОСАДКОВ В РАЙОНЕ ЛЕНИНГРАДА

Выпадение осадков часто приводит к значительному снижению дальности видимости, а потому к усложнению условий, а иногда и к запрещению ввлета и посадки самолетов на данном аэродроме.

В литературе почти нет сведений о полетной видимости на различных высотах под облаками и без облаков [1]. Поэтому представляет интерес получить хотя бы самые общие характеристики видимости на высотах, особенно на малых, при выпадении осадков,чтобы пилот мог учесть эти данные по выходе из облака при приземлении.

С этой целью были использованы журналы самолетных зондирований атмосферы в районе Ленинграда за 3 года (1957-1960 гг.). Всего было выбрано 485 случаев с осадками, из них 229 с выпадением дождя и 256 с выпадением снега.

Была сделана попытка провести отдельно анализ случаев наблюдения осадков при облачности с просветами. типичной для ливневых осадков, и при сплошной облачности, как правило, характерной для обложных осадков.

Однако различий в видимости при ливневых и обложных осадках не обнаружено. Также не удалось выявить различий по сезонам. Это отчасти можно объяснить недостаточно больщим числом наблюдений при каждом виде осадков в разные сезоны, но, по-видимому, главное влияние на видимость под облаками, так же как и у поверхности земли [2], оказывает не характер выпадения осадков, а их интенсивность.

Поэтому были рассмотрены вместе наблюдения во все севоны.

На рис.1 представлены данные о повторяемости видимости на различных высотах при дожде, а на рис.2 - при снегопадах.

Численные значения повторяемости различных градаций видимости под облаками приведены в таблицах 1 и 2.

Сравнение данных обеих таблиц позволяет сделать ряд выводов.

1. Видимость под облаками во время выпадения осадков при всех высотах нижней границы облаков меняется в очень широком диапазоне

Рис.1. ЗАВИСИМОСТЬ ВИДИМОСТИ ПОД ОБЛАКА-МИ ОТ ПОЛОЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАКОВ ПРИ ДОЖДЕ.

значений, что наглядно видно из рис.1 и 2 и из данных таблиц. При самых низких облаках (ниже 0,2 км) видимость при дожде чаще всего бывает 2-4 км, при снегопадах - менее 2 км.

При высотах облаков 0,2-0,6 км пределы изменения видимости при дожде и снегопаде значительно шире (0-8 км). Если облака выше 0,6 км, видимость под ними при дожде варьирует в пределах 2-10 км, при снегопадах - 2-8 км. Широкие пределы изменения видимости обусловлены в основном изменением возможной интенсивности осадков. Наши выводы о широких пределах изменения видимости на высотах при осадках совпадают с аналогичными выводами [2,3,4] для приземной видимости.

2. Видимость при выпадении снега меньше, чем при выпадении дождя. При снегопадах приблизительно в половине случаев наблюдений (49%) на всех высотах вместе (две нижние строчки таблиц 1 и 2) видимость оказывается 2-4 км; на самую плохую видимость О-2 км приходится 18%, на видимость 4-6 км - 22% всех случаев; на значения видимости более 6 км, т.е. на случаи, не представявющие затруднений для взлета и поседки самолетов, приходится менее 11% всех наблюдений.

При выпадении дождя наиболее часто наблюдается видимость 4-6 км (35% всех случаев), на градацию видимости 2-4 км приходится 28%, на видимость менее 2 км – только 7% всех случаев, в

Таблица 1

Повторяемость значений при видимости под облаками при выпадении дождя

SRM h RM	0-2	2-4	4-6	6- 8	8-10	10-12	12-14	14-16	16- 18	18- 20	Σ	Scp
0-0,2	2	7	2			<u> </u>					11	á
0,2-0,4	9	27	22	5		2			L .		65	3.9
0,4-0,6	5	10	12	3			-			· -	30	3.9
0,6-0,8		2	4	6	6	3					21	7.8
0,8-0,10	{ !	5	2	5	1	2					15	4,9
1,0-1,2		6	11	5						<u>ا</u>	22	4,9
1,2-1,4			3	6	1	4		1 -	· .	l	15	8,3
1,4-1,6		1	11			1		er e s		[13	5,3
1,6-1,8			3	1		1					5	6,6
1,8-2,0			3		1	2		1		1	7	8,7
2,0-3,0	1	ુ5	5	3	5	1	1	- 1		1	22	6,6
3,0-4,0		1				r i					1	3,0
4,0-6,0			2								2	5,0
	17	64	80	34	14	16	1	З	:		229	
%	7	2 8	35	15	6.	7	1	1			100	

Таблица 2

Повторяемость значений видимости под облаками при выпадении снега

SRM h RM	0-2	2-4	4-6	6- 8	8-10	10-12	12-14	14-16	16- 18	18- 20	Σ	Scp.
0-0,2	9	3									12	1,5
0,2-0,4	23	75	19	4	3	ſ				l ·	124	3,2
0,4-0,6	12	26	17	12		1 1					68	4,0
0,6-0,8	1	10	9	1	1	{					22	4,2
0,8-10	1	6	3	2							12	4,0
1,0-1,2	1	4	7								12	4,0
1,2-1,4	l .	1				{ .				{	1	3
1,4-1,6	۱.		1	1	}	1.1				1	2	6
1,6-1,8			1) . :	1	-				ļ .	1	9
1,8-2,0	Ì	}	<u>}</u>						 .		ŀ	· · ·
2,0-3,0	1 1)	· ·			1				1	13
3,0-4,0			1		ł.					1	1	5
4,0-6,0			[1							
Σ	47	125	57	20	5	1	1				256	
%	18	49	22	8	2	1	1				100	

- 140

то время как на случаи с видимостью более 6 км приходится около 30% всех наблюдений.

3. Имеются различия в повторяемости высоты нижней границы облаков при дождях и снегопадах (две правые вертикальные колонки таблиц 1 и 2).

При снегопадах в половине всех случаев наблодений нижняя граница облаков лежит на высоте 0,2-0,4 км, очень низкие облака (0-0,2 км) встречаются довольно редко, только в 5% случаев. Высота облаков 0,4-0,6 км повторяется примерно в 1/3 случаев(27%). На случаи с высотой нижней границы облаков более 0,6 км падает около 20%.

При выпадении дождя высота 0,2-0,4 км составляет около 1/3 случаев (28%), вероятность появления самых низких облаков такая же, как и при снегопадах (5%), высоти 0,4-0,6 км наблюдаются в 13% случаев, на высоты более 0,6 км падает более половины (54%) всех случаев. Таким образом, при снегопадах нижняя граница облаков лежит ваметно ниже, чем при дождях.

4. Учитывая сказанное выше, можно считать, что условия вэлета и посадки самолетов при снегопадах значительно более трудные, чем при дождях. В посадочные минимумы на любом азродроме, как известно, входят минимальные допустимые значения дальности видимости S и высоты нижней границы облаков h.

Численные значения посадочных минимумов для каждого аэродрома устанавливаются в зависимости от типа самолета, класса летчика, времени суток и оборудованности аэродрома.

Учитывая полученные выше данные, можно считать, что выпадение осадков сравнительно редко приводит к снижению видимости и высоты нижней границы облаков ниже посадочных минимумов, т.е. к закрытию аэродрома. При снегопадах это наблюдается только в 4%, а при дождях - в 2% всех случаев выпадения снега и дождя соответственно. Однако снегопады и дожди обычно наблюдаются при низкой облачности и выпадение их заметно снижает видимость, а поэтому они значительно усложняют условия ввлета и посадки самолетов.

При осадках видимость из кабины летчика сильно снижается также за счет мокрого смотрового стекла при дождях и особенно сильно за счет снега, не успевающего таять на смотровом стекле при снегопадах, что становится наиболее неприятным при больших скоростях полетов. В ночное время это усугубляется большой яркостью света, рассеянного снежинками и каплями в лучах самолетных фар и прожекторов, что приводит к дополнительному ухудшению видимости посадочных огней.

Учитывая сказанное, можно считать условия взлета и посадки самолетов при осадках сложными, если видимость менее 6 км, а высота нижней границы облаков менее 600 м. Такие сложные условия наблюдаются при снегопадах в 72%, а при дождях в 42% всех случаев выпадения снега и дождя. (Если условия считать сложными при видимости менее 4 км и при высоте облаков ниже 600 м, то такие условия осуществляются при снегопадах в 58%, а при дождях в 26% всех случаев выпадения снега и дождя соответственно).

5. Видимость под облаками при осадках слабо возрастает при увеличении высоты нижней границы облаков примерно до 600 м, а внше практически остается постоянной, колеблясь в довольно широких пределах. Это видно из рис.3, на котором представлена зависимость средних значений видимости под облаками от высоты облаков.

Кривую, соответствующую выпадению снега, нецелесообразно продолжать выше 1,1 км, а кривую для дождя – выше 2,5 км из-за малой достоверности полученных данных.

Рис.З. ВИДИМОСТЬ НА РАЗНЫХ ВЫСОТАХ ПРИ ВЫПАДЕНИИ ОСАДКОВ.

- 142 -

6. Ввиду широких пределов изменения видимости на всех высотах при прогнозе видимости удобнее давать ее не в километрах, а в баллах.

В табл.З приведены значения видимости над облаками на разных высотах в баллах.

Таблица З

Видимость под	облаками (в баллах)	при	вы-
падении	пожля и с	нега		

			Дожл	ь		Снег					
h M	0-4	5	6	7	Σ	h Роаллы	0-4	5	6	7	Σ
0-200	2	7	2		11	0-200	8	З			12
200-400	9	27	27	2	65	200-400	23	75	26	2	124
400-600	5	10	15	1	30	400-600	12	26	29	1	6 8
600-800		2	16	3	21	600-800	1	10	11	ŀ	22
800-1000	r i i i	5	8	2	15	800-1000	1	6	5		12
1000-1200		6	16		22	1000-1200	1	4	7	Į	12
1200-1400			10	5	15	1200-1400	· · ·	1			1
1400-1600	- + , +	1	11	1	13	1400-1600			2) ·	2
1600-1800	н 		4	1	· .	1600-1800			1	Ι.	1
1800-2000		ļ	4	3	7	1800-2000			}		· .
2-3 км		5	13	3	22	2-3 км				1	1
3-4 км		1			1	3-4 км			1	ľ.,	1
4-6 км			2		2	4-6 KM		· · ·			
Σ	17	64	128	20	229	Σ	47	126	82	2	256
%	7	2 8	56	9	100	%	18	49	32	1	100

При дождях на всех высотах до 600 м наиболее часто наблюдаются баллы видимости 5 и 5-6, выше 600 м видимость остается 6 баллов.

При снегопадах до высоты 600 м видимость меняется в более широких пределах: 4,4 и 5 баллов, выше 600 м видимость остается 5-6 баллов.

Литература

1.	Ш	T	a	л	ь	1	3.1	1.		О метеорологической и полетной види-
×					•					мости. Труды ЛГМА, вып.8, 1958.
2.	п	0	Л	я	ĸ	0	B	a	E.A.	Дальность видимости в зоне дождя. Ме-
										теорология и гидрология, 🛚 8, 1956.
з.	Π	0	л	я	ĸ	0	в	a	E.A.	Исследование метеорологической даль-
										ности видимости в дождях. Труды ГГО,
										вып.100, 1960.
4.	Π	0	л	я	к	ο	в	a	E.A.	и Третьяков В.Д. Исследова-
										ние метеорологической дальности види-
										мости при снегопадах. Труды ГГО,
										вып.100, 1960.

- 143

Б. М. ГАЛЬПЕРИН

СРАВНЕНИЕ И ОЦЕНКА НЕКОТОРЫХ КЛИМАТОЛОГИЧЕСКИХ МЕТОДОВ РАСЧЕТА СУММАРНОЙ СОЛНЕЧНОЙ РАДИАЦИИ ПО ДАННЫМ ОБ ОБЛАЧНОСТИ

В последние годы предложен ряд новых методов приближенных климатологических расчетов прихода суммарной солнечной раджации по данным о средней месячной облачности.

Так, Т.Г.Берлянд [3] получена нелинейная зависимость месячных сумы радиации от общей облачности

$$Q = Q_o \left[1 - (\alpha + 0,38n) n \right],$$

где Q – действительные суммы радиации, Q_o – возможные суммы, n – средняя месячная общая облачность, α – коэффициент, меняющийся с широтой.

Е.П.Барашковой [2] также найдена нелинейная свявь сумы радиации с общей облачностью

 $Q = ah^{0,94} t$.

где h - высота солнца в истинный полдень на 15-е число месяца, t - продолжительность дня в часах на эту дату, O.- численный эмпирический коэффициент, нелинейно вависящий от общей облачности; в работе даны значения его для элучаев отсутствия и наличия снежного покрова.

В.С.Самойленко [9] предложил для уточнения климатологических расчетов, сохранив линейный характер зависимости сумы радиации от облачности, использовать данные не только по общей (n), но и по нижней облачности (l):

$$Q = Q_0 [1 - 0.76l - 0.37(n - l)].$$

"Коэффициенты ослабления" суммарной солнечной радиации облаками нижнего яруса (0,76) и верхнего + среднего ярусов (0,37) толучены В.С.Самойленко по эмпирическим данным Б.Гаурвица [10] о соотношении между интенсивностью суммарной радиации при облачности 10 баллов разных форм и радиацией при безоблачном небе - $\frac{Q_{10}}{Q_o}$. Возможные суммы прямой солнечной радиации В.С.Самойленко рекомендует находить для разных коэффициентов проврачности по таблице Миланковича, а для учета сумм рассеян-
ной солнечной радиации при безоблачном небе им предложен способ, также гребующий сведений о коэффициенте прозрачности и, кроме того, об общем содержании водяного пара в вертикальном столбе атмосферы.

За последние годы рядом авторов опубликованы и новые данные о среднем широтном распределении возможных сумм суммарной солнечной радиации. Так, Т.Г.Берлянд, используя значительно расширившиеся материалы наблюдений, уточнила величины возможных сумм, полученные ев ранее [4], особенно для высоких широт. Как и в более ранних работа, при этом применялся метод Украинцева, согласно которому возможные суточные суммы определяются из графика годового хода действительных суточных сумм радиации по кривой, проходящей через верхние эмпирические точки.

З.И.Пивоварова [8] получила значения возможных сумм солнечной радиации для 40-68° с.ш. путем построения графиков суточного хода суммарной радиации при безоблачном небе (методом трапеций) на 15-е число каждого месяца. Для построения таких графиков ею были использованы осредненные данные срочных сетевых измерений интенсивности прямой и рассеянной солнечной радиации в разных нунктах СССР.

М.С. Аверкиев [1] опубликовал значения возможных сумм прямой, рассеянной и суммарной солнечной радиации для широт 40, 50, 60 и 70⁰ при разных коэффициентах прозрачности (P₂), полученные им на основании эмпирических зависимостей между интенсивностью прямой и рассеянной соянечной радиации и высотой солнца при различных значениях коэффициента проврачности.

Б.М.Гальперин [6] также дано среднее распределение возможных сумм суммарной солнечной радиации для 40-90° с.ш. Для умеренных широт значения возможных сумм получены ею по данным регистрации прямой и рассеянной солнечной радиации в безоблачные дни на 12 станциях СССР, а для арктических широт – путем графического интегрирования кривых суточного хода суммарной радиации при безослачном небе, построенных на 15-е число каждого месяца. Зависимость интенсивности суммарной солнечной радиации от высоты солнца для разных месяцев была нейдена по данным срочных измерений на полярных и в отдельности на дрейфующих станциях.

Поскольку область практического применения методов расчета прихода солнечной радиации непрерывно расширяется, представляло интерес произвести сопоставление новых предложенных методов и таблиц возможных сумм и сравнить их с широко используемой в СССР методикой ГГО, разработанной в 1954 г. [4].

1. В табл.1 приведены возможные месячные суммы суммарной солнечной радиации Q, ккал/см²мес. на 40-90⁰ с.ш., полученные разнным авторами: Т.Г.Берлянд – варианты 1954 г. (1)м 1960 г.(2), З.И.Пивоваровой (3), М.С.Аверкиевым (4) и Б.М.Гальперин (5). По 1-му варианту Т.Г.Берлянд возможные суммы в высоких широтах были, за недостатком данных в то время, сильно занижены, поэтому они не приведены.

Возможные суммы по таблицам М.С.Аверкиева определены нами на основании данных о годовом ходе коэффициента прозрачности атмосферы при $m = 2 (\rho_2)$ на равных широтах, полученных З.И.Пивоваровой [8] по сетевым наблюдениям актинометром.

Для широт 70 и 80⁰ возможные суммы, по Б.М.Гальперин, приведены для сущи и океана, а для 90⁰ - только для океана.

Таблица 1

ү град,	Мето - ды	-1	П	Œ	17	y	у1	УП	УШ	1X	X	X1	ХП
40	1	8,8	11,7	17,3	20,3	23,2	23,9	23,5	21,4	17,9	13,6	9,8	7,8
	2	9,0	11,4	16,7	20,1	23,6	28,7	23,9	21,3	16,8	13,4	9,5	8,1
1	3	7,4	9,6	14,8	17,7	20,8	20,8	20,6	18,7	15,0	11,7	8,2	6,7
	4	8,0	9,9	15,0	18,0	21,3	21,7	21,2	19,3	15,6	12,3	8,5	7,1
	5	8,0	10,0	14,6	17,8	21,7	22,2	22,2	20,0	15,7	12,2	8,5	7,0
50	1	4,8	7,6	13,7	18,1	22,4	23,3	22,8	19,1	14,4	9,7	5,9	3,9
	2	4,9	7,6	13,6	18,2	22,6	23,4	23,0	19,5	14,1	9,8	5,8	4,0
	3	4,3	6,8	12,6	16,0	20,1	20,7	20,4	16,9	12,9	8,6	5,0	3,4
	4	4,2	6,6	12,1	16,0	20,5	21,3	21,1	17,8	13,3	9,9	5,0	3,5
	5	4,5	7,0	12,4	16,7	20,9	21,8	21,4	18,8	13,7	9,4	5,3	3,8
60	1	1,7	4,0	9,7	15,6	21,1	22,6	21,9	16,6	10,7	6,2	2,6	1,2
	2	1,8	4,1	10,1	15,8	21,2	22,6	22,0	17,0	11,1	6,2	2,6	1,1
	3	1,3	3,8	9,3	14,3	19,4	21,0	20,1	15,4	10,5	5,0	1,8	1,0
	4	1,4	3,5	8,6	14,2	19,5	20,9	20,5	16,1	10,6	5,8	2,1	0,8
	5	1,3	3,9	9,2	14,9	20,1	21,4	20,8	16,7	10,7	6,0	2,3	0,8
70	1	0,2	1,4	5,9	12,9	19,7	21,7	20,6	13,9	7,1	3,0	0,7	0,1
	2	÷.,	1,4	6,1	12,9	20,9	23,2	21,7	14,9	7,5	2,8	0,5	1 . · · ·
	4	÷ .	1,0	5,1	11,5	18,9	21,2	20,3	14,6	7,6	2,6		
	5 ^{(cy-} 5 ^(ua)		1,1	5,5	12,3	19,5	21,6	20,2	14,3	7,4	2,7	0,2	l
	5 ^{(оне-}	1	1,1	5,5	12,3	21,1	24,6	22,4	15,9	8,2	2,7	0,2	
80	2	ľ	l -	2,1	10,6	21,9	24,8	23,3	13,6	4,2	0,5		
	5(cy- 5 ws)	1 .	1	2,2	10,9	19,2	22,4	21,2	13,1	4,3	0,4	ľ	li d'
	5 aH)			2,2	10,9	20,9	25,4	23,2	14,6	4,7	0,4		
90	2	1	1	1	9.9	22.4	26.0	24.2	13.1	2.3		1	
	5 and	1			9,2	21,3	25,7	23,6	14.5	2,3			ł
1	1			1		1	1			1	L	<u> </u>	<u> </u>

Из табл.1 можно видеть, что величины, полученные тремя последними способами, близки между собой, но по данным Пивоваровой они несколько ниже, чем по данным Аверкиева и особенно Гальперин; наи более заметно различие летом на малых широтах. Очевидно, это связано с использованием "способа трапеций" при построении кривых суточного хода. Возможные суммы по ббоим вариантам Т.Г.Берлянд на 40, 50 и 60° с.ш. мало различаются и превышают вначения, найденные другими авторами, особенно для малых широт. Это, по-видимому,

• 146 ·

обусловлено применением метода В.Н.Украинцева, при котором получаются "максимальные" суммы радиации, а не "средние при безоблачном небе".

Бинзость величин, полученных тремя невависимным методами, позволяет предполагать, что они наиболее правильно отражают реальные усховия в умеренных широтах.

На широте 70° расходение между данными разных авторов уменьшается. На 80 и 90-й параялелях возможные суммы, приведенные Б.М.Гальперин и Т.Г.Берлянд, также мало отличаются, но по Т.Г.Берланд получается несколько более резко выраженное возрастание возможных сумм радиации по направлению к полюсу в арктических виротах в период с мая по август. Вероятно, вто обусловлено тем, что Т.Г.Берлянд не разделяет данных наблюдений над океаном и на полярных и островных станциях. Между тем, с мая по сентябрь вследствие развичия в состоянии подстилающей поверхности радиация над океаном больше [6].

Мы не произвели расчета возможных сумы по способу В.С.Самойленко не только по тем соображениям, что он очень трудоемкий, но главным образом потому, что, как известно, таблицы Миланжовича дают при малых высотах солнца заниженные суммы прямой солнечной радиации, определение же сумы рассеянной радиации требует еще сведений о содержании водяного пара на разных широтах.

Нам представляется, что при климатологических расчетах, т.е. при опредежении среднего многолетнего прихода суммарной солнечной радиации, вообще не существенно учитывать изменение проврачности атмосферы в пространстве на данной широте. Как показало определение вовможных сумм по регистрации в безоблачные дни, различие средних величин Q₀ в пунктах, расположенных на близких широтах, но в разных климатических условиях, невелико - гораадо меньше, чем колебания в одном и том же пункте в разные годы или в один и тот же год.

2. Для оценки точности новых расчетных методов, предложенных для определения действительных средних месячных сумм солнечной радиации, были использованы данные о среднем многолетнем приходе суммарной солнечной радиации и средней месячной облачности

за те же годы в 10 пунктах СССР: Ташкенте, Тбилиси, ВладиВостоке, Алма-Ате, Карадаге, Иркутске, Риге, Свердловске, Павловске и Якутске.

В табл.2 приведены средние относительные отклонения вычисленных месячных сумы радиации от зарегистрированных в отдельности по полугодиям без учета знака, а также полугодовых и годовых сумы с учетом внака по четырем методам: Т.Г.Берлянд - Варианты 1954 (1) и 1960 гг. (2), В.С.Самойленко (3) и Е.П.Барашковой (4).

При расчетах по формулам Т.Г.Берлянд использовались и соответствующие каждому из вариантов значения возможных суми на разных широтах.

Таблица 2

Средняя относительная погрешность рассчитанных величин (в %)

		l All Anna ann an Iomraidh	Погрешность							
0/0	Станции	Метод	месяч в сре	ных сумы Днем ва:	6 38 Г	полу- одия:	88 707			
			1¥-1X	Х-Ш	1¥-1X	X-II	90 I.OT			
1	Гашкент	1234	6,3 6,1 1,8 4,7	6,0 9,0 4,7 7,9	3,3 5,7 0,7 3,3	4,4 5,5 3,6 -8,1	3,6 5,6 1,5 0,3			
2	Тбилиси	1 2 3 4	8,7 12,0 12,0 5,5	3,7 7,1 8,2 10,0	-8,0 -3,1 -12,5 2,8	-1,4 1,7 -8,7 -2,3	-6,2 -1,8 -11,4 1,3			
3	Владивосток	1 2 3 4	7,1 9,2 12,7 6,8	5,9 5,1 7,7 8,8	-2,7 -9,6 -9,3 -4,3	-10,8 -0,9 -8,6 -5,1	-6,0 -5,3 -9,0 -4,6			
4	Алма-Ата	1 2 3 4	6,7 6,0 6,0 3,8	6,7 6,3 6,8 7,0	-4,4 0,8 -2,5 4,0	-7,1 -3,1 -5,3 1,0	-5,2 -0,4 -8,3 3,1			
5	Керадаг	1 2 3 4	6,8 4,3 7,8 8,3	4,8 7,2 14,3 16,5	-6,8 -1,4 -7,5 -1,1	-6,2 -7,2 -11,1 -17,0	-6,7 -2,9 -8,5 -5,1			
6	Иркутск	1 2 3 4	12,7 13,5 10,8 8,8	7,3 7,7 7,7 16,5	-13,1 -14,4 -11,1 -7,4	-0,7 -2,2 0,2 2,2	-9,9 -11,2 -8,2 -4,9			
7	Рига	1 2 3 4	4,3 6,5 7,3 4,3	33,0 16,0 6,7 50,0	-4,8 -5,9 -6,8 -2,3	15,5 8,1 -3,4 14,2	-1,1 -3,3 -6,2 0,7			
8	Свердловск	1 2 3 4	13,2 19,8 16,8 9,0	13,2 19,8 19,8 7,8	-13,0 -18,9 -16,8 -8,7	-14,7 -21,0 -20,1 -10,3	-13,4 -19,4 -17,5 -9,1			
9	Павловск	1 2 3 4	6,5 5,0 9,5 7,3	19,2 10,8 18,3 33,8	-6,3 -5,1 -9,9 -0,4	5,7 -0,8 -14,6 16,3	-4,5 -4,5 -10,6 2,1			
10	Якутск	1 2 3 4	13,7 11,7 12,7 11,2	19,3 16,5 16,0 26,0	-13,7 -12,0 -12,8 -11,1	-3,7 -13,1 -14,9 -11,2	-11,8 -12,2 -13,2 -11,2			

При вычислениях по методу В.С.Самойленко были взяты возможные суммы, найденные нами [6] для каждого пункта по данным регистрации в безоблачные дни. Это было сделано вследствие указанных выше трудностей и неточности в определении возможных сумм по данной методике, особенно для холодного полугодия. Таким образом, погрешность

Вычисленных сумы в этом случае может быть связана лишь с соответствующей ошибкой в определении отношения действительных сумы к возможным по облачности.

Произ Веденные расчеты показывают, что наилучшие результаты для теплого полугодия дает формула Е.П.Барашковой: в 7 пунктах из 10 средняя относительная ошибка месячных сумм и сумма за все полугодие меньше, чем по другим методам. Наоборот, в холодное лолугодие погрешность вычисления месячных сумм по этой формуле максимальна и только вследствие того, что в отдельные месяцы каждого полугодия ошибка меняет свой знак, погрешность суммы за все это полугодие в целом по формуле Е.П.Барашковой меньше отличается от погрешности других методов.

Поскольку основной вклад в годовую сумму вносит теплое полугодие, ошибка годовых сумы по этой методике является для 8 из 10 станций минимальной. Возможно, что в какой-то мере хорошие результаты метода Е.П.Барашковой за теплое полугодие обусловлены тем, что формула получена по данным 6 из рассмотренных пунктов (Якутск, Свердловск, Иркутск, Карадаг, Владивосток, Тбилиси), но она дает малые ошибки и для других станций. Наибольшие погрешности расчета в месяцы холодного полугодия по формуле Е.П. Барашковой получаются для Павловска и Риги, где облачность в это время года болице, чем в других пунктах. Очевидно, коэффициенты о для значительной облачности, полученные по данным прихода солнечной радиации HA станциях, где зимой меньше пасмурных по нижней облачности дней . чем на западе, являются для западных районов несколько завышенными. Полученные результаты показывают, что формула Е.П.Барашковой в общем правильно отражает зависимость действительных сумм радиации от астрономических факторов и от количества облаков. Но желательно было бы уточнение коэффициента С в холодное полугодие для разных климатических условий.

Чаще всего наибольшие средние погрешности месячных сумы за теплое полугодие и за все это полугодие и год в целом дает метод В.С.Самойленко. В холодное полугодие он в этом отношении не отличается от методики ГГО.

Как видно из данных табл.2, для рассматриваемых станций СССР не обнаруживается существенного преимущества в применении новой формулы Т.Г.Берлянд по сравнению со старой, и обе эти формулы по своим результатам занимают промежуточное положение. Наибольшие ошибки за месяцы теплого полугодия они дают в Свердловске, Иркутске, Якутске, т.е. там, где нижняя облачность и повторяемость пасмурных по нижней облачности дней меньше. Вероятно, это обусловлено тем, что при получении коэффициентов К и С. обеих формул Т.Г.Берлянд для умеренных широт северного полушария использовала в значительной мере данные станций Европы и США.

Известно, что вследствие изменения характера облачности в пространстве и в годовом ходе, а также в связи с изменением альбедо исверхности при установлении и сходе снежного покрова козффициенты, связывающие отношение действительных сумм к возможным $\left(\frac{Q}{Q_{c}}\right)$ с общей облачностью, на одной и той же широте могут меняться и испытывать годовой ход. Это показано, например, для коэффициента К формулы Савинова-Онгстрема (методика ГГФ 1954г) по материалам советских станций, расположенных в умеренных широтах, - Е.П.Барашковой [2] и по арктическим станциям - М.К.Гавриловой [5]. Поскольку методика ГГФ разрабатывалась для построения мировых карт суммарной радиации, учесть эти факторы и детализировать ее по районам представляло бы значительные трудности, так как данных по радиации для этого недостаточно.

Можно было ожидать, что методика ГГО даст большие погрешности, чем формула В.С.Самойленко, по которой оценивается и нижняя облачность. Худшие результаты, полученные при применении формулы В.С.Самойленко, связаны с тем, что величины $\frac{Q}{Q_0}$, рассчитанные по ней на основании данных об общей и нижней облачности, получаются заниженными по сравнению с тем, что дают результаты регистрации. Как показало проведенное нами сравнение, еще более заниженные величины $\frac{Q}{Q_0}$ получаются при расчетах по общей облачности по формулам Т.Г.Берлянд. Но, так как по этой методике завыщены возможные суммы, то в результате погрешность действительных сумм оказывается меньше, чем по формуле В.С.Самойленко.

Как видно из табл.2, все эти З формулы дают систематически заниженные величины сумм радиации. Лишь по методу Е.П.Барашковой встречаются ошибки годовых и полугодовых сумм разных знаков.По-ви димому, причиной заниженных значений $\frac{Q}{Q_o}$, рассчитанных для станций СССР по формулам Т.Г.Берлянд, является уже упоминавшееся испольвование значительного числа данных станции Западной Европы и США для вычисления эмпирических коэффициентов К и С. этих формул; так, величины К , вычисленные Е.П.Барашковой [2] непосредственно по материалам регистрации солнечной радиации на 8 станциях СССР, больше, чем рекомендуемые для соответствующих широт по таблицам ГГО [3]. Частично, заниженные значения К могут быть обусловлены тем, что при их получении испольвовались несколько завышенные возможные суммы, однако на ошибке действительных сумм это не должно сказываться.

Занижение величин $\frac{Q}{Q_0}$, получающееся при расчетах по формуле В.С.Самойленко, нам представляется, обусловлено двумя причинами: за "коэффициент пропускания" суммарной солнечной радиации облаками нижнего яруса В.С.Самойленко принимает соотношение радиации при пасмурном и ясном небе, характерное для $St(\frac{Q_{10}}{Q_0} = 0.24)$, а в теплое время года на континенте преобладают другие облака нижнего яруса - Си, Sc, Cb, при которых $\frac{Q_{10}}{Q_0}$ больше, чем при St. Кроме того, как показали исследования [7], при облаках в виде отдельных масс (Си, CB, Sc и Ас) зависимость отношения действительных суточных сумм радиации к возможным ($\frac{Q}{Q_0}$) от облачности нелинейна: $\frac{Q}{Q_0}$ с увеличением количества облаков особенно реако уменьшается при значительной облачности. Естественно, что применение линейной зависимости, да еще для малого значения $\frac{Q_{10}}{Q_{2}}$, дает заниженные величины.

Можно полагать, что использование данных не только по общей, но и по нижней облачности должно улучшить результаты приолиженных расчетов прихода солнечной радиации, но для этого нужен выбор соответствующих характеру облачности козффициентов и вида зависимости $\frac{Q}{Q} = \mathcal{E}(n, \ell)$.

зависимости $\frac{\omega}{Q_0} = l(n, l)$. Наибольшее уточнение может получиться для тех случаев, когда велика роль облаков верхнего яруса, особенно при значительной облачности. Облака среднего яруса – Ас и Аз – по своему влиянию на приход солнечной радиации мало отличаются от таких облаков нижнего яруса, как Си и Sc [7], поэтому выделение нижней облачности для месяцев теплого полугодия в большинстве районов даст, вероятно, небольшой эффект.

Для периодов с низкими температурами важен не только учет альбедо снега. При таких температурах, когда водность и вертикальная мощность облаков нижнего и среднего ярусов значительно меньше, чем в теплое полугодие, величины $\frac{Q_{co}}{Q_{co}}$ могут значительно отличаться от полученных Б.Гаурвицем и другими авторами для бесснежного периода. Таких данных нет и это требует специального исследования.

Дальнейшее уточнение расчетной методики важно не столько для определения средних многолетних сумм радиации (существующие методы удовлетворительно решают эту задачу), сколько для расчетов за отдельные месяцы и декады конкретных лет. При использовании одной общей облачности это сделать нельзя.

В расчетах принимали участие студентки ЛГМИ Т.Ситникова и Л.Немировская.

Литература

1.	A	B	e	p	ĸ	И	e	B	Μ.	с.		Суммарная радиация и ее компоненты при безоблачном небе в зависимости от прозрачности атмосферы для широт 40-70 ⁰ . Вестник МГУ, сер.геогр.# 4, 1958.
2.	Б	8	p	a	UI	к	0	В	8	E.I	1.	Некоторые закономерности в режиме суммарной радиации. Труды ГГО, вып. 80, 1959.
з.	Б	e	p	Л	я	H	д	T	'.Γ.		•	Методика климатологических расчетов суммарной радиации. Метеорология и гидрология, ⊯ 6, 1960.
4.	Б	у	д	Ы. ́	ĸ	0	N	1.И	• ,	Б	e	рлянд Т.Г., Зубенок Л.Н. Методика климатологических расчетов составляющих теплового беланса. Труды ГГО, вып.48, 1954.

•	• •	n di								••••••		
5.	Γ	8	B	P	N	Л	0	B B	8	1	W.K.	Суммарная рациация в Советской и зарубежной Арктике. Труды ААНИИ, т.217, 1959.
6.	Γ	a	Л	Ъ	Π	e	P	N.	H	Б	.M.	О суммарной и рассеянной радиации в Арктике. Труды ААНИИ, т.229, 1961.
7.	Г	8	Л	. Ь	<u>п</u>	е	p	N	Ħ	Б	.M.	Суточный приход суммарной солнеч- ной радиации при различных облаках. Труды ГГО, вып.125, 1962.
8.	Π	M	B	0	B	8	P	0	В	8	з.И.	Характеристика радиационного режима при ясной погоде. Труды ГГО, вып. 96, 1959.
9.	С	8	M	0	ä	л	e	H	K	0	B.C.	Формирование температурного режима морей. Гидрометеонадат, 1959.
10.	Ħ٤	aur	wi	tz]	B •				·		Insolation in relation to cloud type. Journal

П. М. МУШЕНКО

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК АТМОСФЕРНОЙ ТУРБУЛЕНТНОСТИ ПО КОНДЕНСАЦИОННЫМ СЛЕДАМ (ДИФФУЗИОННЫЙ МЕТОД)

Известно, что вопрос об определении интенсивности атмосферной турбулентности в свободной атмосфере остается до настоящего времени в значительной степени открытым. Хотя в опубликованной литературе можно встретить довольно значительное число работ, посвященных этому вопросу [1-6 и др.], следует, однако, отметить, что в большинстве случаев объектом исследования являлась не сама атмосферная турбулентность, а вызываемая ер болтанка самолетов.

Существующая связь между перегрузками самолета и атмосферной турбулентностью остается пока еще до конца не изученной. Как следует из целого ряда работ [1,4,5 и др], число Ричардсона, используемое в качестве жарактеристики уровня атмосферной турбулентности, не всегда достаточно хорошо характеризует условия болтанки самолетов и тем не менее является до сих пор, пожалуй, единственной жарактеристикой, с помощью которой осуществляется диагнов и прогноз вон болтанки.

В настоящей работе рассматривается новый метод определения интенсивности атмосферной турбулентности по дисперсии конденсационного следа, образующегося за самолетом. Как нам представляется, непосредственное определение характеристик турбулентности атмосферы предлагаемым способом будет способствовать не только установлению связей между ними и перегрузками самолетов различных конструкций, но и позволит получить дополнительные сведения о строении тех слоев атмосферы, где образуются конденсационные следы.

Кроме того, представляет значительный интерес сравнение значений характеристик турбулентности, полученных различными независимыми способами.

Как сейчас установлено, основной причиной образования конденсационных следов за самолетами является конденсация водяного пара в свободной турбулентной струе выхлопных газов, образующейся в ревультате смещения продуктов сгорания авиационного топлива с атмосферным воздухом. При достаточно низких температурах и высокой относительной влажности атмосферного воздуха внутри струи ТРД ^{1/} образуется зона, где пересыщение водяного пара превышает критическое. В работе [7] изложена методика расчета конденсационного факела и показано, что при прочих равных условиях устойчивые конденсационные следы значительной протяженности могут образоваться только при условиях высокой относительной влажности атмосферного воздуха. Наблюдения показывают, что при наличии облаков или дымки на уровне полета образуются более устойчивые конденсационные следы протяженностью от нескольких километров до нескольких сотен километров. Иногда такие следы, постепенно расширяясь, превращаются в перистообразные облака.

Кроме того, результаты наблюдений свидетельствуют о том, что устойчивость образовавшихся следов определяется не отолько церенасыщением водяного пара в струе ТРД, сколько интенсивностью турбулентного перемешивания в атмосфере, о которой мы судим по наличию или отсутствию болтанки на уровне полета. На рис.1 представлена диаграмма наблюдений за плотностью и устойчивостью следов. По вертикали ваяты градации интенсивности болтанки самолетов по наб-

О-релкий, О-умеренный; Ф-густой; ДОД-неустойчивые, ОРР-сведения об устойчивости отсутствуют.

> Рис.1. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ ЗА ПЛОТНОСТЬЮ И УСТОЙЧИВОСТЬЮ СЛЕДОВ.

людениям бортаэролога, по горизонтали отложены величины максимальных пересыщений водяного пара в струе ТРД, рассчитанные по формулам [7]

$$S_{h} = \frac{\Delta q_{o}}{\Delta T_{o}} \left[(0,5N - T_{h}) - \sqrt{(0,5N - T_{h})^{2} - T_{h}^{2} + q_{h}} \frac{\Delta T_{o}}{\Delta q_{o}} \right] + q_{h}, (1)$$
rule

 $T = 0,5 N - \sqrt{0,25 N^2 - N T_h + N q_h \frac{\Delta T_o}{\Delta q_o}}$ (2)

^{1/} В статье рассматривается конденсационный след за реактивным самолетом, хотя все сказанное будет справедливым и по отношению к следам за самолетами винтомоторной группы. Здесь $\Delta \frac{4}{\Delta T}$ - отношение избыточной концентрации водяного пара на среве сопла к избыточной температуре в том же сечении; Р.Т. 9. - соответственно навление температура и изотност

 P, T_h, q_h - соответственно давление, температура и удельная владность атмосферного вовдуха; μ_i, μ_2 - молекулярные веса водяного пара и вовдуха; M, N - постоянные.

Как видим из диаграммы рис.1, при отсутствии болтанки, т.е. при слабом турбулентном обмене в атмосфере, следы всегда были устойчивыми и более плотными, в то время как при наличии слабой болтанки и при пересыщениях водяного пара, равным и превышающим $S_{\Lambda} = 4-5$, следы были неустойчивыми. По мере усиления болтанки даже при наличии 2-3-кратного пересыщения отмечены редкие следы. Следовательно, основную роль вдесь играет интенсивность атмосферной турбулентности на уровне полета самолета.

Очевидно, что на поле атмосферной турбулентности накладывается влияние турбулентности, вызванной самим самолетом. Последняя складывается из турбулентности реактивной струи и азродинамической турбулентности, т.е. турбулентных вихрей, сбегающих с крыльев и фюзеляжа самолета.

Поскольку нас интересует главным образом атмосферная турбулентность, выделим ту часть следа, в которой энергия реактивной струи исчерпывается. При дальнейшем изложении нам потребуется использовать понятие о "весовой кратности увлечения", под которой будем понимать отношение секундного расхода газа в рассматриваемом сечении реактивной струи к его секундному расходу в начальном сечении:

$$n = \frac{G_0 + G_1}{G_0},$$

(3)

где G и G кг/сек. - секундный расход истекающей и увлекаемой жидкости. Здесь под G понимается секундный расход, достигнутый на данной длине затопленной струи.

Экспериментально установлено [8], что для осесимметричной струи при $n = 3 \ \text{кr/kr}$ имеет место переходное сечение; n = 3 кг/кг до n = 9 кг/кг образующая струи строго прямолинейна: от n = 9 кг/кг до n = 27 кг/кг струя начинает терять выраженную устойчивую форму и при Л = 81 кг/кг ее энергия исчерпывается. Отскда, однако, не следует, что выравнивание поля осредненных скоростей приводит одновременно к полному исчевновению пульсаций скорости, т.е. к полному затуханию турбулентности. Опыты показывают, что на вначительных расстояниях от среза сопла вдоль по потоку сохраняются турбулентные возмущения, энергия которых сравнительно медленно рассеивается. Так, например, потребное для полного успокоения потока расстояние от сетки аэродинамической трубы практически достигает тысячи калибров отверстий решетки [9]. Для конденсационного следа таким критерием явится расстояние порядка 500 м. Уже по этой причине на более близких расстояниях рассчитанный по видимому расширению следа коэффициент турбулентной диффузии вихрей в атмосфере будет заведомо завышенным.

Предварительно определим ту область следа, в которой весовая кратность увлечения $\Pi = 81$ кг/кг, т.е. выделим ту часть следа, в которой энергия струи исчерпывается.

Вообще говоря, существует несколько схем расчета турбулентности свободных струй сжимаемой жидкости [10,11,12]. В зависимости от выбора той или иной схемы для расчета конденсационного факела формулы, используемые при решении поставленной задачи, будут различными. На примере схемы Г.Н.Абрамовича [10] покажем, как определяется расстояние от среза сопла, на котором достигается условие N = 81 кг/кг. Согласно этой схеме относительный объемный расход жидкости в любом сечении струи определяется соотношением

$$q = 2,18\left(\frac{cs}{R_{\bullet}} + 0,29\right),$$
 (4)

где 9 - отношение объемного расхода жидкости в рассматриваемом сечений, отстоящем на расстоянии S от среза сопла, к объемному расходу истекающей жидкости на срезе сопла с радиусом R; С - константа.

Испольвуя уравнение состояния для газа, получим следующую зависимость между весовой кратностью увлечения П и относительным объемным расходом жидкости:

$$n = q \frac{\pi}{T_{co}}$$

где Т_о и Т_{ср} - соответственно температура газа на срезе сопла и средняя по расходу температура газа в рассматриваемом сечении.

Здесь

$$T_{cp} = T_{h} + \frac{0.46\Delta T_{o}}{\frac{cS}{R_{o}} + 0.29}, \qquad (6)$$

где в свою очередь $\Delta T_o = T_o - T_h$, а T_h - температура окружающей среды.

Подставив (4) и (6) в (5), получим

$$n = 2,18 \frac{T_{o} \left(\frac{cs}{R_{o}} + 0,29\right)^{2}}{0,46 \Delta T_{o} + T_{h} \left(\frac{cs}{R_{o}} + 0,29\right)},$$
(7)

Из уравнения (?), положив в нем $\mathbf{n} = 81$ кг/кг, можно найти расстояние S_u , на котором энергия струи исчерпывается. Начиная с этого расстояния, можно вести, например, расчеты диффузии конденсата, из которого состоит след.

Если на уровне полета относительная влажность воздуха близка к 100%, что будет гарантировать отсутствие изменения концентрации во времени в результате испарения или конденсации (сублимации), то процесс диффузии конденсата из бесконечно протяженного конденсационного следа в однородную изотропную атмосферу можно описать следующим уравнением:

$$\frac{\partial a}{\partial t} = K \nabla a$$
,

(8)

(5)

где К – коэффициент диффузии, *О* – объемная концентрация конденсата t – время.

Решение уравнения (8) применительно к метеорным следам было получено О.В.Добровольским [13] при следующих условиях:

1) диффузия следа обладает осевой симметрией и происходит в бесконечно протяженную однородную и изотропную атмосферу;

2) на оси следа решение должно быть конечным;

3) начальные условия одинаковы вдоль всего следа;

4) начальное распределение частиц вадано.

Решение получено в следующем виде: о2

$$a(p,t) = \frac{c_{o} z_{o}}{2_{o}^{2} + 4Kt} e^{-\frac{7}{2_{o}^{2}} + 4Kt}$$
(9)

Здесь следа, t – объемная концентрация, f – расстояние от оси следа, t – время, C, - концентрация на оси следа в начальный момент времени, C, - начальный радиус следа, К – коэффициент турбулентной диффузии.

Заметим, кстати, что решение (9) принципиально не изменится, если вместо начальной функции распределения частиц в следе вида

$$f(z) = C_{o}e^{-\frac{z^{2}}{2}}$$
(10)

вовьмем другое, в частности,

$$f(z)=c_{o}=const, \quad z \leq R_{\varphi}, \\ f(z)=0, \quad z > R_{\varphi}.$$
(11)

Поскольку, как мы видим, начальные и граничные условия для конденсационных и метеорных следов аналогичны друг другу, полученное решение (9) может быть использовано при расчетах концентрации ю нденсата в любой точке *Р* бесконечно длинного конденсационного следа через промежуток времени t, если в начальный момент времени t, = 0 известно распределение концентрации конденсата в поперечном сечении последнего.

В соответствии с поставленной задачей для нас более важным в практическом отношении является использование полученного выше решения для определения коэффициента турбулентной диффузии по видимому расширению кокденсационного следа. С этой целью необхвдимо прежде всего дать определение видимой границы следа.

Совершенно очевидно, что граница лишь условно характеризует поперечные размеры следа. На практике обычно под граничным радиусом облака примесей подразумевают такое расстояние от центра или соответственно от оси симметрии, на котором относительная концентрация равна заранее выбранному значению.

Еще более неопределенным в количественном отношении является определение видимой границы следа.

Известно, что видимость следа определяется многими факторами, к ксторым, в частности, относятся:

а) свейства самого следа - его угловые размеры, концентрация и размер частиц конденсата, его фотометрическая яркость и т.д.;

б) свойства фона;

в) свойства атмосферы;

г) свойства аппарата, с помощью которого производятся наблюдения, и т.д.

Учесть все перечисленные факторы при определении видимой поверхностной яркости следа не представляется возможным. Из наблюдений же известно, что вначале при обравовании след имеет довольно отчетливые границы, которые становятся все белее неопределенными по мере рассеивания следа.

По данным, приведенным в работе [14], минимальная концентрация конденсата, при которой туман становится видимым, колеблется от 0,002 до 0,01 г/м3. При етом считается, что туман хорошо виден

Поскольку минимальная концентрация видимого тумана нам неизвестна, а указанные выше значения С. нын колеблются в довольно широких пределах, то непосредственное использование уравнения (9) для определения коеффициента К не представляется возможным из-за значительных вероятных погрешностей расчета, связанных с выбором Омин. Считая по-прежнему концентрацию конденсата на видимой границе следа неизвестной, примем следующее допущение: в процессе дисперсии эта концентрация и коэффициент турбулентной диффузии к постоянны.

Еоли наблюдения за конденсационным следом осуществляются с земли, то суммарная концентрации конденсата вдоль оси врения будет равна

$$C = \int \alpha (P_1 t) dP. \qquad (12)$$

Подставив (9) в (12) и выполнив интегрирование, получим

$$C = \frac{\sqrt{\pi} C_{\circ} Z_{\circ}^{2}}{(Z_{\circ}^{2} + 4\kappa t)^{\frac{1}{2}}} e^{-\frac{T_{\circ}^{2} + 4\kappa t}{Z_{\circ}^{2} + 4\kappa t}}, \qquad (13)$$

rge $\int_{-\infty}^{0} (y^{2} + 2^{2})^{\frac{1}{2}}.$

.(14)

В таком случае расчет К мы будем осуществлять, как бы следя за перемещением изолиний равной концентрации. В моменты времени t и te какая-то неизвестная пока нам концентрация будет связана с расстоянием от оси симметрии или, иначе говоря, с граничныин радиусами следа R, и R₂ соотношениями вида

Поскольку мы положили

 $C_i = C_2$,

то после деления левых и правых частей уравнений (14) друг на друга, мы получим

$$1 = \left(\frac{z_{o}^{2} + 4\kappa t_{z}}{(z_{o}^{2} + 4\kappa t_{i})^{2}}\right)^{2} e^{\frac{R_{i}^{2}}{2_{o}^{2} + 4\kappa t_{z}}} - \frac{R_{i}^{2}}{(z_{o}^{2} + 4\kappa t_{i})^{2}}$$
(15)

Таким образом, с помощью полученного соотношения (15) можно определить коэффициент турбулентной диффузии К , если известны геометрические параметры следа. Тем самым мы избавились от необходимости определять концентрацию конденсата на его видимой границе.

Итак, для расчета козфициента К по видимому расширению конденсационного следа достаточно замерить поперечные радиусы следа R_1 и R_2 в соответствующие моменты времени t_1 и t_2 предварительно рассчитав начальный радиус следа Z_0 , т.е. радиус следа в том месте конденсационного следа, где энергия реактивной струи исчеринвается. Тем не менее в дальнейшем необходимо детальнее изучить вопрос о минимальной концентрации тумана на его видимой границе. В этом отношении представляют определенный интерес результаты предварительных опытов по истечению свободной турбулентной струи насыщенного водяного нара в затопленное пространство, проведенных автором совместно с Н.В.Подбельцевой, А.С.Донде и С.Ф.Цыбулькиным.

Опыты показали, что при относительных влажностях атмосферного вовдуха $f_h < 100\%$ видимая граница факела конденсата располагается в ток месте поперечного сечения струи, где градиенты скорости потока имеют максимальное вначение. По-видимому, адесь сказывается влияние обравовавшихся частичек конденсата на газодинамические процессы в струе, и внутри последней как бы обравуется зона, в которой сосредоточена основная масса образовавшегося конденсата. Эта вона ограничена слоем максимальных градиентов скоростей и представляет собой закрученную струю.

Как известно, профиль избыточных скоростей в поперечном сечении осесимметричной свободной турбулентной струи описывается соотношением [10]

 $\frac{\Delta U}{\Delta U_{m}} = \left[1 - \left(\frac{z}{R_{\mu}}\right)^{2}\right]^{2},$

где ΔU , ΔU_{m} - соответственно избыточная скорость в рассматриваемой точке поперечного сечения, отстоящей на расстоянии Z от оси струи, и избыточная скорость в центре сечения; η_{up} - внешний рациус струи.

Условие максимальности градиентов скорости потока в поперечном сечении струи получим, ввяв вторую производную от функции U-f(ZUm, fu) по и приравняв ее нулю:

(16)

$$\frac{\partial^2 u}{\partial z^2} = U_m^2 \left[\frac{2z}{R_{up}^3} - \frac{1}{2\sqrt{z}R_{up}^{3/2}} \right]_{z=R}$$

или

$$\frac{2 R}{R_{\varphi}^{3}} - \frac{1}{2\sqrt{R}} \frac{1}{R_{\varphi}^{3/2}} = 0$$
.
Решив (18) относительно R , получим

R = 0,397 R up .

Не останавливаясь на методике расчета $\mathcal{H}_{\varphi\varphi}$, весьма подробно изложенной в работах [7,10,11,12], приведем окончательные результаты одного из 8 приведенных опытов. Насыщенный водяной пар истекал из сопла диаметром 3,0 см со скоростью 10,2м/сек. Температура воздуха, окружающего струю, была равна 314°К, его влажность – 85%, атмосферное давление 765,7 мм. На рис.2 представлено продольное сечение струи. По оси абсиисс, совпадающей

160

(17)

(18)

(19)

Рис.2. РАЗРЕЗ КОНДЕНСАЦИОННОГО ФАКЕЛА.

с осью симметрии струи, отложены расстояния от полюса струи, по оси ординат – внешний радиус струи R_{up} , наблюденная видимая граница конденсационного факела R_{Bug} и расстояние от оси струи до слоя максимальных градиентов скоростей потока R. Как следует из рассмотрения рис.2, видимые границы конденсационного факела R_{Bug} по всей длине струи располагаются в зоне максимальных градиентов скоростей в поперечных сечениях струи. Аналогичные результаты получены и в остальных 7 опытах.

Из теории свободных турбулентных струй следует, что между профилями избыточных концентраций и скоростей существует следующая связь [10]:

$$\frac{\Delta a}{\Delta a_m} = \sqrt{\frac{\Delta U}{\Delta U_m}}$$

Здесь ДО и ДО_т соответственно избыточная концентрация в рассматриваемой точке поперечного сечения и на оси струи.

(20)

(21)

161

Поскольку опыты свидетельствуют о совпадении видимой границы факела конденсата с зоной максимальных градиентов скоростей, очевидно, что в таком случае максимальный градиент поверхностной яркости конденсационного факела по местоположению совпадает с максимальным градиентом скоростей. Поэтому с учетом (20) поверхностную яркость следа L выразим через концентрацию конденсата C следующим образом:

$$L = dC^{2}(\rho, t),$$

где \land - коэффициент пропорциональности.

Тогда видимый радиус следа Ясия определится из условия

$$\left(\frac{\partial i}{\partial p^2}\right)_{p=h_{bug}}$$
(22)

Подставив (13) в (21), получим

$$i = d \frac{\int c_{o}^{2} z_{o}^{4}}{(z_{o}^{2} + 4\kappa t)} e^{-\frac{2p}{z_{o}^{2} + 4\kappa t}}.$$
(23)

Вторая производная от і по р равна

$$\frac{\partial^{2} \dot{\iota}}{\partial p^{2}} = -4d \frac{\partial [c_{o}^{2} r_{o}^{2}]}{(z_{o}^{2} + 4 \kappa t)^{2}} \left[e^{-\frac{2 p^{2}}{7_{o}^{2} + 2\kappa t}} -4p^{2} \frac{4}{7_{o}^{2} + 4\kappa t}} e^{-\frac{2 p^{2}}{7_{o}^{2} + 4\kappa t}} \right]. (24)$$

Решив (24) при условии (22) относительно R_{long} , получим

$$R_{lang}^2 = \frac{z_o^2}{4} + \kappa t.$$
 (25)

С помощью соотношения (25) для двух замеров видимых диаметров следа d, и d₂ в моменты времени t, и t₂ имеем

$$K = \frac{d_2^2 - d_1^2}{4(t_2 - t_1)}$$
 (26)

Напомним, что выведенные соотношения (15) и (26) получены в предположении, что диффузия конденсата происходит в однородное изотропное и стационарное турбулентное поле. Очевидно, что атмосферное турбулентное поле нельзя рассматривать как однородное и изотропное.Однако для отдельных отрезков следа, согласно колмогоровской теории локальной изотропии [16], можно принять такие условия. Так как при выводе соотношений (15) и (26) исходным было уравнение турбулентной диффузии (8), то, как показал Ф.Н.Френкиль [15], даже если бы атмосферное поле было идеально однородным и изотропным, значения К, определенные с помощью этих соотношений, будут изменяться в зависимости от времени дисперсии до тех пор, пока время t не станет намного больше некоторого значения С. В статистической теории турбулентности С носит название лагранжева масшта ба турбулентности [15].

Если $u'_{h}(t), v'_{h}(t), w'_{h}(t); u'_{h}(t+\Delta t), v'_{h}(t+\Delta t)$ и $w'_{h}(t+\Delta t)$ компоненты скоростей в точке А в моменты времени t и t+ Δt , то козффициенты корреляции соответственно равны

$$R_{x} = \frac{\overline{u_{A}^{l}(t) \ u_{A}^{l}(t + \Delta t)}}{\sqrt{u_{A}^{l}(t)^{2}} \ \sqrt{u_{A}^{l}(t + \Delta t)^{2}}}, \qquad (27)$$

$$R_{y} = \frac{\overline{v_{A}^{l}(t) \ v_{A}^{l}(t + \Delta t)}}{\sqrt{v_{A}^{l}(t + \Delta t)}}. \qquad (28)$$

Временные же масштабы турбулентности в лагранжевом представлении определяются следующим образом:

$$T_{x} = \int R_{x} (x) dx , \qquad (29)$$
$$T_{y} = \int R_{y} (x) dx . \qquad (30)$$

В нашем случае можно записать

$$R_{x} = R_{y} = R(\lambda)$$
(31)

и масштаб турбулентности

$$T = \int_{0}^{\infty} R(a) da \qquad (32)$$

Если условие t >> T не выполняется, то экспериментальное определение К при помощи выведенных соотношений будет неправильным.

Лагранжев масштаб С может быть выражен черев средний квадрат турбулентной скорости U² и средний квадрат радиуса следа \overline{R}^2_{μ} при большом времени дисперсии в виде [15]

$$\tau = \lim_{t \to 0} \frac{1}{2\overline{v}^2} \frac{\overline{P_{s}^2}}{t} \quad (t \gg \tau)$$
(33)

Величина V² определяется в свою очередь при помощи измерений радиуса следа R₅ при очень малых значениях времен дисперсии

$$\overline{\mathcal{V}^{2}} = \lim_{t \to \infty} \frac{R_{s}^{2}}{t^{2}} \quad (t \ll T). \tag{34}$$

Таким образом, $\sqrt{\tilde{v}^2}$ может быть измерено по наклону кривой $\sqrt{R_5^2(t)}$ при малых значениях t, а лагранжев масштаб турбулентности – по наклону кривой $R_5^2(t)$ при больших значениях t. Если окажется, что $t \approx \tau$, то вместо действительного коэфициента турбулентной диффузии мы получим кажущийся, который может быть завышенным или заниженным по сравнению с деиствительным в зависимости от вида корреляционных кривых и времен дисперсии t. При $t \gg \tau$ действительные коэффициенты диффузии к и кажущиеся $K_{\rm wax}$ равны.

Ф.Н.Френкиль показал [15], что для чекоторых наиболее распространенных кривых корреляции К может быть в 1,2-2,5 раза меньше К коже.

По данным измерений, выполненных студентами ЛГМИ Г.М.Концевич, М.Х.Колобовой, И.Г.Бармакиной и Т.В.Ниловой, коэффициенты турбулентности на высотах 9-12 км, вычисленные по формуле (26), оказались равными 21-30 м²/сек., что согласуется с данными, приведенными в работе [17] и др.

Замеры видимых границ конденсационных следов осуществлялись с помощью аэрологических теодолитов ШТ.

Приведенные значения коэффициента турбулентности следует считать приближенными вплоть до получения более точного и обширного материала наблюдений.

Литература

1. Пинус Н.З.	Об экспериментальном исследовании вер-
	тикальных движений воздуха в свободно й
	атмосфере. Груды ЦАО, вып.5, 1952.
2. Лайхтман	Д.Л. Новый метод определения коэффициента
	турбулентной вязкости в погразичном
	слое атмосферы. Труды ГГО, вып.37 (99),
	1952.
3. Чуринова	М.П. Опыт вычисления коэффициента турбулент-
· · · · · · · · · · · · · · · · · · ·	ности по температурно-ветровому зонди-
	рованию. Труды ГГО, вып.63 (125), 1956.
4. Воронцов	П.А. Вертикальные пульсации в атмосфере по
	наблюдениям с самолета. Труды ГГО, вып.
	54 (116), 1955.
5. Селезнев	а Е.С. и Чуринова М.П. Некоторые
4	характеристики состояния атмосферы при
	развитии кучевых и кучево-дождевых об-
	лаков. Труды ГГО, вып.102, 1960.
6. Матвеев Л	.Т. Структурные функции вертикальной ско-
•	рости воздушного потока и новый способ
· · · · · ·	расчета коэффициента турбулентности в
	свободной атмосфэре. Труды ГГО, вып.78,
	1958.

7. Мушенко П.М.	Конденсация водяного пара в свобод-
	ной турбулентной струе. Труды ЛГМИ,
	вып.8, 1958.
8. Голеевский А.А.	Механика свободных струй. Машгив,
	Л., 1956.
9. Лойцянский Л.Г.	Механика жидкости и газов. ГИТТЛ,
	МЛ., 1950.
10. Абрамович Г.Н.	Теория турбулентных струй. Госэнерго-
	издат, МЛ., 1961.
11. Бородачев В.Я.	и Калихман Л.Е. Турбулент-
	ные свободные газовые струи при высо-
and the second	ких температурах и больших скоростях
	истечения. Б.Н.Т. М., 1947.
12. Вулис Л.А.	О турбулентных газовых струях. Изв.
	АН Казах.ССР, сер.энерг., № 6, 1952.
13. Добровольски	й О.В. Диффузия метеорных следов.
	Бюллетень астрономической обсерва-
	тории, 🛿 1. Изд. АН Таджикской ССР,
	Душанбе, 1952.
14. Appleman H.	The formation of exhaust condensation
	Bull. Amer. Meteorol. Soc., 34, 1953.
15 Френиць ФЦ	
ю. жречкиче ж.п.	срешней концентрации в поле олнорол-
	пол ред. Л. Г. Лойцянского и др. ИЛ. 1955.
16 Котмороров А.Н	Локальная структура турбулентнос ти
	в нескимаемой жидкости при очень боль-
	ших числах Рейнольдса. ДАН СССР, 30,
	1941.
17. Шнайдман В.А.	О стационарных волнах в области тро-
	попаузы. Труды ГГО, вып.107, 1961.

. *3*,1

e Marian Antonio de Granda de

Л. Ш. ЛИВШИЦ

К ЗАДАЧЕ О ДИФФУЗИИ ЛЕГКОЙ ПРИМЕСИ В АТМОСФЕРЕ

В полуэмпирической теории турбулентной диффузии принимается, что объемная концентрация Q(x,y,z) легких примесей от непрерывно действующего точечного источника производительности Q г/сек., расположенного на высоте H в атмосфере, удовлетворяет дифференциальному уравнению.

$$U\frac{\partial q}{\partial x} = \frac{\partial}{\partial x} \left(K_{x \partial x} \frac{\partial q}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial q}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial q}{\partial z} \right) + \left(\delta_{(x)} \delta_{(y)} \delta_{(z-H)} \right)$$
(1)

Здесь U – скорость ветра, направленного по оси ОСС ; K_{∞} , K_{y} , K_{z} – коэффициенты турбулентности; δ – дельта-функция Дирака.

Условие вваимодействия примеси с поверхностью земли записывается в виде

K ^z ³²	= B q	
	(B=const)	

Решению задачи о концентрации примеси посвящено много работ (см., например, обаор А.С.Монина "Атмосферная диффузия". Успехи физических наук, т. LXVIII, вып.1, 1959 г.). В этих работах уравнение (1) решается при условии, что K_x , K_y , K_z , а также Ц пропорциональны некоторым степеням высоты Z, что часто не имеет места. Кроме того, слагаемым $\frac{2}{3\infty}(K_x \frac{292}{3\infty})$ все авторы обычно пренебрегают, получая при этом вместо уравления эллиптического типа уравнение параболического типа.

В настоящей работе этот член уравнения сохраняется и выясняется влияние этого на величину наземной концентрации примеси. Для К₂ принята модель М.Е.Швеца и М.И.Юдина

$$K_{z} = \begin{cases} \frac{\kappa_{o}}{h} Z & \text{при } o \leq Z \leq h, \\ \kappa_{o} & \text{при } Z \geq h. \end{cases}$$
(3)

 $\Pi DM \mathbf{Z} = \mathbf{0}.$

(2)

 K_{∞} , K_{y} , U считаются постоянными; в граничном условии (2) принято $\beta = 0$ (условие "отражения"), т.е. считается, что поток частиц черев земную поверхность равен нулю

$$\lim_{z \to 0} \kappa_z \frac{\partial q}{\partial z} = 0.$$
 (4)

После замены

$$\frac{\alpha}{\sqrt{K_{x}}} = 3 ; \quad \frac{9}{\sqrt{K_{y}}} = \eta ; \quad \frac{u}{\sqrt{K_{x}}} = u$$
(5)

получим уравнение

$$U_{1} \frac{\partial q}{\partial z} = \frac{\partial^{2} q}{\partial z^{2}} + \frac{\partial^{2} q}{\partial \eta^{2}} + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial q}{\partial z}\right) + \frac{Q d(z) d(\eta) d(z-H)}{V K_{z} K_{y}} \cdot (6)$$

166 -

Ищем решение уравнения (6) в виде

$$q(z,\eta,z)=e^{rz}F(z,\eta,z),$$
 (7)

причем постоянную р выбираем так; чтобы исчев член уравнения, содержащий $\frac{\partial f}{\partial 3}$. Тогда при $p = \frac{U_1}{2}$ получим уравнение

$$-\frac{u_{i}^{2}}{4}\overline{F} + \frac{\partial^{2}\overline{F}}{\partial \overline{f}^{2}} + \frac{\partial^{2}\overline{F}}{\partial \overline{f}^{2}} + \frac{\partial^{2}\overline{E}}{\partial \overline{f}}(K_{z}\frac{\partial\overline{F}}{\partial \overline{f}}) = -\frac{Q_{0}(\overline{f})\delta(\underline{f})\delta(\underline{f}-H)}{\sqrt{K_{x}}K_{y}} \cdot (9)$$

Перейдем в уравнении (9) к цилиндрическим координатам и бу-дем искать его осесимметричное решение (т.е. $\frac{\partial \mathcal{F}}{\partial \Psi} = 0$). Для функции F(р,2) получим уравнение

$$-\frac{u_{i}^{2}}{4}\mathcal{F}+\frac{\partial}{\partial\rho^{2}}\mathcal{F}+\frac{1}{\rho}\frac{\partial\mathcal{F}}{\partial\rho}+\frac{\partial}{\partial\mathcal{F}}(K_{z}\frac{\partial\mathcal{F}}{\partial\mathcal{F}})=-\frac{Q\delta(\mathcal{B},\Psi)\delta(z-H)}{VK_{z}K_{y}}(10)$$

с граничными условиями

2-

$$\lim_{z\to 0} z \frac{3}{2} = 0 \qquad [следует из условия(4)(11)]$$

И

$$\lim \mathcal{F}(\rho, \mathcal{I}) = 0 \tag{12}$$

(естественное граничное условие на бесконечности).

Здесь б(Р, Ч) - двумерная дельта-функция.

Ищем решение (10) в виде

$$F(P,Z) = \int \lambda \mathcal{J}_{o}(\lambda P) \Phi(\lambda, Z) d\lambda, \qquad (13)$$

где Ј. - функция Бесселя нулевого порядка. Подставив (13) в (10), получим

$$\int \lambda \left[-\frac{u^2}{4} \int_{\mathcal{A}} \phi + \lambda^2 \int_{\mathcal{A}} \phi + \frac{\lambda}{p} \int_{\mathcal{A}} \phi + \int_{\mathcal{A}} \frac{d}{dx} \left(K_{\underline{x}} \frac{d\phi}{dx} \right) \right] dh = \frac{G \delta(p, \Psi) \delta(\underline{x} - H)}{\sqrt{K_{\underline{x}} K_{\underline{y}}}} (14)$$

В силу уравнения Бесселя

$$\Lambda^{2} \mathcal{J}_{o}^{"} + \frac{\lambda}{f} \mathcal{J}_{o}^{1} = -\Lambda^{2} \mathcal{J}_{o} .$$
 (15)

Преобразуем правую часть (10). Известно, что $\iint \delta(\rho, \psi) d\rho d\psi = 1$, (D) охватывает начало координат, следовательно, $\int d\psi \int \delta(\rho, \psi) \rho d\rho = \int d\psi \int \delta(\rho, \psi) d\rho d\psi$ = $2\pi \int \delta(p) p dp = 1$, откуда

 $\int \mathcal{S}(p) p d p = \frac{1}{2\pi}.$

(16)

)

[Здесь принято, что б(р,ч) не зависит от ч , Tak kak Mb Muen осесимметричное решение]. Применим к б(Р) формулу BA-BACCATE [9]

$$\delta(p) = \int_{0}^{\infty} J_{0}(\lambda p) d\lambda \int_{0}^{\infty} J_{0}(\lambda p) \delta(\mu) d\mu = J_{0}(0) \frac{1}{2\pi} \int_{0}^{\infty} J_{0}(\lambda p) d\lambda$$

воспользовались теоремой о среднем и формулой (16).

Следовательно, правая часть (14) может быть записана в ви-

$$-\frac{Q\delta(P)\delta(z-H)}{V\kappa_{x}\kappa_{y}} = -\frac{Q}{2\pi\sqrt{\kappa_{x}\kappa_{y}}}\int_{0}^{\infty}\sqrt{J}(\Lambda P)\delta(z-H)d\lambda$$

Тогда, учитывая (15), после сокращения на ЛЈ для функции ф(1,2) получим уравнение

$$-\left(\frac{u^{2}}{4}+\tilde{h}\right) \Phi(h,\tilde{z}) + \frac{d}{d\tilde{x}} \left[K_{\tilde{x}}\frac{d}{d\tilde{x}} \phi(h,\tilde{z})\right] = -\frac{Q\delta(\tilde{z}-H_{\tilde{z}})}{2\pi\sqrt{K_{x}}\kappa}$$
(17)

$$\lim_{z \to 0} z \frac{d\varphi}{dz} = 0$$
(18)

 $\lim_{z\to\infty} qp(\lambda, z) = 0.$ (19)

Примем для определенности, что высота излома коэффициента Куменьше высоты источника, т.е. h<H . Тогда уравнение (17) будет иметь различный вид в областях 042≤hи 2≥h. 1) В области 042≤h К_z= K₀Z,и уравнение (17) примет вид

$$\frac{1}{h}\frac{d}{dz}\left(z\frac{d\Phi}{dz}\right) \mathcal{A}^{2}\Phi=0, \qquad (20)$$

где обозначено

$$A^{2} = \frac{1}{K_{o}} \left(\frac{U_{1}^{2}}{4} + \lambda^{2} \right)$$
 (21)

Решение уравнения (20) запишется в виде

$$\boldsymbol{\phi}(\boldsymbol{\lambda},\boldsymbol{z}) = C_1 \mathcal{J}(\boldsymbol{i} \boldsymbol{b} \sqrt{\boldsymbol{z}}) + C_2 \mathcal{Y}(\boldsymbol{i} \boldsymbol{b} \sqrt{\boldsymbol{z}}), \qquad (22)$$

(23) B=2AVh.

Так как функция У имеет при Z = О логарифмическую особенность, то для выполнения условия (18) необходимо взять С2=0. Следовательно, в области 0424h решением (17) будет

$$\Phi(\lambda, z) = C, T_{-}(\beta\sqrt{z})$$

(24)

(27)

(І – функция Бесселя от чисто мнимого аргумента). 2) В области 2≥h К₂=К₂и уравнение (17) иримет вид

$$\frac{d^{2}\phi}{dz^{2}} - \int^{2} \phi = -\frac{Q}{2\pi K_{o} \sqrt{K_{x} K_{y}}} \delta(z - H)$$
(25)

Решение этого уравнения дает функция Грина, которая с учетом условия (19) может быть записана в виде

Ив условия, что скачок производной решения при 2 = Н равен

2JT K₀ V K_x K_y
$$C_{H} = \frac{\omega}{2 A}$$
,
rge odoshaveho $\omega = \frac{Q}{2 T K \sqrt{K K}}$

кл КуК_жКу Постоянные С₁ и С₃ определяем из условия непрерывности решения и его производной при Z = h

$$e^{-AH}(c_{3}e^{-Ah} + \frac{\omega}{2A}e^{-Ah}) = c_{1}I_{o}(\delta\sqrt{h}), \qquad (28)$$
$$e^{-AH}(-Ac_{3}e^{-Ah} + \frac{\omega}{2}e^{Ah}) = c_{1}I_{o}(\delta\sqrt{h})A.$$

Так как нас интересует решение лишь в приземной полосе, мы из системы (28) определяем лишь $C_1 = \frac{\omega e^{-A(H-h)}}{A[\underline{I}_{\bullet}(6\sqrt{h}) + \underline{I}'_{\bullet}(6\sqrt{h})]}$ и для решения уравнения (17) в этой полосе получим формулу

$$\Phi(\lambda, z) = \frac{\omega e^{-\mathcal{A}(H-h)} \mathbf{I}_{o}(\mathbf{b}\sqrt{z})}{\mathcal{A}[\mathbf{I}_{o}(\mathbf{b}\sqrt{h}) + \mathbf{I}_{-1}(\mathbf{b}\sqrt{h})]}$$
(29)

Подставляя (29) в (13) и используя (7) и (5), получим выражение для концентрации примеси в полосе 04 2 4 h

$$q(\mathbf{x},\mathbf{y},\mathbf{z}) = \omega e^{\frac{\omega \pi}{2\kappa_{\pi}}} \int_{0}^{\infty} \int_{0}^{\infty} (\lambda \sqrt{\frac{\pi^{2}}{\kappa_{\pi}} + \frac{y^{2}}{\kappa_{y}}}) \frac{e^{-\mathcal{J}(\mathbf{H}-\mathbf{h})} \mathbf{I}_{o}(\mathbf{6}\sqrt{\mathbf{z}})}{\mathcal{J}[\mathbf{I}_{o}(\mathbf{6}\sqrt{\mathbf{h}}) + \mathbf{I}_{-1}(\mathbf{6}\sqrt{\mathbf{h}})]} d\lambda, (30)$$

где А, в и со определяются по (21), (23) и (27). При Z = О получим формулу для концентрации на поверхности

NTHOO

$$q(x,y,o) = \omega e^{\frac{Ux}{2\kappa_x}} \int_{0}^{\infty} \Lambda \int_{0}^{\infty} \left(\Lambda \sqrt{\frac{x^2}{\kappa_x} + \frac{y^2}{\kappa_y}} \right) \frac{e^{-A(H-h)}}{A[I_{0}(8\sqrt{h}) + I_{-1}(8\sqrt{h})]}$$
(31)

- 168

Величина $b\sqrt{h} = \frac{2h}{\sqrt{K_o}} \sqrt{\frac{U^2}{4K_x} + \lambda^2}$ достаточно велика (например, при $U = 5 \text{ м/сек}, K_s = 10 \text{ м}^2/сек., K_x = 60 \text{ м}^2/сек., h = 80 \text{ м}, \lambda = 0 \text{ bVh} > 16 и возрастает при возрастании <math>\lambda$), что повволяет воспользоваться асимптотическими формулами для функций Бесселя

$$I_{p}(\mathbf{x}) \sim \frac{e^{2}}{\sqrt{2\pi}\mathbf{x}}$$
 (32)

Известно также [2], что

$$e^{-x} \sim \mathcal{K}_{\rho}(x) \sqrt{\frac{2x}{\pi}}$$
(33)

[вдесь $\mathcal{K}_{p}(x)$ - функция Макдональда]. Преобразуя дробь, стоящую под знаком интеграла в (31), поль-зуясь (32) и (33) и учитывая, что $6\sqrt{h} = 2\betah$, получим - β (H-h)

$$\frac{e^{-\mathcal{A}(H+h)}}{\mathcal{A}[\underline{I}_{\circ}(\mathcal{B}\sqrt{h})+\underline{I}_{-1}(\mathcal{B}\sqrt{h})]} = \sqrt{2h(H+h)} \mathcal{K}_{\circ}[\mathcal{A}(H+h)] . (34)$$

Интеграл в (31) примет вид

$$\sqrt{2h(H+h)}\int_{V}^{\infty} \lambda \mathcal{J}_{o}(\lambda \sqrt{\frac{x^{2}}{K_{x}}} + \frac{y^{2}}{K_{y}})\mathcal{J}_{o}\left[(H+h)\frac{4}{\sqrt{K_{o}}}\sqrt{\frac{U^{2}}{4K_{x}}} + \lambda^{2}\right]d\lambda(35)$$

и берется в конечном виде. Согласно [3] имеем

$$\int_{0}^{\infty} \lambda \mathcal{J}_{o}\left(\lambda \sqrt{\frac{x^{2}}{\kappa_{x}} + \frac{y^{2}}{\kappa_{y}}}\right) \mathcal{K}_{o}\left[\left(H+h\right)_{\sqrt{\kappa_{o}}}^{I} \sqrt{\frac{\mu^{2}}{4\kappa_{x}} + \frac{y^{2}}{\kappa_{o}}}\right] d\lambda = \frac{\mu \mathcal{K}_{-1}\left[\frac{\mu}{2\sqrt{\kappa_{x}}} \sqrt{\frac{(H+h)^{2}}{\kappa_{o}} + \frac{x^{2}}{\kappa_{x}} + \frac{y^{2}}{\kappa_{y}}}\right]}{2\sqrt{\kappa_{x}} \sqrt{\frac{(H+h)^{2}}{\kappa_{o}} + \frac{x^{2}}{\kappa_{x}} + \frac{y^{2}}{\kappa_{y}}}}$$
(36)

Подставив (36) в (31) й воспользовавшись (33), носле несложных преобразований получим расчетную формулу для величины наземной концентрации примеси

$$q(x,y,o) = \frac{Q\sqrt{uh(H+h)}}{2\kappa_o\sqrt{2\pi}\kappa_y} \quad \underbrace{\frac{Ux}{2\kappa_x} \left[1 - \sqrt{1 + \frac{y^2}{x^2}} \frac{\kappa_x}{\kappa_y} + \left(\frac{H+h}{x}\right)^2 \frac{\kappa_x}{\kappa_o}}{2\kappa_o\sqrt{2\pi}\kappa_y} \right]^{(37)}$$

Полагая Ц = 0, получим расчетнув формулу для концентрации на наземной оси источника

$$q(x,0,0) = \frac{q\sqrt{uh(H+h)}}{2\kappa_{o}\sqrt{2\pi}\kappa_{y}} \frac{e^{\frac{Ux}{2\kappa_{x}}\left[1-\sqrt{1+\left(\frac{H+h}{x}\right)^{2}}\frac{Kx}{\kappa_{o}}\right]}}{x\sqrt{x}\sqrt[4]{\left[1+\left(\frac{H+h}{x}\right)^{2}}\frac{Kx}{\kappa_{o}}\right]^{3}} . (38)$$

Перейдем к выявлению влияния члена уравнения $K_x \frac{\partial^2 Q}{\partial x^2}$ на величину концентрации примеси.

Устремляя в формулах (37) и (38) К_х к нулю, получим формулы для расчета концентрации при условии, что $K_{x} = \frac{32.9}{30x^{2}}$ опущен:

$$\bar{q}(x,y,0) = \lim_{K_x \to 0} q(x,y,0) = \frac{\alpha \sqrt{uh(H+h)}}{2\kappa_0 \sqrt{2\pi}\kappa_y} \frac{\bar{\ell}^{\frac{\mu}{4x}} \left[\frac{y^2}{\kappa_y} + \frac{(H+h)}{\kappa_0}\right]}{\alpha \sqrt{x}}$$
(39)

 $\overline{q}(x,0,0) = \lim_{K_x \to 0} q(x,0,0) = \frac{Q\sqrt{U(H+h)h}}{2K_0\sqrt{2\pi}K_y} \frac{e^{-\frac{U(H+h)^2}{4xK_0}}}{2\sqrt{x}}$ -•(40)

В области, где

$$\frac{y^2}{x^2} - \frac{\kappa_x}{\kappa_y} + \left(\frac{H+h}{x}\right)^2 \cdot \frac{\kappa_x}{\kappa_o} < 1, \qquad (41)$$

получим, разрагая подкоренные выражения в (37) в ряды и деля (37) на (39),

$$\frac{q(x,y,0)}{\bar{q}(x,y,0)} = \frac{e^{\frac{Ux}{16\kappa_{x}}\left[\frac{y^{2}}{x^{2}}\frac{K_{x}}{K_{y}} + \left(\frac{H+h}{x}\right)^{2}\frac{K_{x}}{K_{o}}\right]^{2}}}{1 + \frac{3}{4}\left[\frac{y^{2}}{x^{2}}\frac{K_{x}}{K_{y}} + \left(\frac{H+h}{x}\right)^{2}\frac{K_{x}}{K_{o}}\right]} \qquad (42)$$

Из формулы (42) следует, что, опуская в уравнении диффузии член К 224, мы получаем заниженное значение концентрации примеси на поверхности вемли, причем относительная погрешность возрастает с возрастанием у [в пределах, допустимых услови-ем (41)] и может достигать при фиксированном ж величины по-PIEKx рядка

. Для наземной оси источника получим

$$\frac{q(x,0,0,)}{\bar{q}(x,0,0)} = \frac{\frac{U_x}{16K_x} \left(\frac{H+h}{x}\right)^4 \left(\frac{K_x}{K_o}\right)^2}{1+\frac{3}{4} \left(\frac{H+h}{x}\right)^2 \frac{K_x}{K_o}}.$$
(43)

Из формулы (43) следует, что погрешность на наземной OCN источника уменьшается при возрастании 🕱 .

Результаты расчета $\frac{4}{3}$, произведенного при H = 100 м; h = 80 м; U = 5 м/сек.; K_{x} = 20 м²/сек. и K_{o} = 10 м²/сек., приведены в табл.1.

Таким образом, относительное влияние члена К на величину концентрации велико лишь на больших расстояниях от наземной оси источника и на небольшом участке самой наземной оси.

- 171

Табляцо 1

x	400	600	800	1000	1500	2000
2 12	2,25	1,20	1,13	1,07	1,02	1,00

Однако, учитывая, что величина концентрации на этих участках земной поверхности очень мала, мы приходим к выводу, что для упрощения решения уравнения дифрузии член уравнения $k_{\chi \partial x^2}$ может быть опущен.

 Литература
 Монин А.С. Атмосферная диффузия. "Успехи физических наук", т. LXУШ, вып.1, 1959.
 Смпрнов В.И. Курс высшей математики, т.Ш, ч.П, ГТТИ, М.-Л., 1951.
 Рыжик И.М. и Градштейн И.С. Таблицы интегралов, сумм, рядов и произведений. ГТТИ,

М.-Л., 1951.

Я. С. РАБИНОВИЧ

РЕШЕНИЕ ЦИКЛА КРАЕВЫХ ЗАДАЧ О ДИФФУЗИИ ПРИМЕСИ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ

§ 1. Общая математическая постановка

Методом сопряженных операторов решается уравнение

$$(z)\frac{\partial \Psi}{\partial x} = \frac{\partial}{\partial z} K(z)\frac{\partial \Psi}{\partial z}$$
 (1)

с линейными краевыми условиями для функции Ч и ее производной ЭЧ. Коэффициенты К (2) и U(2)меняются по степенному

$$K(Z) = K_1(\frac{Z}{Z_1})^n, \quad n = 4 - \varepsilon,$$

 $u(Z) = U_1(\frac{Z}{Z_1})^m$
(2)

или экспоненциальному закону

$$K(Z) = K_{H}e^{-\delta(Z-H)}, \quad \delta \ge 0,$$

 $U(Z) = U_{H}e^{\delta(Z-H)}, \quad \delta \le 0.$ (3)

Область задания функции (конечная или бесконечная) ограничена кусочно-гладкой кривой. Относительно функции φ и ее производных выдвигаются обычные предпосылки, связанные с использованием формулы. Грина. Такой формулировкой охвачен широкий класс вопросов теплопроводности, диффузии, электродинамики.

Уравнению (1) можно сопоставить пару сопряженных операто-

^{poB:}
$$\mathcal{J}(\boldsymbol{\varphi}) = \frac{\partial}{\partial z} K(z) \frac{\partial \boldsymbol{\varphi}}{\partial z} - U(z) \frac{\partial \boldsymbol{\varphi}}{\partial x}, \qquad (4)$$

$$M(v) = \frac{\partial}{\partial z} \kappa(z) \frac{\partial v}{\partial z} + U(z) \frac{\partial v}{\partial x}.$$
(5)

К тождеству

$$v \mathcal{L}(\varphi) - \varphi M(v) = \frac{\partial}{\partial z} \left[v \kappa \frac{\partial \varphi}{\partial z} - \varphi \kappa \frac{\partial v}{\partial z} \right] - u \frac{\partial}{\partial x} (\varphi v) = 0$$

[Чи V - решения уравнений L(Ч)=0, М(У)=0] применяем формулу Грина в системе осей, ивображенных на рис.1.

Тогда

$$\int \left[\mathcal{V} \mathbf{K} \frac{\partial \Psi}{\partial z} - \Psi \mathbf{K} \frac{\partial \Psi}{\partial z} \right] dx - \mathcal{U} \Psi \mathcal{V} dz = 0. \quad (6)$$

Отправляясь от формулы (6), нетрудно сконструировать ряд практически интересных решений. Для дальнейшего удобно ввести новые переменные:

$$3=a_1 z^{m-n+z}$$
, $a_1 = \frac{U_1}{K_1 Z_1^{m-n} (m-n+2)^2}$, (7)

если коэффициенты К (Z) и U (Z) заданы в форме (2), и

$$\eta = \eta_{H} e^{(\delta + \delta)(2 - H)}, \quad \eta_{H} = \frac{u_{H}}{\kappa_{H} (\delta + \delta)^{2}}, \quad (6)$$

если К(Z)иЦ(Z)заданы в форме (3). Операторы (4), (5) и интеграл (6) преобразуются:

$$M_{i}(v) = \frac{\partial^{2} v}{\partial \frac{3}{2}} - \frac{1+\gamma_{2}}{3} \frac{\partial v}{\partial \frac{3}{2}} + \frac{1}{3} \frac{\partial v}{\partial x} + \frac{1+\gamma_{2}}{3} = 0, \qquad (5')$$

$$i = 1, 2; \quad \mathfrak{F}_{1} = \mathfrak{F}_{2}, \qquad \mathfrak{F}_{2} = \mathfrak{f}_{1},$$

1/ уравнение типа (4') было изучено Кепинским. Он получил решение, зависящее от произвольной функции f(w):

$$\varphi = \frac{\eta^{\frac{2}{4}}}{\infty} \int \exp\left\{-\frac{\eta+w}{\infty}\right\} \quad \int_{V} \left(\frac{2i\sqrt{\eta}w}{\infty}\right) f(w) dw$$

$$\int_{e} \left[v \frac{\partial \varphi}{\partial \hat{x}_{i}} - \varphi \frac{\partial v}{\partial \hat{x}_{i}} + \frac{1+\gamma_{i}}{\hat{x}_{i}} v \varphi \right] dx + \frac{\varphi v}{\hat{x}_{i}} d\hat{x}_{i}^{=}$$

$$= \int_{e} 3^{1+\gamma_{i}} \left[\overline{v} \frac{\partial \varphi}{\partial \hat{x}_{i}} - \varphi \frac{\partial v}{\partial \hat{x}_{i}} \right] dx + \frac{\varphi v}{\hat{x}_{i}} d\hat{x}_{i}^{=} 0, \quad (6')$$

$$\overline{v} = \hat{x}_{i}^{-(i+\gamma_{i})} v.$$

174

Решение уравнения М; (у) ищем в виде функции источника

$$\mathcal{V}_{i} = \left(\frac{\frac{3}{2}i}{x_{o}^{-}x}\right)^{1+k_{i}} \mathcal{U}\left[\frac{\frac{3}{2}i}{(x_{o}^{-}x)^{2}}\right] e^{-\frac{\frac{3}{2}i+\frac{3}{2}i}{(x_{o}^{-}x)^{2}}}$$

Подстановка в (5') дает уравнение

$$\mathcal{H}_{i}\frac{d^{2}u}{d\boldsymbol{e}^{2}} + (1+\mathcal{V}_{i})\frac{du}{d\mathcal{H}_{i}} - \boldsymbol{u} = 0, \quad \mathcal{H}_{i} = \frac{3}{(\boldsymbol{x}_{o}-\boldsymbol{x})^{2}},$$

которое приводится к уравнению Бесселя. Его решение

$$\mathcal{U} = \left(\frac{\sqrt{3} \cdot \overline{3} \cdot \sigma}{x_{\circ} - x} \right)^{-\gamma_{i}} \left\{ AI \left(\frac{2\sqrt{3} \cdot \overline{3} \cdot \sigma}{x_{\circ} - x} \right) + BI \left(\frac{2\sqrt{3} \cdot \overline{3} \cdot \sigma}{x_{\circ} - x} \right) \right\}.$$

$$\mathcal{V}_{i} = \left(\frac{3_{i}}{x_{o}-x}\right)^{1+V_{i}} \left(\frac{\sqrt{3_{i}}}{x_{o}-x}\right)^{V_{i}} \left\{ A I \left(\frac{2\sqrt{3_{i}}}{y_{i}} \frac{3_{io}}{x_{o}-x}\right) + B I \left(\frac{2\sqrt{3_{i}}}{x_{o}-x}\right)^{\frac{3_{i}+3_{io}}{2-x}} \right) e^{\frac{3_{i}+3_{io}}{2-x}} (9)$$

Теперь можно получить решения ряда краевых задач уравнения (1), зависящие от значений функции φ и ее производной на границах.

Рассмотрим конкретный вопрос о распространении пассивной примеси от непрерывно действующего точечного источника, расположенного на некоторой высоте h, в двуслойной атмосфере: коэффициент турбулентности K(Z) и скорость ветра U(Z) для нижнего слоя аппроксимируются формулами (2), для верхнего слоя - формулами (3). Линией раздела слоев служит горизонталь Z = H.

Задача ставится так: найти решения уравнения (1), непрерывные вместе со своими производными в областях 0424Н иН424∞(х>0). Краевые условия:

$$\varphi(o, z) = \frac{\sigma}{u(h)} \delta(z - h), \qquad (10)$$

(11)

 $(\mathcal{T} - \text{MOUTOUTBUCTBUCTOUTURA}),$ b) npu $\mathbb{Z} \rightarrow \infty \qquad \varphi($

$$\varphi(\infty, \mathbb{Z}) \longrightarrow 0,$$

$$K(\mathbb{Z}) \frac{\partial \Psi}{\partial \mathbb{Z}} \longrightarrow 0,$$

в) на границе сопряжения областей

$$\left.\begin{array}{l}\left.\left.\left.\left(x,z\right)\right|_{z=H-0}\right.=\left.\left.\left.\left(x,z\right)\right|_{z=H+0}\right.\right.\right.\right.\right.\\\left.\left.\left.\left.\left(z\right)\frac{\partial\Psi}{\partial z}\right|_{z=H-0}\right.=\left.\left.\left.\left(z\right)\frac{\partial\Psi}{\partial z}\right|_{z=H+0}\right.\right.\right.\right.\right.\right.\right.$$

В частности, при наличии на границе Z = Н полностью запирающего слоя будет

(12)

$$K(z)\frac{\partial \Psi}{\partial z}\Big|_{z=H=0} = K(z)\frac{\partial \Psi}{\partial z}\Big|_{z=H=0} = 0, \qquad (13)$$

r) на подстилающей поверхности Z = 0

 $K(z) \frac{\partial T}{\partial z} \Big|_{z=0} = 0$ (условие полного отражения) (14) или

 $\varphi(x, z) \Big|_{z=0} = 0$ (условие полного поглощения). (15)

Переход от плоской задачи к пространственной совершается по статистической формуле

$$q(x,y,z) = e^{-\frac{y}{2\overline{y}^2(x,\overline{z})}} \frac{\varphi(x,\overline{z})}{\sqrt{2\overline{x}} \overline{y}^2(x,\overline{z})}, \qquad (16)$$

 $\tilde{y}^{*}(x, \tilde{x})$ - среднее квадратичное рассеяние примеси в направлении оси у (см. [2]).

Мы не вдаемся здесь в физическую сторону вопроса: она освещена в монографии Д.Л.Лайхтмана [2]. Области $0 \le x \le H$, $x \ge 0$ на плоскости (3, x) соответствует полоса $0 \le 3 \le 3$, $x \ge 0$; области $z \ge H, x \ge 0$ на плоскости (η, x) – полоса

$$\eta \ge \eta_{H}, \quad \mathfrak{X} \ge 0 \quad g_{\Lambda \mathfrak{R}} \quad \delta^{+} \mathfrak{B} > 0 \quad (17)$$

$$(\eta \rightarrow \infty \quad \mathsf{прu} \quad \mathbb{Z} \rightarrow \infty) \quad (17)$$

$$0 \leq \eta \leq \eta_{H}, \quad x \geq 0 \quad g_{\Lambda \beta} \quad \delta + 6 \leq 0 \\ (\eta \rightarrow 0 \qquad npu \quad Z \rightarrow \infty). \tag{17}$$

Полевно отметить, что в плоскости (3, x)

$$\begin{aligned} & \Psi_{I}\left(0,\frac{3}{h}\right) = \Psi_{I}\left(0,h\right) = \frac{x_{I}h}{\kappa(h)(m-n+2)} \quad \delta_{J}^{3}_{h} \\ & \left(\frac{3}{h}\right) = \frac{U_{I}}{\kappa(h)(m-n+2)} \quad \left(\frac{3}{a_{I}}\right)^{1+Y_{I}} \quad \frac{\partial\Psi_{I}}{\partial\frac{3}{2}} \\ & \kappa(z)\frac{\partial\Psi_{I}}{\partial z} = \frac{U_{I}}{z_{I}^{m}(m-n+2)} \quad \left(\frac{3}{a_{I}}\right)^{1+Y_{I}} \quad \frac{\partial\Psi_{I}}{\partial\frac{3}{2}} \\ & \frac{3}{h} = \frac{U_{H}}{K_{H}} \quad \left(\frac{H}{m-n+2}\right)^{2}; \end{aligned}$$
(18)

В плоскости (η, ∞) : если h > H, $\Psi_2(0, \eta_h) = \Psi_2(0, h) = \pm \frac{\Im_2}{\kappa(h)(\delta+6)} \delta \eta_h \begin{pmatrix} +: \delta+b > 0 \\ -: \delta+b < 0 \end{pmatrix}$, (19) $(\eta_h - высота источника)$,

$$\kappa(z) \frac{\partial \varphi_{2}}{\partial z} = \frac{u_{H}}{\delta + \beta} \left(\frac{\eta}{\eta_{H}} \right)^{1+\nu_{2}} \frac{\partial \varphi_{2}}{\partial \eta} \qquad \left(\delta + \beta \gtrless 0 \right)$$

(б3h, бу_h - нормированные дельта-функции).

Здесь и в дальнейшем индексом "І" отмечаются величины, относящиеся только к нижнему слою $Z \leq H$, индексом " 2° – относящиеся только к верхнему слою атмосферы $Z \geq H$. Применим формулу (6') к плоскости ($\infty, 3$). С этой целью выделим прямоугольник $0 \leq 3 \leq 3_{H}$ и $0 \leq \infty < x_{1} < x_{2}$ (см. рис. 2, направление обхода контура указано стрелками).

Рис.2.

Ha yuactke (1) dx = 0, $J_{1} = \int_{\ell}^{3} \int_{1}^{1+\gamma_{1}} \left[\overline{v}_{1} \frac{\partial \varphi_{1}}{\partial g} - \varphi_{1} \frac{\partial \overline{v}_{1}}{\partial g} \right] dx + \frac{\varphi_{1} v_{1}}{g} dg = \int_{(1)}^{\varphi_{1} v_{1}} dg = -\int_{0}^{3} \int_{1}^{\varphi_{1} v_{1}} dg dg = \int_{(1)}^{\varphi_{1} v_{1}} dg dg = \int_{(1)}^{\varphi_{1} v_{1}} dg dg = \int_{0}^{\varphi_{1} v_{1}} \int_{0}^{\varphi_{2} v_{1}} dg dg = 0$, Ha yuactke (2) dg = 0, $J_{2} = \int_{g \to 0}^{g \to 0} \int_{0}^{1+\gamma_{1}} \int_{0}^{\infty} \left[\overline{v}_{1} \frac{\partial \varphi_{1}}{\partial g} - \varphi_{1} \frac{\partial \overline{v}_{1}}{\partial g} \right] dx$. Ha yuactke (3) - вдоль отрезка x = x, dx = 0, Ha yuactke (4) dg = 0, $J_{3x_{1}+x_{0}} \int_{0}^{3+\varphi_{1}} \frac{\varphi_{1} v_{1}}{g} dg$.

$$J_{\mu} = -\tilde{a}_{\mu}^{\mu\nu} \int \left[\overline{v}_{i} \frac{\partial \varphi_{i}}{\partial \tilde{g}} - \varphi_{i} \frac{\partial v_{i}}{\partial \tilde{g}} \right]_{\tilde{g}} dx,$$

Это рассуждение можно повторить и для области (∞, η): уравнения L (\mathcal{C}) = 0 и L(\mathcal{C}_2) =, M (\mathcal{T})= 0 и M(\mathcal{T}_2)= 0 совершенно идентичны. Необходимо лишь учитывать, что координате $Z = \infty$ при S+B>0 на

плоскости (x, η) соответствует $\eta = \infty$, а при $\delta + \beta < 0 - \eta = 0$; граница Z=H в обоих случаях эквивалентна линии $\eta = \eta_{\mu}$. Соответственно условиям на подстилающей поверхности (14) и (15) изучим раздельно два процесса:

1) распространение примеси от непрерывно действующего точечного источника при условии полного отражения примеси от подсти-лающей поверхности (при 3 = 0, $3^{1+V} \frac{2V}{33} = 0$);

2) то же при условии полного поглощения примеси на подстилающей поверхности $[3=0, \varphi(x,0)=0]$.

В первом случае положим в решении (9) сопряженного уравнения для нижнего слоя М(𝚓) = О постоянную В≈О, тогда

$$\mathcal{V}_{I} = \frac{3}{(x_{o}-x)^{1+\nu_{I}}} \left(\frac{\sqrt{3} \cdot 3}{x_{o}-x} \right)^{-\nu_{I}} \left[\frac{2\sqrt{3} \cdot 3}{x_{o}-x} \right) e^{-\frac{3}{2} \cdot \frac{3}{2}},$$

$$\overline{\mathcal{V}}_{I} = \frac{1}{(x_{o}-x)^{1+\nu_{I}}} \left(\frac{\sqrt{3} \cdot 3}{x_{o}-x} \right)^{\nu_{I}} \left[\frac{2\sqrt{3} \cdot 3}{x_{o}-x} \right) e^{-\frac{3}{2} \cdot \frac{3}{2}},$$
(20)

Во втором случае полагаем там же А=О, тогда

$$\mathcal{V}_{i} = \left(\frac{3}{x_{o}-x}\right)^{i+V_{i}} \left(\frac{\sqrt{3}}{3}\frac{3}{x_{o}-x}\right)^{V_{i}} \left[\underbrace{2\sqrt{3}}_{-V_{i}} \left(\frac{2\sqrt{3}}{x_{o}-x}\right)^{-\frac{N}{N}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{1}_{-V_{i}} \underbrace{$$

$$\mathcal{V}_{2}=\left(\frac{\eta}{x_{o}-x}\right)^{4+\nu_{2}}\left(\frac{\sqrt{\eta_{o}\eta}}{x_{o}-x}\right)^{-\nu_{2}}\left[\frac{2\sqrt{\eta_{o}\eta}}{x_{o}-x}\right]e^{-\frac{\eta_{o}+\eta}{x_{o}-x}},$$

$$\tilde{\mathcal{V}}_{2}=\frac{4}{(x_{o}-x)^{4+\nu_{2}}}\left(\frac{\sqrt{\eta_{o}\eta}}{x_{o}-x}\right)^{-\nu_{2}}\left[\frac{2\sqrt{\eta_{o}\eta}}{x_{o}-x}\right]e^{-\frac{\eta_{o}+\eta}{x_{o}-x}}.$$
(22)

§ 2. Распространение примеси от высотного точечного источника при условии полного отражения от подстилающей поверхности

Каждый из выписанных ранее интегралов \mathcal{J}_{κ} подвергнем более детальному анализу с учетом краевых условий (10), (11), (14). а) Интеграл Уд после подстановки условия (10), взятого в

форме (18), можно записать в конечном виде = 3h+ 3.

$$\mathcal{Y}_{i} = - \frac{\mathfrak{F}_{i} h}{\kappa (h) (m-n+2)} \left(\frac{\mathfrak{Z}_{h}}{\mathfrak{Z}_{o}} \right)^{\mathbb{Z}} \frac{1}{\mathfrak{X}_{o}} \left[\int_{\mathcal{V}} \left(\frac{2 \sqrt{\mathfrak{Z}_{h}} \mathfrak{Z}_{o}}{\mathfrak{X}_{o}} \right) e^{-\frac{\mathfrak{X}_{o}}{\mathfrak{X}_{o}}} \right]$$

При этом подразумевается, что источник расположен ниже линии раздела слоев, т.е. h < H. Если h > H, то $\tilde{J}_1 = 0$ и $\tilde{J}_1 = 0$. б) Интеграл $\tilde{J}_2 = 0$, так как при $\tilde{J} \to 0$, $\tilde{J}^{4+V} \frac{\partial V}{\partial \tilde{J}} \to 0$ [по условию (14), см. также (18)], $\tilde{v} \sim 1, \frac{\partial \tilde{v}}{\partial \tilde{a}} \sim 1, \quad \tilde{J}^{4+V_1} \frac{\partial \tilde{v}}{\partial \tilde{a}} \to 0$ ($1+V_1 = \frac{m+4}{m+5+4} > 0$).

$$b) \int_{3}^{3} = \int_{0}^{3} \frac{\psi_{i}}{2} \frac{\psi$$

Если $\mathfrak{X}_{1} \rightarrow \mathfrak{X}_{o}$, то

$$\int_{3}^{3} = \frac{1}{2\sqrt{3\pi}} \int_{0}^{3} \varphi_{1}(x_{1}, \frac{3}{2}) \left(\frac{\frac{3}{2}}{\frac{3}{2}}\right)^{\frac{2\gamma_{1}+1}{4}} \frac{-(\sqrt{3}-\frac{\sqrt{3}}{2})^{2}}{\sqrt{(x_{0}-x_{1})^{3}}} d\frac{3}{2}$$

Произведем замену переменных:

$$U = -\frac{\sqrt{3} - \sqrt{3}}{\sqrt{x_{0} - x_{1}}}, \quad du = \frac{d^{\frac{3}{2}}}{2\sqrt{(x_{0} - x_{1})^{\frac{3}{2}}}}, \quad \dot{\beta} = (U\sqrt{x_{0} - x_{1}} + \dot{\beta})^{2},$$

$$\int_{3}^{1} = \frac{1}{\sqrt{3}} \int_{\sqrt{x_{0} - x_{1}}}^{\sqrt{3} - \sqrt{3}} (\sqrt{x_{0} - x_{1}} + \sqrt{3})^{2} \int_{\sqrt{3}}^{2\frac{\sqrt{3} - \sqrt{3}}{\sqrt{x_{0} - x_{1}}}} (\sqrt{y_{1}} - \sqrt{y_{1}} + \sqrt{y_{1}})^{2}) \left[\frac{(u\sqrt{x_{0} - x_{1}} + \sqrt{3})^{2}}{\frac{3}{2}} \int_{-\frac{\sqrt{3}}{2}}^{\frac{2\sqrt{3} + 1}{\sqrt{3}}} (\sqrt{y_{1}} - \sqrt{y_{1}} + \sqrt{y_{1}})^{2}) \int_{-\frac{\sqrt{3}}{2}}^{\frac{2\sqrt{3} + 1}{\sqrt{3}}} (\sqrt{y$$

 $\sqrt{x_{0}-x_{1}}$ Переход к пределу по $x_{1} \rightarrow x_{0}$ дает $J_{3} = \Psi_{1}(x_{0}, 3)$. г) Четвертый интеграл остается в первовданном виде

$$\mathcal{Y}_{\mu} = -\mathfrak{Z}_{\mu}^{1+\gamma_{1}} \int \left[\overline{\mathcal{V}}_{1} \frac{\partial \varphi_{1}}{\partial \mathfrak{Z}} - \varphi_{1} \frac{\partial \overline{\mathcal{V}}_{1}}{\partial \mathfrak{Z}} \right] dx.$$

Суммарный интеграл по всему периметру прямоугольника s

$$\begin{aligned}
\int_{e} = J_{1} + J_{2} + J_{3} + J_{4} = 0, \\
\text{OTCKDERS} \\
\Psi_{1} \left(x_{o}, \tilde{J}_{o}\right) = \frac{\mathcal{T}_{4} h}{\kappa(h)(m-n+2)} \cdot \left(\frac{\tilde{J}_{h}}{\tilde{J}_{o}}\right)^{\frac{1}{2}} \frac{1}{x_{o}} \int_{V_{1}} \left(\frac{2\sqrt{\tilde{J}_{o}}\tilde{J}_{h}}{x_{o}}\right) e^{-\frac{\tilde{J}_{a}+\tilde{J}_{h}}{x_{o}}} + \\
&+ \tilde{J}_{H}^{1+V_{1}} \int_{0}^{\infty} \left[\bar{V}_{1} \frac{\partial\Psi_{1}}{\partial\tilde{J}} - \Psi_{1} \frac{\partial\overline{V}_{1}}{\partial\tilde{J}}\right]_{\tilde{J}} dx. \quad (23)
\end{aligned}$$

s /

Формула (23) определяет концентрацию примеси в нижнем слое. Первый член, зависящий от мощности источника $\mathcal{J}_4(\mathcal{J}_4 = 0, \text{ если ис$ точник в нижнем слое отсутствует), выражает поле концентраций $от точечного источника в однослойной атмосфере (<math>H = \infty$). После замены $\mathcal{J}_0, \mathcal{J}_{h_c}$ черев номинальную высоту Ξ по формуле (7) и V_1 черев $-\frac{1}{m+E+4}$ он точно соответствует формуле, полученной в 1947 г. Д.Л.Лайхтманом:

$$\Psi_{4}(x, z) = \frac{\chi_{4} Z_{4}^{4-\varepsilon} (zh)^{\frac{\varepsilon}{2}}}{(m+\varepsilon+1)\kappa_{1}x} e^{-\frac{z^{m+\varepsilon+1}+h^{m+\varepsilon+1}}{(m+\varepsilon+1)^{2}\frac{\kappa_{1}}{U_{1}}z^{m+\varepsilon+1}x} \int_{\frac{\varepsilon}{m+\varepsilon+1}} \left[\frac{2(zh)^{\frac{m+\varepsilon+1}{2}}}{(m+\varepsilon+1)^{2}\frac{\kappa_{1}}{U_{1}}z^{m+\varepsilon-1}x}\right].$$

Второе интегральное слагаемое формулы (23) учитывает зависимость поля концентраций от потока вещества через верхнюю границу и граничного (при Z = H, $\bar{J} = \bar{J}_{\mu}$) значения самой концентрации $\Psi(x, H)$. Причем математически поток вещества через границу приравнивается системе-источников, непрерывно распределенных на отрезке Z = H, $\propto \in [0, \infty]$.

Совершенно аналогичным образом для верхнего слоя Z≥H будет:

$$\begin{split} \Psi_{R}\left(\chi_{o},\eta_{o}\right) &= \frac{\overline{\partial_{R}}}{H(h)(\delta+6)} - \left(\frac{\eta_{h}}{\eta_{o}}\right)^{\frac{N_{2}}{2}} \frac{4}{\chi_{o}} \int \left(\frac{2\sqrt{\eta_{h}\eta_{o}}}{\chi_{o}}\right) e^{-\frac{\eta_{o}+\eta_{h}}{\chi_{o}}} - \\ &- \eta_{H}^{1+\frac{N_{2}}{2}} \int \left[\overline{\tilde{\mathcal{Y}}_{2}} \frac{\partial \Psi_{2}}{\partial \eta} - \Psi_{2} \frac{\partial \overline{\mathcal{Y}}_{2}}{\partial \eta}\right] dx \quad (\delta+b>0) \quad (24) \end{split}$$

$$\begin{split} H_{R} &\Psi_{2}(\chi_{o},\eta_{o}) = -\frac{\overline{\partial_{2}}}{K(h)(\delta+6)} \left(\frac{\eta_{h}}{\eta_{o}}\right)^{\frac{N_{2}}{2}} \frac{4}{\chi_{o}} \int \left[\frac{2\sqrt{\eta_{h}\eta_{o}}}{\chi_{o}}\right] e^{-\frac{\eta_{o}+\eta_{h}}{\chi_{o}}} + \\ &+ \eta_{H}^{1+\frac{N_{2}}{2}} \int \left[\overline{\tilde{\mathcal{Y}}_{2}} \frac{\partial \Psi_{2}}{\partial \eta} - \Psi_{2} \frac{\partial \overline{\mathcal{Y}}_{2}}{\partial \eta}\right] - \Psi_{2} \frac{\partial \overline{\mathcal{Y}}_{2}}{\partial \eta} - \frac{\partial \chi_{o}}{\chi_{o}} \int e^{-\frac{\eta_{o}+\eta_{h}}{\chi_{o}}} + \\ &+ \eta_{H}^{1+\frac{N_{2}}{2}} \int \left[\overline{\tilde{\mathcal{Y}}_{2}} \frac{\partial \Psi_{2}}{\partial \eta} - \Psi_{2} \frac{\partial \overline{\mathcal{Y}}_{2}}{\partial \eta}\right]_{h=n} dx \quad (\delta+b<0). \quad (25) \end{split}$$

Случай $\delta + b = 0$ ($\delta = b = 0$) получается из (23), (24) предельным переходом: $\Psi_{2}(\mathbf{x}_{o}, \mathbf{z}_{o}) = \frac{\delta_{2}}{2\sqrt{37}\kappa_{H}U_{H}X_{o}} e^{-\frac{(\mathbf{z}_{o}-\mathbf{h})^{2}}{4\alpha^{2}x_{o}}} \int_{0}^{\infty} \left[\frac{\alpha}{2\sqrt{37}(\mathbf{x}_{o}-\mathbf{x})^{4}\alpha^{2}} \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} - \frac{(\mathbf{z}_{o}-\mathbf{h})^{2}}{\partial \mathbf{z}} \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} - \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} + \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} + \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} + \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} \frac{\partial \varphi_{2}(\mathbf{x}_{o}+\mathbf{h})}{\partial \mathbf{z}} + \frac{\partial \varphi_{2}(\mathbf{$

179 -

$$a_{I}=\sqrt{\frac{K_{H}}{U_{H}}}$$
, $U_{H}=U_{I}\left(\frac{H}{Z}\right)^{m}$, $K_{H}=K_{I}\left(\frac{H}{Z_{I}}\right)^{1-\varepsilon}$

Условие $\delta = \theta = 0$ означает, что коэффициент К и скорость Ц в верхнем слое не меняются по высоте и равны соответственно κ_{μ} и U_{μ} . Если граница слоев Z = H к тому же еще моделирует вапирающий

cnot $\left[\kappa(z) \frac{\partial \Psi}{\partial z} \right]_{z=H} = 0 \right]$, to ψ opmyne (24), (25), (26) значительно упроцаются: $Z \leq H: \Psi_{4}(x_{0}, \frac{3}{2}) = \frac{\Im_{4} h}{\kappa(h)(m-n+2)} \left(\frac{\Im_{4} h}{\Im_{0}} \right)^{\frac{N}{2}} \frac{1}{x_{0}} \int_{V_{4}} \left(\frac{2\sqrt{\Im_{3} \Im_{h}}}{x_{0}} \right) \frac{2}{\sqrt{2}} \frac{1}{x_{0}} \int_{V_{4}} (27)$

$$Z \ge H: \ \varphi_{2}(\mathbf{x}_{\circ}, \eta_{\circ}) = \frac{\mathcal{T}_{2}}{\kappa(h)(\delta+6)} \left(\frac{\eta_{h}}{\eta_{\circ}}\right)^{\frac{1}{2}} \frac{1}{\mathcal{T}_{o}} \int \left(\frac{2\sqrt{\eta_{\circ}\eta_{h}}}{\mathbf{x}_{\circ}}\right) e^{-\frac{\eta_{\circ}+\eta_{h}}{\mathcal{T}_{o}}} + + \eta_{\mu}^{4} \frac{1}{\nu_{2}} \int_{0}^{\infty} \varphi_{2}(\mathbf{x}_{3}\eta_{\mu}) \frac{\partial \overline{v}_{2}}{\partial \eta} \Big|_{\eta=\eta_{\mu}} d\mathbf{x} \quad (\delta+b>0), \qquad (28)$$
$$\varphi_{2}(\mathbf{x}_{\circ}, \eta_{\circ}) = -\frac{\mathcal{T}_{2}}{\kappa(h)(\delta+6)} \left(\frac{\eta_{h}}{\eta_{\circ}}\right)^{\frac{1}{2}} \frac{1}{\mathcal{T}_{o}} \int \left(\frac{2\sqrt{\eta_{h}\eta_{o}}}{\mathbf{x}_{o}}\right) e^{-\frac{\eta_{\circ}+\eta_{h}}{\mathcal{T}_{o}}} -$$

$$-\eta_{\mu}^{1+V_{2}}\int \varphi_{2}(x,\eta_{\mu})\frac{\partial \overline{v}_{2}}{\partial \eta} \Big|_{\eta=\eta_{\mu}} dx \quad (\delta+b<0), \quad (29)$$

$$\varphi_{2}(x_{o_{7}}z_{o}) = \frac{\delta z}{2\sqrt{J} \kappa_{H} u_{H} x_{o}} e^{-\frac{(z_{o}-h)^{2}}{4\alpha^{2} x_{o}}} + \int_{0}^{\infty} \varphi_{2}(x_{0}H) \frac{z-H}{4\alpha\sqrt{J} (x_{o}-x)^{3}/2} e^{-\frac{(z_{o}-H)^{2}}{4\alpha^{2} (x_{o}-x)}} dx. \quad (30)$$

$$(\delta = \beta = 0).$$

Все замечания, сделанные ранее к формуле (23), в равной мере относятся и к формулам (24)-(30). Для определения граничных значений $\varphi[x, \hat{J}_{H}(\eta_{H})], \frac{\partial \varphi[x, \hat{J}(\eta_{H})]}{\partial \hat{J}(\eta)}$ воспользуемся условиями склейки обоих решений - φ_{L} и φ_{L} на линии раздела слоев Z = H. В переменных $(x, \hat{J}), (x, \eta)$ эти условия выглядят так:
$$\begin{split} & \begin{array}{l} \Psi_{i}\left(x,\frac{3}{2}_{\mu}\right)=\Psi_{i}\left(x,\eta_{\mu}\right), \\ & \begin{array}{l} \frac{H}{m+\xi+i} & \frac{2\Psi_{i}}{\partial \frac{3}{2}} & \left|_{\frac{3}{2}=\frac{1}{2}} \frac{1}{\delta+\xi} & \frac{2\Psi_{2}}{\partial \eta_{\mu}} & \left|_{\eta,\eta_{\mu}}\right|, & \delta+\xi \neq 0, \\ & \begin{array}{l} \frac{H}{m+\xi+i} & \frac{2\Psi_{i}}{\partial \frac{3}{2}} & \left|_{\frac{3}{2}=\frac{1}{2}} \frac{K_{\mu}}{M_{\mu}} & \frac{2\Psi_{2}}{\partial \frac{3}{2}} & \right|_{\frac{2}{2}\in H}, & \delta=\xi=0. \quad (31) \end{split} \right] \\ & \begin{array}{l} \text{K условиям (31) добавляются предельные интегральные уравнения,} \\ & \begin{array}{l} \text{получающиеся из общих решения (23) - (26):} \\ & \Psi_{i}\left(x_{o},\frac{3}{\mu}\right)=2\int_{0}^{x_{o}}\left\{\frac{3}{\frac{3}{\mu}} \frac{1}{x_{o}-x} & \int_{V_{i}}\left(\frac{23}{x_{o}-x}\right)e^{-\frac{33}{2\mu}} & \frac{2\Psi_{i}\left(x,\frac{3}{\mu}\right)}{\partial \frac{3}{2}} & - \\ & -\Psi_{i}\left(x,\frac{3}{\mu}\right)\frac{3}{\mu} \frac{1}{x_{o}-x}\right]e^{-\frac{23}{2\mu}} \left[\int_{V_{i}H}\left(\frac{23}{x_{o}-x}\right) - \int_{V_{i}}\left(\frac{23}{\lambda_{o}}\right) \right] dx + \\ & + & \frac{25\%}{K(h)(m+\xi+i)} & \left(\frac{3}{\frac{3}{\mu}}\right)^{\frac{N}{2}} & \frac{4}{x_{o}} & \int_{V_{i}}\left(\frac{2\sqrt{3}h\frac{3}{\mu}}{x_{o}}\right)e^{-\frac{3h+3\mu}{x_{o}}} & (32) \end{array} \right] \\ & \Psi_{2}\left(x_{o},\eta_{u}\right) = \frac{25\pi}{K(h)|\delta+6i} & \left(\frac{\eta_{h}}{\eta_{u}}\right)^{\frac{N}{2}} & \frac{4}{x_{o}} & \int_{V_{i}}\left(\frac{2\sqrt{\eta_{h}\eta_{h}}}{x_{o}}\right)e^{-\frac{\eta_{h}+\eta_{h}}{x_{o}}} \\ & -sign\left(\delta+b\right)\cdot2\int_{0}^{x_{o}}\left\{ & \frac{\eta_{u}}{x_{o}-x} e^{-\frac{2\eta_{u}}{x_{o}-x}} & \left[\left(\frac{2\eta_{u}}{x_{o}-x}\right) \right] \right\} dx, \\ & -\Psi_{2}\left(x,\eta_{u}\right)\frac{\eta_{u}}{(x_{o}-x)^{2}}e^{-\frac{2\eta_{u}}{x_{o}-x}} & \left[\left(\frac{2\eta_{u}}{x_{o}-x}\right) - \left(\frac{2\eta_{u}}{x_{o}-x}\right) \right] \right\} dx, \\ & \delta+6\neq 0, \end{array} \right] \end{cases}$$

$$\Psi_{2}(x,H) = \frac{\tau_{2}}{\sqrt{\pi}\kappa_{\mu}u_{\mu}x_{\nu}} e^{-\frac{(h-H)^{2}}{4\alpha^{2}x_{\nu}}} \int_{0}^{\infty} \frac{\alpha}{\sqrt{\pi}(x_{\nu}-x)} \frac{\partial\Psi_{2}(x,H)}{\partial Z} dx, \quad (33)$$

Предельные уравнения к формулам (27)-(30) (задача с запирающим слоем) специально выписывать нет необходимости: они получаются из (32),(33) как частный случай, если отбросить члены, содержащие производные $\frac{\partial \Psi}{\partial 2} |_{\mathfrak{R}_{H}}, \frac{\partial \Psi_{2}}{\partial \eta} |_{\mathfrak{R}_{H}}, \frac{\partial \Psi_{2}}{\partial \mathcal{Z}} |_{\mathfrak{H}}$. Уравнения (32),(33) по существу своему линейные интегральные уравнения. Методы их прак-

181 -

тического решения общеизвестны. В качестве одного ив методов можно применить к формулам (23)-(26) операцию свертывания по 🗙 :

$$\begin{split} \Phi\left[\Psi_{1}\left(x_{*},\frac{3}{2}_{*}\right)\right] &= \frac{2\nabla_{1}\ln}{\kappa(h)(m-n+2)} \left(\frac{3}{2}_{*}\right)^{\frac{N}{2}} \begin{cases} \kappa_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) \prod_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) + \frac{3}{2}_{h} \geq \overline{s}_{*} \end{cases} \\ &+ 2\frac{3}{2}_{\mu}\left(\frac{3}{2}_{*}\right)^{\frac{N}{2}} K_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) \prod_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) + \frac{3}{2}_{h} \leq \overline{s}_{*} \end{cases} \\ &+ 2\frac{3}{2}_{\mu}\left(\frac{3}{2}_{*}\right)^{\frac{N}{2}} \sqrt{s}\overline{s}_{*} K_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) \prod_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) \Phi\left[\frac{2\Psi_{1H}}{3\frac{3}{2}}\right] + \\ &+ 2\left(\frac{3}{2}_{*}\right)^{\frac{N}{2}} \sqrt{s}\overline{s}_{*} K_{\nu_{1}+1}\left(2\sqrt{s}\overline{s}_{*}\right) \prod_{\nu}\left(2\sqrt{s}\overline{s}_{*}\right) \Phi\left[\Psi_{1H}\right], \end{cases} \qquad (34) \end{split} \\ &\Phi\left[\Psi_{2}\left(x_{*},\eta_{*}\right)\right] = \frac{2\nabla_{2}}{\kappa(h)\left[\delta+\varepsilon_{1}\right]} \left(\frac{\eta_{1}}{\eta_{0}}\right)^{\frac{N}{2}} \left\{K_{\nu_{2}}\left(2\sqrt{s}\eta_{1}\right) \prod_{\nu_{2}}\left(2\sqrt{s}\eta_{1}\right) - \frac{\eta_{h}}{\eta_{h}} \eta_{0} \\ &- 2\eta_{\mu}\left(\frac{\eta_{\mu}}{\eta_{0}}\right)^{\frac{N}{2}} K_{\nu_{2}}\left(2\sqrt{s}\eta_{0}\right) \prod_{\nu_{2}}\left(2\sqrt{s}\eta_{1}\right) \Phi\left[\frac{2\Psi_{2H}}{2\eta_{1}}\right] + \\ &+ 2\sqrt{s}\eta_{u}\left(\frac{\eta_{u}}{\eta_{0}}\right)^{\frac{N}{2}} K_{\nu_{2}}\left(2\sqrt{s}\eta_{0}\right) \prod_{\nu_{2}+1}\left(2\sqrt{s}\eta_{u}\right) \Phi\left[\Psi_{2H}\right] \left(\delta+\varepsilon \geq 0\right), \end{aligned} \\ &\Phi\left[\Psi_{2}\left(x_{*},\eta_{0}\right) = -\frac{2\nabla_{2}}{\kappa(h)(\varepsilon+\varepsilon)}\left(\frac{\eta_{h}}{\eta_{0}}\right)^{\frac{N}{2}} \left\{K_{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) + \\ &+ 2\eta_{u}\left(\frac{\eta_{u}}{\eta_{0}}\right)^{\frac{N}{2}} K_{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \prod_{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) + \\ &+ 2\sqrt{s}\eta_{u}\left(\frac{\eta_{u}}{\eta_{0}}\right)^{\frac{N}{2}} K_{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \prod_{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}\eta_{u}\right) \frac{1}{\nu_{2}}\left(2\sqrt{s}$$

$$\Phi\left[f(x_{o})\right]=\int_{a}^{\infty}e^{-sx}f(x)dx$$

В формулах (34),(35) переходим к пределу по 3-3,, η-η. Предельный переход в данном случае будет условным, но в законности его нетрудно убедиться, если произвести непосредственно свертывание предельных уравнений (32)(33) . Результат в обоих случаях будет одинаковым:

нижний слой:

$$1)\sqrt{s}\overline{\mathfrak{Z}}_{H}\left[\begin{array}{c} 2\sqrt{s}\overline{\mathfrak{Z}}_{H} \end{array}\right] \Phi\left[\begin{array}{c} \varphi_{H} \end{array}\right] = \\ = \frac{\sigma_{1}h}{\kappa(h)(m-n+2)} \left(\frac{\mathfrak{Z}h}{\mathfrak{Z}_{H}}\right)^{\frac{N}{2}} \left[\begin{array}{c} 2\sqrt{s}\overline{\mathfrak{Z}}_{h} \end{array}\right] + \mathfrak{Z}_{H} \left[(2\sqrt{s}\overline{\mathfrak{Z}}_{H}) \Phi\left[\frac{\mathfrak{D}}{\mathfrak{Z}_{H}} \right] \right], \quad (36)$$

верхний слой:

2) $\sqrt{s\eta_{\mu}} K_{v_{2}+1} \left[2\sqrt{s\eta_{\mu}} \Phi \left[\varphi_{2\mu} \right] = \frac{\sigma_{2}}{\kappa(n)(\delta+\delta)} \left(\frac{\eta_{\mu}}{\eta_{\mu}} \right)^{2} K_{v_{2}} \left[2\sqrt{s\eta_{\mu}} \right] - \eta_{\mu} K_{v_{2}} \left(2\sqrt{s\eta_{\mu}} \right) \Phi \left[\frac{\partial \varphi_{2\mu}}{\partial \eta_{\mu}} \right], (\delta+\delta>0) \right]$ $3)\sqrt{s\eta_{H}}\left[(2\sqrt{s\eta_{H}})\Phi\left[\frac{\varphi_{2H}}{2\mu}\right]^{-\frac{2}{\kappa(h)(\theta+\epsilon)}}\left(\frac{\eta_{h}}{\eta_{H}}\right)^{\frac{1}{2}}\left[(2\sqrt{s\eta_{h}})+\eta_{H}\right]\left(2\sqrt{s\eta_{H}})\Phi\left[\frac{2\varphi_{2H}}{2\eta}\right],(\delta+\delta<0)\right]^{(37)}$ 4) $\Phi\left[\Psi_{2H}\right] = \frac{\vartheta_{2}}{\sqrt{U_{H}\kappa_{H}S}} \bar{e}^{\sqrt{\frac{U_{H}}{\kappa_{H}}S}(h-H)} - \sqrt{\frac{K_{H}}{U_{H}S}} \Phi\left[\frac{\vartheta\Psi_{2H}}{\vartheta\Xi}\right] (\delta = \beta = 0)$

183

При отсутствии в том или ином слое источника $\mathcal{T}_{L} = 0.$ Символами Ψ_{LH} , $\frac{2\Psi_{1H}}{\partial 3}$, $\frac{2\Psi_{2H}}{\partial 1}$, $\frac{2\Psi_{2H}}{\partial Z}$ обозначены в (36), (37) значения концентрации и ее производных на линии раздела слоев Z = H ($\tilde{Z} = \tilde{J}_{H}$, $\eta = \eta_{H}$). Они связаны условиями (31). Предельные соотношения (36), (37) – суть линейные алгебраические уравнения относительно $\Phi[\Psi_{H}], \Phi[\frac{2\Psi_{H}}{\partial 3\eta_{V}}]$. Если их решения внести в формулы (34), (35), то получаются общие выражения концентрации в той форме, к которой пришел Г.Х.Цейтин, т.е. в разрешенном, явном виде для интегрального изображения искомой функции.

Необходимо отметить, что построение оригинала функции \mathscr{G} по ее образу $\mathfrak{P}[\mathscr{G}_{i}]$ технически не просто. Поэтому при выборе конкретной методики расчета концентраций целесообразно использовать другие возможности, открываемые интегральной формой полученных выше общих решений (27)-(30),(32), (33). На них удачно накладываются метод итераций, численные методы. Хорошо совмещаются они и с типовой программой электронных цифровых машин любой марки, поскольку интегральные уравнения (32),(33) можно заменить эквивалентной системой линейных алгебраических уравнений.

§ 3. Поле концентраций от точечного источника при полном поглощении примеси на деятельной поверхности

Взяв в качестве решения сопряженного уравнения M(v;)=0 функцию

$$\mathcal{V}_{1} = \left(\frac{3}{x_{\circ} - x}\right)^{1+\mathcal{V}_{1}} \left(\frac{\sqrt{3}\cdot 3}{x_{\circ} - x}\right)^{\mathcal{V}_{1}} \left[\int_{=\mathcal{V}_{1}} \left(\frac{2\sqrt{3}\cdot 3}{x_{\circ} - x}\right) e^{-\frac{3\cdot + 3}{x_{\circ} - x}} \right]$$

[см.выше (21)], будем оперировать формулой (6) с учетом краевых условий (10), (15) на прямоугольнике

$$0 \leq \tilde{g} \leq \tilde{g}_{H}, \quad 0 \leq x \leq x_{4} < x_{0}$$

(см.рис.2).

$$\begin{split} J_{1x+0} \int_{\eta}^{\infty} \frac{q_{1}v_{1}}{3} d^{\frac{3}{2}} = -\frac{\sigma_{4}h}{\kappa(h)(m-n+2)} \left(\frac{\frac{3}{2}h}{\frac{3}{2}o}\right)^{\frac{N}{2}} \frac{1}{x_{o}} \left[\left(\frac{2\sqrt{3}h^{\frac{3}{2}}}{x_{o}}\right)e^{-\frac{\frac{3}{2}o+\frac{3}{2}h}{x_{o}}} \right], \\ J_{=} \int_{\eta}^{\infty} \int_{x_{o}}^{\infty} \int_{y_{i}}^{y_{i}+v_{i}} \left[\overline{v_{i}} \frac{\frac{3}{2}v_{i}}{\frac{3}{2}} - \frac{q}{2} \frac{\frac{3}{2}\overline{v_{i}}}{\frac{3}{2}\overline{3}} \right] dx = \frac{1}{r(i-v_{i})} \int_{y_{i}}^{\infty} \left(\frac{3}{2} \frac{\frac{3}{2}v_{i}}{\frac{3}{2}\overline{3}}\right) \frac{\frac{3}{2}o}{(x_{o}-x)^{i-v_{i}}} e^{-\frac{\frac{3}{2}o}{x_{o}-x}} dx - \\ - \frac{1}{\Gamma(-v_{i})} \int_{y}^{\infty} \frac{q_{i}(0,x)}{(x_{o}-x)^{i-v_{i}}} \frac{\frac{3}{2}o}{(x_{o}-x)^{i-v_{i}}} e^{-\frac{\frac{3}{2}o}{x_{o}-x}} dx , \\ J_{3} = \int_{x_{i}-x_{o}}^{\frac{3}{2}h} \frac{q_{i}(\frac{3}{2}x_{i})v_{i}(\frac{3}{2},\frac{3}{2}o,x,x_{i})}{\frac{3}{2}} d\frac{3}{2} = q_{1}(x_{o},\frac{3}{2}o) \quad (c_{u}.\sqrt{2}), \\ J_{\mu} = -\frac{3}{2}h_{\mu}^{i+v_{i}} \int_{y}^{\infty} \left[\overline{v_{i}} \frac{\frac{3}{2}v_{i}}{\frac{3}{2}\overline{3}} - \frac{q_{i}}{2} \frac{\frac{3}{2}v_{i}}{\frac{3}{2}\overline{3}} \right]_{\frac{3}{2}=\frac{3}{2}u} dx . \end{split}$$

Ив условия $J_{\ell} = J_1 + J_2 + J_3 + J_4$ получаем выражение для концентрации примеси в нижнем слое ($Z \leq H$)

$$\Psi_{1}(\mathbf{x}_{0},\mathbf{\tilde{g}}_{0}) = \frac{\overline{\sigma_{1}}h}{\kappa(h)(m-n+2)} \left(\frac{\underline{\mathfrak{g}}_{h}}{\underline{\mathfrak{g}}_{0}}\right)^{\frac{1}{2}} \frac{1}{\mathbf{x}_{0}} \prod_{u} \left(\frac{2\sqrt{\underline{\mathfrak{g}}_{0}}\overline{\underline{\mathfrak{g}}}_{h}}{\mathbf{x}_{0}}\right) e^{-\frac{\underline{\mathfrak{g}}_{0}+\underline{\mathfrak{g}}_{h}}{\mathbf{x}_{0}}} - \int_{\underline{\mathfrak{g}}} + \frac{\underline{\mathfrak{g}}_{1}^{1+\mathcal{V}_{1}}}{\underline{\mathfrak{g}}_{H}} \int_{\underline{\mathfrak{g}}}^{\underline{\mathfrak{g}}_{0}} \left[\overline{\mathcal{V}}_{1} \frac{\underline{\mathfrak{g}}}{\underline{\mathfrak{g}}}\overline{\underline{\mathfrak{g}}}_{H}} - \Psi_{1} \frac{\underline{\mathfrak{g}}}{\underline{\mathfrak{g}}}\overline{\underline{\mathfrak{g}}}_{H}}{\underline{\mathfrak{g}}}\right] d\mathbf{x} . \quad (38)$$

Первое слагаемое является непосредственной функцией источника. Если источник расположен вне слов (h > H), то $\mathcal{O}_1 = 0$. О физическом смысле интеграла $\mathcal{J}_{\mu}^{\mu\nu} \int_{x}^{\infty} \left[\overline{v} \frac{\partial \Psi}{\partial g} - \Psi \frac{\partial \overline{v}}{\partial g}\right] dx$ уже говорилось. Остается разобраться со вторым интегральным

уже говорилось. Остается разобраться со вторым интегральным членом J_2 , фиксирующим в формуле (38) действие нижней границы $\hat{J}=0$ (Z=0). Изучим три случая: $V_1 < 0$, $V_1 > 0$, $V_2 = 0$. Наномним, что $V_1 = -\frac{2}{m+2+1}$.

$$\begin{aligned} \Psi_{1}(\mathbf{x}_{\circ}, \frac{3}{2}_{\circ}) &= \frac{\sigma_{1}h}{\kappa(h)(m-n+2)} \frac{3^{-\nu_{1}}}{x_{\circ}^{+\nu_{1}}} e^{\frac{3}{2}_{\circ} + \frac{3}{2}_{\circ}h} \left[\frac{1}{\Gamma(i-\nu_{1})} + 0(\frac{3}{2}_{\circ})\right] &- \frac{1}{\Gamma(i-\nu_{1})} \left[\frac{3}{2} \frac{2q_{1}}{g_{3}^{\frac{3}{2}}}\right] \frac{3^{\nu_{1}}}{g_{\circ}^{\frac{2}{2}}} e^{\frac{3}{2}_{\circ} - \frac{3}{2}_{\circ}} dx + \\ &+ \frac{1}{\Gamma(-\nu_{1})} \int_{0}^{\infty} \Psi_{1}(x, 0) \frac{3^{-\nu_{1}}}{(x_{\circ} - x)^{i-\nu_{1}}} e^{-\frac{3}{2}_{\circ} - x} dx + \end{aligned}$$

$$\begin{aligned} & + \frac{3}{\rho} \int_{V_{1}}^{x_{o}} \frac{3}{(x_{o}-x)^{1-V_{1}}} e^{-\frac{3}{2} \cdot \frac{\beta}{y_{o}-x}} \frac{\partial \varphi_{1H}}{\partial \frac{\beta}{g}} \left[\frac{1}{P(1-V_{1})} + O\left(\frac{3}{\delta_{o}}\right) \right] dx - \\ & - \frac{3}{\rho} \int_{V_{1}}^{x_{o}} \frac{3}{(x_{o}-x)^{2-V_{1}}} e^{-\frac{3}{x_{o}-x}} \varphi_{1H} \left[\left(\frac{3}{x_{o}-x}\right)^{1} + \frac{1}{V_{1}} + O\left(\frac{3}{\delta_{o}}\right) \right] dx. \quad (39) \\ & \text{Устремим } \hat{J}_{o} \quad \text{к нулю:} \\ & \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \frac{\partial \varphi_{1}}{\partial \frac{\beta}{g}} \Big]_{g=0} \frac{3}{(x_{o}-x)^{1-V_{1}}} e^{-\frac{3}{x_{o}-x}} dx = \\ & = \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \left[\frac{3}{2} \frac{\partial \varphi_{1}}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{3}{2} \frac{\partial \varphi_{1}}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial \varphi_{1}}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} U^{-V_{1}} e^{-U} du \xrightarrow{\rightarrow} -\frac{1}{V_{1}} \left[\frac{3}{2} \frac{\partial \varphi_{1}(x_{o}, \frac{\beta}{g})}{\partial \frac{\beta}{g}} \right]_{g=0}, \\ & \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \left[\frac{3}{2} \frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} U^{-V_{1}} e^{-U} du \xrightarrow{\rightarrow} -\frac{1}{V_{1}} \left[\frac{3}{2} \frac{\partial \varphi_{1}(x_{o}, \frac{\beta}{g})}{\partial \frac{\beta}{g}} \right]_{g=0}, \\ & \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \left[\frac{3}{2} \frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \left[\frac{3}{2} \frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{P(1-V_{1})} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} + \frac{1}{Q_{0}} \right] \right]_{g=0} dx = \\ & \frac{1}{Q_{0}} \int_{V_{0}}^{x_{o}} \left[\frac{\partial}{\partial \frac{\beta}{g}} + \frac{1}{Q_{0}} + \frac{1}{Q_{0}} + \frac{1}{Q_{0}} + \frac{1}{Q$$

Остальные слагаемые в (39) тоже стремятся к нулю. Следовательно, $\begin{bmatrix} 3 & \frac{3\psi_1}{3} \end{bmatrix}_{3=0}^{2} = 0$. В этом случае ($v_1 < 0$) $J_2 = 0$ и формула концентрации (38) отличается от аналогичного результата для нижнего слоя при полном отражении примеси у подстилающей поверхности лишь знаком индексов при бесселевых функциях [см. выше (23), (20)]. Непосредственным дифференцированием формулы (38) легко убедиться, что поток концентрации через нижнюю границу при этом ($\xi > 0$, инверсионные условия) будет не равен нулю.

Таким образом, избыток примеси, скапливающейся ниже источника у земной поверхности вследствие недостаточно интенсивной диффузии в вертикальном направлении [K(z) имеет порядок $Z^{1-\varepsilon}$], должен для обеспечения условия $\Psi_1(x, 0) = 0$ протекать через подстилающую поверхность.

2. $V_{1} > 0$ ($\xi < 0$, конвективные условия в атмосфере). В (39) переходим к пределу по $\frac{3}{2} \rightarrow 0$:

$$\int_{a}^{a_{i}} \varphi_{i}\left(x_{o},\frac{3}{2}\right)_{a \to o} = \frac{1}{\Gamma(1-V_{i})} \left\{ \frac{\gamma_{a}h}{K(h)(m-n+2)} \frac{e^{-\frac{3}{2}h}}{x_{o}} - \int_{a}^{\infty} \left(\frac{3}{2}\frac{\partial}{\partial}\frac{\varphi_{i}}{\partial}\right)_{a \to o} \frac{dx}{(x_{o}-x)^{1-V_{i}}} V_{i} \int_{a}^{\infty} \varphi_{i}(x,0) \frac{dx}{(x_{o}-x)^{1-V_{i}}} + \right.$$

$$\left. + \int_{a}^{\infty} \frac{3}{(x_{o}-x)^{1-V_{i}}} e^{-\frac{3}{2}h} \frac{\partial}{\partial}\frac{\varphi_{i}}{\partial}} dx + \right.$$

· 185 -

$$-\int_{a}^{x_{o}} \frac{1}{(x_{o}-x)^{\mu_{u}}} e^{-\frac{\tilde{\beta}_{\mu}}{x_{o}-x}} \left[v_{\mu} + \frac{\tilde{\beta}_{\mu}}{x_{o}-x} \right] \varphi_{\mu} dx = 0.$$

Откуда

$$\int_{0}^{x_{o}} \left(\frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\eta}{\partial}\right)_{g=0} \frac{dx}{(x_{o}-x)^{\mu_{H}}} = \frac{\sigma_{i}h}{\kappa(h)(m-n+2)} \frac{e^{-\frac{3}{2}h}}{x_{o}^{4-\nu_{i}}} + \int_{0}^{x_{o}} \frac{\frac{\partial}{\partial}_{H}}{(x_{o}-x)^{\mu_{V}}} e^{-\frac{3}{2}H} \frac{\partial}{\partial x_{o}-x} \frac{\partial}{\partial \frac{3}{2}} dx + \int_{0}^{x_{o}} \frac{1}{(x_{o}-x)^{\mu_{V}}} e^{-\frac{3}{2}H} \left[\gamma_{i} + \frac{3}{2}H} \frac{\partial}{\partial x_{o}-x}\right] \varphi_{iH} dx$$

$$(40)$$

$$\begin{pmatrix} \frac{3}{2} \frac{\partial \Psi_{i}}{\partial \frac{3}{2}} \end{pmatrix}_{3=0} = \frac{\overline{\sigma_{1}} h \frac{3}{h}}{\Gamma(V_{i}) \kappa(h)(m-n+2)} \frac{\underline{e}^{-\frac{3h}{x_{o}}}}{\overline{x_{o}}^{1+V_{i}}} + \\ + \frac{\frac{3}{2}}{\Gamma(V_{i})} \int_{0}^{x_{o}} \left\{ \frac{\underline{e}^{-\frac{3}{x_{o}-x}}}{(x_{o}-x)^{2+V_{i}}} \frac{\partial \Psi_{iH}}{\partial \frac{3}{2}} + \frac{\underline{e}^{-\frac{3}{x_{o}-x}}}{(x_{o}-x)^{2+V_{i}}} \Psi_{iH} \right\} dx \cdot (41)$$

 $\begin{pmatrix} 3 & 3 & 4 \\ 3 & 3 & 3 \end{pmatrix}_{z=0}$ одновначно определяется по функции источника и вначениям концентрации γ_{iH} и ее производной $\frac{3 \cdot 4 \cdot 4}{3 \cdot 3}$ на верхней границе $3 = 3_{H} (z = H)$. Таким образом, при $V_{i} > 0$

$$\mathcal{Y}_{2} = \frac{1}{\Gamma(1-V_{1})} \int_{0}^{\infty} \left(\frac{3}{9} \frac{2\Psi_{1}}{9\frac{3}{9}}\right)_{3=0}^{3-V_{1}} e^{-\frac{3}{2} - \frac{3}{2}} dx \neq 0$$

Полная формула концентрации

$$\varphi_{1}(x_{o}, \frac{3}{2_{o}}) = \frac{\overline{\sigma_{i}} h}{\kappa(h)(m-n+2)} \left(\frac{\frac{3}{2}h}{3_{o}}\right)^{\frac{1}{2}} \frac{1}{x_{o}} \left[\frac{1}{2\sqrt{3}h^{\frac{3}{2}}} \left(\frac{2\sqrt{3}h^{\frac{3}{2}}}{x_{o}}\right) e^{-\frac{3h+3}{x_{o}}} - \frac{3h+3}{x_{o}}\right]$$

Интересно отметить, что в этом случае поток примеси черев подстилающую поверхность будет тоже равен нулю. Действительно, из формулы (41) явствует, что (3 34, имеет порядок конечный, 1+2, <u>ЭЧ.</u> ЭЗ 3=0 будет нулевыч. следовательно порядок потока, равный (3 В справедливости такого заключения легко убедиться и непосредственным дифференцированием формулы (42) с привлечением соотношения (41). Получается, что при неустойчивой стратификации атмосферы (V,>0, ٤ < 0) наряду с решением (23), задающим поле концентраций, в котором φ и ее производная $\frac{\partial \Psi}{\partial 3}$ на границе Z = 0 остаются величинами конечными, существует второе решение с неограниченной производной $\frac{2\Psi}{23} \sim \frac{1}{3} \left(\frac{3\Psi}{22} \sim \frac{1}{2} \right)$ и нулевым значением концентрации Ψ на нижней границе. В обоих решениях поток примеси через границу Z = О отсутствует. С математической

стороны причина такой двойственности кроется в том, что коэффициент диффузии, вводимый законом $\kappa(z) = A z^{1-\varepsilon}$, при $\varepsilon < 0$ и $z \to 0$ уходит в нуль сильнее $(\sim j^{1+\nu_1})$, чем $\frac{2\psi_1}{\partial z}$ - в бесконечность $(\sim \frac{1}{3})$. И самый факт отсутствия в решении (42) потока примеси через нижнюю границу есть прямое следствие того, что коэфициент диффузии принимался равным нолю при Z = 0.

Физическое толкование второго решения следующее. При конвек-

ции ($\mathcal{E} < 0$) коэффициент диффузии интенсивно убывает в слое $\frac{3}{2} < 1$ $\left\{ \begin{array}{c} \mathcal{Z} < \left[\frac{K_{,Z}^{m+\mathcal{E}-4}(m+\mathcal{E}+4)^{2}}{U_{,}} \right]^{m+\mathcal{E}+1} \right\}$ и наоборот, интенсивно рас тет для $\frac{3}{3} > 1$, поэтому выделяемая источником примесь рассеиpacвается во внешнее пространство, не достигая нижней границы. Слой малых z (3 < 1) будет воной высоких градиентов концентрации (puc.3).

Надо думать, что подобное распределение концентрации может реально сложиться и сколько-нибудь длительно существовать лишь в особых случаях, например, развитой, сильной конвекции в сочетании с очень малыми (или полностью отсутствующими) градиентами горивонтального ветра вблизи земной поверхности. В обычных условиях турбулентности, в зоне предполагаемых больших градиконцентрации должны выравниваться - и тогда уста-32 ентов новится распределение примеси, соответствующее первому решению (23) (с конечной величиной $\frac{\partial \varphi_1}{\partial z}|_{z=0}$ и отличной от нуля концентрацией Ч, ,). Учитывая, однако, изменчивый, в вначительной мере вероятностный характер процессов в турбулентной атмосфере и то,

188

что при их изучении приходится оперировать в большинстве случаев статистическими, средними величинами, важна бывает не устойчивость того или иного явления, а возможная его повторнемость. Поэтому не следует отвергать начисто второе решение, как физически неустойчивое.

Более тонкое физическое различие между обоими решениями, относящимися к условию $\mathcal{E} < 0$, сводится к тому, что для первого (23) подстилающая повержность является деятельной, активно отражающей примесь границей, и поток на ней будет нулем высокого порядка ($\sim \tilde{J}^{1+V}$), во втором решении (42) поток будет нулем в силу конвективной стратификации атмосферы (и формы задания козффициента диффузии), но нулем слабым ($\sim \tilde{J}^{V}$), в сама подстилающая поверхность непосредственным обравом не взаимодействует с диффундирующей примесью.

Чтобы при $\mathcal{E} < 0$ исследовать поле концентраций от источника над подстилающей поверхностью, активно поглощающей всю выносимую к ней примесь [$\mathcal{Y}_{i}(x, 0) = 0$, K ($\mathcal{E} \xrightarrow{\partial \mathcal{Y}}_{\partial \mathcal{Z}} |_{\mathcal{E}=0} \neq 0$], надо коэффициент диффузии задать в форме

$$K(Z) = AZ^{1-\epsilon} + K_o$$
, $K_o \neq 0$.

3. V = 0. (равновесная стратификация атмосферы). В формуле (38) полагаем V = 0:

$$\Psi_{n}(\mathbf{x}_{\circ},\mathbf{\dot{g}}_{\circ}) = \frac{\mathcal{J}_{1} h}{\kappa(h)(m-n+2)} \quad \frac{1}{\mathbf{x}_{o}} \int_{0}^{1} \left(\frac{2\sqrt{\mathbf{g}_{\circ}\mathbf{\dot{g}}h}}{\mathbf{x}_{o}}\right) e^{-\frac{\mathbf{g}_{o}+\mathbf{g}h}{\mathbf{x}_{o}}} -$$

$$- \int_{0}^{x_{o}} \left(\frac{\partial}{\partial \partial \overline{\partial y}}\right)_{\overline{g}=0}^{x_{o}-\overline{x}} \frac{e^{-\frac{j}{x_{o}-\overline{x}}}}{x_{o}-\overline{x}} dx + \frac{\partial}{\partial H} \int_{0}^{x_{o}} \left(\frac{\partial}{\partial \overline{g}} \frac{\varphi_{I,H}}{x_{o}-\overline{x}}\right) \left[\frac{\partial}{\partial \overline{g}} \frac{\varphi_{I,H}}{x_{o}-\overline{x}}\right]_{0}^{x_{o}-\overline{x}} \left[\frac{2\sqrt{\overline{\partial}_{o}}\frac{\overline{\partial}_{H}}}{x_{o}-\overline{x}}\right] - \frac{\varphi_{I,H}}{(x_{o}-\overline{x})^{2}} \left[\frac{(2\sqrt{\overline{\partial}_{o}}\frac{\overline{\partial}_{H}}{\overline{x}_{o}-\overline{x}})\sqrt{\frac{\overline{g}_{o}}{\overline{g}_{H}}} - \frac{1}{0}\left(\frac{2\sqrt{\overline{\partial}_{o}}\frac{\overline{g}_{H}}{\overline{x}_{o}-\overline{x}}\right)\right]\right] dx \quad (43)$$

Член (334) во втором слагаемом - поток через нижною гранкцу - определяем из условия $\Psi_1(x, 0) = 0$. Для этого в (43) совершается предельный переход по 3-0. Но предварительно, чтобы обеспечить сходимость второго слагаемого в (43) при предельном переходе, целесообразно написать его сначала для граници $3=\delta>0$:

$$\begin{aligned}
\mathcal{J}_{2} &= \int_{\alpha}^{\infty} \left\{ \begin{pmatrix} \frac{\partial}{\partial \overline{\partial}} & \frac{\partial}{\partial \overline{\partial}} \\ \frac{\partial}{\partial \overline{\partial}} & \frac{\partial}{\partial \overline{\partial}} \\ \frac{\partial}{\partial \overline{\partial}} & \frac{\partial}{\partial \overline{\partial}} & \frac{\partial}{\partial \overline{\partial}} \\ -\delta & \mathcal{I}_{1}(x, \delta) \frac{\underline{\partial}_{\alpha} + \delta}{(x_{o} - x)^{2}} \left[\prod_{\alpha} \begin{pmatrix} \underline{2\sqrt{3}}, \overline{\delta} \\ \overline{x_{o}} - x \end{pmatrix} \sqrt{\frac{2}{\delta}} - \prod_{\alpha} \begin{pmatrix} \underline{2\sqrt{3}}, \overline{\delta} \\ \overline{x_{o}} - x \end{pmatrix} \right] dx, \quad (44)
\end{aligned}$$

и прежде чем перейти к пределу по 3 - 5 - 0 , произвести над (43) преобразование Лапласа по переменной Хо :

 $\Phi\left[\left(\varphi_{1}(x_{o}, \hat{g}_{o})\right) \right] \Phi\left[\mathcal{Y}_{\mu\nu}(x_{o}, \hat{g}_{o}, \hat{g}_{h}) \right] -$

 $-\Phi\left[\frac{\partial \Psi_{1}(x_{0},\delta)}{\partial g}\right]\delta\cdot 2 \text{ K}_{0}\left(2\sqrt{g},\delta\right)\left[\left(2\sqrt{\delta}\delta\right)\right]+$

где $\mathcal{J}_{ucm}(\mathbf{x}_{o}, \mathbf{\hat{j}}_{o}, \mathbf{\hat{j}}_{h})$ – первое слагаемое в (43), $\mathcal{J}_{H}(\mathbf{x}_{o}, \mathbf{\hat{j}}_{o})$ – третье слагаемое, зависящее от условий на границе $\mathbf{\hat{j}} = \mathbf{\hat{j}}_{H}$. После предельного перехода и обращения одерации $\mathbf{\hat{f}}$ имеем

+28 Φ [$\Psi_{1}(x_{0},\delta)$] $\sqrt{\frac{3}{8}}$ K₀(2 $\sqrt{3}$ s)](2 $\sqrt{3}$ s)+ Φ [$\Psi_{1}(x_{0},3)$],(45)

 $\begin{pmatrix} \mathfrak{z} & \mathfrak{Z} & \mathfrak{h} \\ \mathfrak{z} & \mathfrak{z} & \mathfrak{z} \\ \mathfrak{z} & \mathfrak{z} \\ \mathfrak{z} & \mathfrak{z} \\ \mathfrak{z} & \mathfrak{z} \\ \mathfrak{z} \\ \mathfrak{z} & \mathfrak{z} \\ \mathfrak{z}$

По существу своему $(\frac{3}{3}\frac{3}{3}\frac{9'_1}{3})$ является неопределенностью типа $3 \begin{bmatrix} \frac{F(x_0, \frac{3}{2}_0)}{\frac{3}{3}}, \text{ где } F(x_0, \frac{3}{3}_0) - \text{правая часть (46)}.$ Это следует учитывать при подстановке его в (43).

Соотношением (46) однозначно определяется на нижней границе Z = 0 величина потока (конечная и не равная нулю), за счет которого обеспечивается краевое условие $\Psi_1(x,o)=0$ и формула для поля концентраций (43) определяется с точностью до значений концентрации Ψ_{1H} и ее производной $\frac{\partial \Psi_1}{\partial 3}$ на верхней границе Z = H. Если в формулах (38) $[z>0, J_2=0]^3$, (42)и (40) $[z<0, J_2\neq 0]$,

189 -

(43) и (46) $[\xi=0, J_2 \neq 0]$ положить $H = \infty$ (иначе говоря, отбросить интегральное слагаемое, зависящее от величин Ψ_{i_H} и $\frac{2\Psi_{i_H}}{23}$), то они дают решение задачи для случая однослойной атмосферы (от $\xi=0$ до ∞) с бесконечно растущим коэфициентом диффузии

$$\begin{aligned} & \cdot \varphi_{I}(\mathbf{x}_{o}, \frac{3}{d_{o}}) = \frac{\overline{\sigma_{I}} h}{K(h)(m-n+2)} \left(\frac{\frac{3}{d_{o}}}{\frac{1}{d_{o}}}\right)^{\frac{N}{2}} \quad \frac{1}{x_{o}} \prod_{\nu_{I}} \left(\frac{2\sqrt{3}\cdot \frac{3}{d_{h}}}{x_{o}}\right) e^{-\frac{\frac{3}{d_{o}} + \frac{3}{d_{o}}}{x_{o}}}, \quad \varepsilon > 0; \\ & \varphi_{I}(\mathbf{x}_{o}, \frac{3}{d_{o}}) = \frac{\overline{\sigma_{I}} h}{K(h)(m+1)} \left\{ \frac{e^{-\frac{\frac{3}{d_{h}} + \frac{3}{d_{o}}}{x_{o}}}{x_{o}} \left[\left(\frac{2\sqrt{3}\cdot \frac{3}{d_{o}}}{x_{o}}\right) - \int_{\sigma}^{\infty} \frac{e^{-\frac{\frac{3}{d_{o}} + \frac{3}{d_{o}}}{x_{o}}}{x_{o} - x} dx \right], \varepsilon = 0; \\ & \varphi_{I}(\mathbf{x}_{o}, \frac{3}{d_{o}}) = \frac{\overline{\sigma_{I}} h}{K(h)(m-n+2)} \left(\frac{\frac{3}{d_{o}}}{\frac{3}{d_{o}}}\right)^{\frac{N}{2}} \left\{ \frac{1}{x_{o}} \prod_{-\nu_{I}} \left(\frac{2\sqrt{3}\cdot \frac{3}{d_{o}}}{x_{o}}\right) e^{-\frac{\frac{3}{d_{o}} + \frac{3}{d_{o}} h}{x_{o}}} - \frac{1}{\Gamma(\nu_{I})\Gamma(1-\nu_{I})} \left(\frac{\frac{3}{d_{o}}}{\frac{3}{d_{o}}}\right)^{\frac{N}{2}} \int_{\sigma}^{\infty} \frac{e^{-\frac{3h}{d}}}{x^{1+N_{I}}} \frac{e^{-\frac{3}{d_{o}} - \frac{3}{d_{o}}}}{(x_{o} - x)^{1-N_{I}}} dx \right\}, \quad \varepsilon < 0. \end{aligned}$$

Решения уравнения (1) для верхнего слоя атмосферы непосредственно не зависят от условий на нижней границе. Они остаются те же, что и в предндущем случае [см. (24), (25), (26)]. Так что совместные решения задачи для двухслойной атмосферы даются формулами:

$$Z \leq H^{-}$$

$$\Psi_{1}(\mathbf{x}_{0}, \frac{3}{\vartheta_{0}}) = \frac{\mathcal{T}_{1}h}{\mathcal{K}(h)(m-n+2)} \left(\frac{\frac{3}{\vartheta_{0}}}{\frac{3}{\vartheta_{0}}}\right)^{\frac{N}{2}} \quad \frac{4}{x_{0}} \int_{-\frac{N}{2}}^{\frac{N}{2}} \left(\frac{2\sqrt{\frac{3}{\vartheta_{0}}}\frac{3}{\vartheta_{0}}}{x_{0}} - e^{-\frac{3}{2}\cdot\frac{4}{x_{0}}}\right) - \tilde{J}_{2} + \frac{3^{H}\Psi_{1}}{2} \int_{-\frac{N}{2}}^{\frac{N}{2}} \left[\overline{U}_{1}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}} - \Psi_{1}\frac{\partial\overline{U}_{1}}{\partial\frac{3}{\vartheta_{0}}}\right]_{\frac{3}{2}-\frac{3}{\vartheta_{0}}} d.x,$$

$$\overline{U}_{1} = \frac{4}{(x_{0}-x)^{1+V_{1}}} \left(\frac{\sqrt{\frac{3}{\vartheta_{0}}}\frac{3}{x_{0}-x}}{x_{0}-x}\right)^{-V_{1}} \int_{-\frac{N}{2}}^{\frac{N}{2}} \left(\frac{2\sqrt{\frac{3}{\vartheta_{0}}}\frac{3}{\vartheta_{0}}}{x_{0}-x}\right) e^{-\frac{3}{2}\cdot\frac{x}{2}},$$

$$\Psi_{2} = \frac{4}{\Gamma(1-V_{1})} \int_{0}^{\infty} \left(\frac{3}{\vartheta}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}}\right)_{\frac{N}{2}=0} \frac{\frac{3}{2}e^{-V_{1}}}{(x_{0}-x)^{1+V_{1}}} e^{-\frac{3}{2}\cdot\frac{3}{x_{0}-x}} d.x,$$

$$\Gamma_{R} = \left(\frac{3}{\vartheta}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}}\right)_{\frac{N}{2}=0} \qquad \text{при } \epsilon > 0, \quad V_{1} < 0;$$

$$\left(\frac{3}{\vartheta}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}}\right)_{\frac{N}{2}=0} \qquad \text{при } \epsilon > 0, \quad V_{1} < 0;$$

$$\left(\frac{3}{\vartheta}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}}\right)_{\frac{N}{2}=0} \qquad \text{при } \epsilon = 0, \quad V_{1} = 0 \qquad \text{дается формулой (41)};$$

$$\left(\frac{3}{\vartheta}\frac{\partial\Psi_{1}}{\partial\frac{3}{\vartheta_{0}}}\right)_{\frac{N}{2}=0} \qquad \text{при } \epsilon = 0, \quad V_{1} = 0 \qquad \text{дается формулой (46)};$$

$$Z > H^{-}$$

 $\Psi_{2}(\mathbf{x}_{\circ},\eta_{\circ}) = \frac{\sigma_{2}}{K(h)|\delta+6|} \left(\frac{\eta_{h}}{\eta_{\circ}}\right)^{\frac{1}{2}} \frac{1}{x_{\circ}} \left[\int_{V_{2}} \left(\frac{2\sqrt{\eta_{h}\eta_{\circ}}}{x_{\circ}}\right) e^{-\frac{\eta_{o}+\eta_{h}}{x_{\circ}}} \right]$

$$- \operatorname{sign} \left(\delta + b \right) \eta_{H}^{H_{V_{2}}} \int \left[\overline{v}_{2} \frac{\partial \Psi_{2}}{\partial \eta} - \Psi_{2} \frac{\partial \overline{v}_{3}}{\partial \eta} \right]_{\eta=\eta_{H}} d\eta, \, \delta + b \neq 0,$$

$$\overline{v}_{2} - cM. \, (22),$$

$$\Psi_{2}(x_{0}, z_{0}) = \frac{\sigma_{2}}{2\sqrt{J_{1}} \kappa_{H} U_{H} x_{0}^{2}} e^{-\frac{(z_{0} - h)^{2}}{4\alpha^{2} x_{0}}} - \int_{0}^{x_{0}} \left\{ \frac{\alpha}{2\sqrt{J_{1}} (x_{0} - x)} e^{-\frac{(z_{0} - H)^{2}}{4\alpha^{2} (x_{0} - x)}} \frac{\partial \Psi_{4}(x, H)}{\partial z} - \frac{(z_{0} - H)^{2}}{4\alpha^{2} (x_{0} - x)} e^{-\frac{(z_{0} - H)^{2}}{4\alpha^{2} (x_{0} - x)}} \varphi_{2}(x, H) \right\} dx, \quad \alpha = \sqrt{\frac{K_{H}}{U_{H}}}, \quad \delta = b = 0.$$
(48)

Как частный случай из (48) получается поле концентраций при наличии запирающего слоя на линии раздела слоев $\vec{z} = H$ достаточно для этого положить в (48) $\frac{\partial \Psi_{H}}{\partial \hat{g}} = \frac{\partial \Psi_{2H}}{\partial \eta} = 0$. Реализуя в формулах (48) условия склейки (12) или (31), выпишем систему линейных интегральных уравнений относительно $\Psi_{H}, \Psi_{2H}, \frac{\partial \Psi_{2H}}{\partial \hat{g}}, \frac{\partial \Psi_{2H}}{\partial \eta},$ аналогичные (32), (33):

$$\begin{split} \Psi_{I}(x_{o},\hat{g}_{H}) &= \frac{2\chi_{I}h}{\kappa(h)(m-n+2)} \left(\frac{\hat{g}_{H}}{\hat{g}_{H}}\right)^{\frac{V_{I}}{2}} \frac{4}{x_{o}} \int_{-V_{I}}^{\sqrt{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{x_{o}} - \frac{\hat{g}_{H}+\hat{g}_{H}}{x_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{x_{o}} - \frac{\hat{g}_{H}+\hat{g}_{H}}{x_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{x_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{x_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{x_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}\hat{g}_{H}}{2\sqrt{\hat{g}_{O}} - \chi_{O}}\right)^{\frac{1}{2}} \left(\frac{2\sqrt{\hat{g}_{H}}}{\chi_{o}} - \frac{1}{\chi_{o}}\right)^{\frac{1}{2}} \left(\frac{2}{\chi_{o}} - \frac$$

• $\varepsilon < 0$, $V_1 > 0$, $\left(\frac{3}{2} \frac{2 Y_1}{2}\right)_{3=0}$ определяется уравнением (41), $\varepsilon = 0$, $V_1 = 0$, $\left(\frac{3}{2} \frac{2 Y_1}{2}\right)_{3=0}$ определяется уравнением (46); $\varepsilon = 0$, $V_1 = 0$, $\left(\frac{3}{2} \frac{2 Y_1}{2}\right)_{3=0}$ определяется уравнением (46);

$$\Psi_{2}(\mathbf{x}_{o},\eta_{\mu}) = \frac{2}{\kappa(h)} \frac{\delta_{2}}{\delta_{1}+\delta_{1}} \left(\frac{\eta_{h}}{\eta_{\mu}}\right)^{\frac{1}{2}} \frac{4}{x_{o}} \left[\int_{V_{2}} \left(\frac{2\sqrt{\eta_{h}}\eta_{\mu}}{x_{o}}\right) e^{-\frac{\eta_{\mu}}{x_{o}}} \right]$$

$$- \operatorname{sign} (\delta + \beta) 2 \int_{0}^{\infty} \left\{ \frac{\eta_{H}}{x_{o} - x} e^{-\frac{2\eta_{H}}{x_{o} - x}} \left[\frac{2\eta_{H}}{x_{o} - x} \frac{\partial q_{2H}}{\partial \eta} - \frac{\eta_{H}}{(x_{o} - x)^{2}} e^{-\frac{2\eta_{H}}{x_{o} - x}} \left[\frac{1}{y_{2}} \left(\frac{2\eta_{H}}{x_{o} - x} \right) - \frac{\eta_{H}}{y_{2}} \frac{2\eta_{H}}{x_{o} - x} \right] q_{H} \right] dx_{3}(50)$$

$$q_{1H} = q_{1}(x_{2}, \frac{3}{2}_{H}) = q_{2}(x_{2}, \eta_{H}) = q_{2H},$$

$$\frac{H}{m+2+1} \frac{\partial q_{1}}{\partial \frac{3}{2}} \Big|_{\frac{3}{2} - \frac{3}{2}_{H}} = \frac{1}{\delta + \beta} \frac{\partial q_{2}}{\partial \eta} \Big|_{\eta = \eta_{H}}.$$

Способы решения системы (50), (41)-(46), (50) общеизвестны. Наиболее удобным в расчетных целях представляется нам метод итераций. Метод свертывания позволяет в (49),(50) через преобразование Лапласа перейти от линейных интегральных уравнений к линейным алгебраическим уравнениям относительно $\Psi_{i,u}, \frac{3\Psi_{i,u}}{3\frac{3}{3}}, \frac{3\Psi_{i,u}}{3\frac{3}{3}}$

но при этом возникают большие трудности с построением обращения по формуле Римана-Мелина. В известной мере можно избежать эти трудности, сочетая метод свертнвания с методом итерации. Тогда в приближениях вместо полных значений функций \overline{U}_{i} и производных $\frac{\partial \overline{U}_{i}}{\partial J_{i}}$ используются только главные члены их разложений по степеням аргумента.

В детали этого вопроса мы не входим за невозможностью уместить его в рамки статьи.

В заключение автор считает своим долгом выразить признательность проф.Д.Л.Лайхтману, с которым эта работа многократне обсуждалась.

Литература

1.	В	a	т	С	0	H	Г.Н. Те	ория бесселевых функций. И Л, 1949.
2.	Л	a	Й	x	T	M	ан Д.Л.	Физика приземного слоя. Гидрометео- издат, Л., 1961.
з.	C	M	N	p	H	0	в В.И.	Курс высшей математики, т.1У. Физмат- гив, М., 1958.
4.	Д	И	T	ĸ	Ň	H	В.А., Пр	удников А.П. Интегральные пре- образования и операционное исчисление. Физматрия. М., 1961.

- 192

193

СЛИЯНИЕ КАПЕЛЬ ВОДНЫХ РАСТВОРОВ

Образование осадков из водяных облаков явлыется достаточно сложным вопросом, который до настоящего времени окончательно не решен. В частности, недостаточность наших сведений о процессах, приводящих к укрупнению облачных капель, требует всесторонних исследований в области фазовых переходов воды, а также взаимодействия между облачными элементами. Подобные исследования целесообразно проводить не только в естественной обстановке внутри самих облаков, но и в лаборатории, изучая отдельные стороны процессов.

В предлагаемой работе приводятся экспериментальные данные по исследованию слияния капель различных водных растворов, которые представляют интерес с точки зрения физики образования осадков.

Изучение процесса слияния капель растворов проводилось на установке, использовавшейся в предыдущих исследованиях [1]. Основной частью установки являлись два подвижных капельника, с помощью которых создавались капли. Верхний капельник во время опытов был всегда завемлен, а на нихний мог подаваться потенциал относительно вемли о У . Наблюдения за слиянием капель всегда начинались при заземленных капельниках. При этом верхний капельник смещался в горизонтальном направлени до тех пор, пока верхняя капля при своем падении касалась нижней, но с нею не сливалась, т.е.соударение было незффективным. Затем на нижний капельник подавался потенциал Δ У , который постепенно увеличивали до тех пор, пока все соударения становились эффективными. Это значение потенциала принималось за критичесвое Δ У. . Таким образом, в результате измерений было получено отношение числа слившихся mⁱ капель к числу столкнувшихся m", т.е. п=m". Выражая п в процентах, получим, что при n = 100%. Величина n определялась всегда $\Delta \mathcal{V} = \Delta \mathcal{V}_{\mathbf{K}}$ для 100 соударений.

После окончания измерений с водой, не меняя положения капельников, верхняя бюретка заполнялась водным раствором исследуемого вещества и опыты проводились в том же порядке. При этом находилось новое значение $\Delta V_{\kappa\rho}$ для раствора. Это значение в зависимости от химических свойств растворенного вещества могло быть $\Delta \mathcal{V}_{\kappa_0} \geq \Delta \mathcal{V}_{\kappa}$. Изменение величины критической разности ПОтенциалов в сторону уменьшения свидетельствует об увеличении эффективности соударений. Увеличение **Δ Укр** в сравнении с величиной Δ V' для воды, наоборот, дает основания полегать, что эффективность соударений уменьшается. Таким образом, сравнение значений величины А Пко для исследуемых веществ с этой же величиной для воды ΔV_{\star} давало возможность судить об увеличении или уменьшении эффективности соударений. Естественно, что,если для капель водных растворов соударения становятся менее эффективными, TO для превращения их в эфрективные необходимо увеличить ΔV_{-} разность потенциалов между каплями, а следовательно, и ΔU_{κ} [2].

В качестве исследуемых веществ были взяты растворы неорганических и органических соединений, эфирное масло и молоко. Концентрация растворов составляла 1 г на литр воды. В результате измерений было обнаружено, что растворы неорганических соединении: NaHCO, KCl, BaCl₂, AgNO₃, MH₄NO₃, Ba(OH)₂, KMnO₄, K₂CO₃ и другие, существенного влинния на изменение эффективности соударения не оказывают. Исключением явился раствор K₂SO₄, которыи дал пониженное вначение ΔV_{KP} в сравнении с водой, т.е. некоторое повышение эффективности соударений капель. Растворы NaH₂BO, Fe(MH₄)₂(SO₄)₂·6H₂O обнаружили слабое увеличение ΔV_{KP} , т.е. уменьшение эффективности соударений.

Все исследованные органические соединения оказали заметное влияние на эффективность соударений. При этом растворы органических кислот: щавелевой, лимонной, уксусной, заметно снижают $\Delta V_{\kappa\rho}$, в то время как растворы солей этих же кислот (C₂O₂HNCA и CH₃COON_a) повышают значение $\Delta V_{\kappa\rho}$. Особенно сильное повышение $\Delta V_{\kappa\rho}$ наблодается для C₁₅H₃₁COON_a, а также C₁₂ H₂₂O₄₄. В качестве примеров на рисунках 1 и 2 приведены значения отношения числа слившихся канель к числу столкнувшихся, выраженное в процентах, п в вависимости от ΔV для C₁₅H₃₁COON_a и C₁₅H₂₂O₁₄.

Наибольший интерес представляют результаты исследования растворов молока [5] и эфирного масла. Растворы этих веществ настолько сильно снижают величину ΔV_{kp} , что практически при $\Delta V = 0$ все соударения превращаются в эффективные. Этот результат, возможно, может иметь определенный практический интерес для опытов по увеличению эффекта коагуляции капель воды.

Представляется, что столь заметное увеличение эффекта слияния, обнаруженное для раствора молока и эфирного масла, может быть связано с изменением поверхностного натяжения капель растворов под влиянием присутствующих в растворе жиров. Вероятно, что наличие на поверхности капли жиров приводит к нарушению однородности поверхности и сильно ослабляет ее внешнюю оболочку. Таким образом, на повержности капли образуются места, не затя-

нутые водяной пленкой, в результате чего взаимодействие между соударяющимися каплями облегчается, о чем и свидетельствует резкое уменьшение величины $\Delta \mathcal{V}_{KP}$. Слияние капель указанных растворов происходит даже при отсутствии заметной разности потенциалов между каплями.

Заметное влияние на эффект слия им оказали растворы исследованных органических веществ. Влияние примесей этих веществ на слияние может быть связано с их поверхностнои активностью. Известно, что органические вещества являются гипичными поверхностно-активными. Эти вещества обладают свойством образовывать на поверхности раздела вода-воздух адсорбционные слои ориентированных молекул. При достаточно полной ориентации молекул и переплетении углеводородных цепей наблюдается большая механическая прочность адсорбционного слоя. Значительное увеличение $\Delta V_{\rm KP}$ для $C_{45}H_{31}$ СОО. Связано с сильным увеличение поверхностного натяжения и образованием механически прочного поверхностного слоя.

Поскольку поверхностныя активность зависит от числа полярных групп и длины углеводородной связи, увеличиваясь с увеличением длины цепи и с увеличением ее асимметрии, то обнаруженное увеличение $\Delta U_{\mu\rho}$ для декстрина и С₁₂ Н₂₂ О₁₁ может быть связано со свойстьами их поверхностных слоев. Вещества, подобные рассмотренным, затрудняют слияние и в этом отношении могут быть названы "отрицательно-активными".

Основная же часть исследованных нами поверхностно-активных веществ обладала слабо выраженными механическими свойствами поверхностных слоев. Ориентация же адсорбирующихся молекул поверхностно-активного вещества в пограничном слое сопровождается понижением избытка поверхностной энергии слоя. Поскольку поверхностное натяжение для органических кислот меньше, чем для воды, то их добавление к воде приводит к уменьшению поверхностного натяжения раствора, способствующему слиянию капель и уменьшению ΔV_{Ko} .

Для растворов органических солей увеличение А U_{кр} и определенное затруднение слияния в сравнении с водой связано с обратным эффектом увеличения поверхностного натяжения. К сожалению, мы не имеем данных о поверхностном натяжении исследуемых растворов, так как это определение является сложной специальной задачей:

Рис.2.

На основания изложенного следует, что добавление к воде веществ, способных значительно уменьшить поверхностное натяжение или нарушить однородность строения поверхности, способствует увеличению эффекта слияния.

В начальный момент образования зародышевых капель последние представляют собой достаточно концентрированные растворы. Хими ческая природа раствора определяется химическим свойством ядра, на котором образовалась капля. При этом в зависимости от кислотных или щелочных свойств раствора зародышевой капли последняя приобретает положительный или отрицательный электрический заряд. Таким образом, увеличение эффекта слияния мелких облачных капель может быть связано с образованием зарядов на каплях в зависимости от кислотных или щелочных свойств раствора вародышевой ρH капли. В зависимости от величины , характеризующей кислотные или щелочные свойства раствора, на границе вода-воздух возникает электрокинетический потенциал. Для ядер конденсации, обладающих свойством образовывать щелочной раствор (рН < 7), имеет место повышенная концентрация ионов ОН на поверхности капли, что, возможно, способствует преимущественному захвату отрицательных ионов воздуха и приобретению каплей отрицательного заряда. Для растворов кислотных на поверхности образуется повышенная концентрация ионов Н и, возможно, преимущественный захват положительных ионов воздуха. Капля при этом приобретает положительный варяд. Наличие варядов на облачных каплях с 2<30мк также может приводить к усилению эффекта слияния для столкнувшихся частиц. Различие в величинах зарядов столкнувшихся оолее крупных капель приводит к превращению неэффективных соударении в эффективные [2]. Большие значения, полученные для зарядов ослачных капель [3], несомненно связаны с коагуляцием заряженных капель.

Литература

элек-

1.	T	B	e	p	c	R	ая Н.П	•	Опытное изучение соударения и слия- ния заряженных капель. Труды ГГО, выл. 73, 1956
2.	T	B	e	р	C	R	ая Н.П	•	Коагуляция заряженных капель. Труды ЛГМИ, вып.9, 1960.
з.	К	p	8	C	Ħ	0	ropc	K a	я Н.В. Исследование процессов эле тризации частиц облаков и осадков. Изв.АН СССР, сер.геофиз., 1, 1960.
4.	P	е	ш	e	T	0	в В.Д.		Проблема атмосферного электричест- ва и аэрозоль. Труды ЦАО, вып.30, 1959.
5.	A	r	8	Ħ	И	H	M.A.		Влияние примесси на слияние капель. Изв.АН СССР, сер.геогр.и геофиз., ⊯ 3, 1940.

А. Г. БРОЙДО, И. А. ИЗИС

198

ОСОБЕННОСТИ ПОТОКА ТЕПЛА В ПОЧВЕ НА ПЛОЩАДКЕ ЛГМИ В БАТОВО

В работе [1] на общирном опытном материале показывается целесообразность использования предложения Н.П.Русина [4] о замене расчета средних значений вертикального потока тепла в верхнем двадцатисантиметровом слое почвы по формуле Г.Х.Цейтина [3,5]

$$B = \frac{C}{C} \left[S_1 - \frac{\alpha}{10} S_2 \right]$$
(1)

(2)

расчетом по упрощенной формуле

 $B = \frac{c}{\tau} S_1$

В этих формулах С - средняя объемная теплоемкость верхнего двадцатисантиметрового слоя почвы; С - интервал времени между двумя соседними сроками наблюдений, т.е. интервал, к которому относится вычисляемое по этим формулам среднее вначение В;

 α - средний коэффициент температуропроводности рассматриваемого слоя почвы, S_1 и S_2 - функции, связанные с изменением теплосодержания этого же слоя за данный интервал времени и с теплообменом между этим слоем и нижележащими слоями. Методика нахождения величин α , S_1 и S_2 изложена в работах [3,5].

В настоящей работе ставились следующие цели:

а) выяснить наличие каких-либо особенностей потока тепла в почве на площадке ЛГМИ в п.Батово (Гатчинский район Ленинградской области);

о) провести в дополнение к работе [1] оценку результатов расчета по формуле (2) по сравнению с результатами, получающимися по формуле (1).

Поскольку в настоящей работе, по-видимому, впервые публикуются результаты, полученные по материалам наблюдений на площадке ЛГМИ в Батово, то представляется целесообразным дать краткое физико-географическое описание данного района и укавать некоторые особенности площадки.

Площадка ЛГМИ в п.Батово находится в 75 км южнее Ленинграда.

Таким образом, район расположения площадки находится в северозападной части Восточно-Европейской равнины. Местность представляет собой пологую равнину с понижением в сторону Финского залива, т.е. к северу и северо-западу. Район расположен в зоне смешанных лесов. Почвы преимущественно подзолистые. Леса прерываются общирными луговыми полянами с разнотравным растительным покровом. Нередко встречаются довольно общирные заболоченные участки, так как район находится в зоне изоыточного увлажнения. Климат - умеренно континентальный.

Площадка расположена на сравнительно ровном плато с небольшими пологими холмами моренного происхождения. Со всех сторон площадка окружена 1-2 рядами деревьев высотой 15-20 м, находящихся на расстоянии 3-5 м друг от друга. С восточной стороны к площадке примыкает парк. В 100 м севернее площадки протекает р.Оредеж, имеющая вдесь ширину до 30-40 м и глубину до 3-4 м. Примыкающий к площадке правый берег реки – возвышенный, обрывистый. С запада на расстоянии 70 м от площадки находятся одноэтажные деревянные жилые дома п.Батово, окруженные небольшими садами и огородами.

Поверхность площадки в основном ровная, с чебольшими редкими буграми. Площадка имеет травяной покров, выкашиваемый в середине лета. Измерение температуры поверхности почвы производится ртутными термометрами на оголенных участках, размеры которых по условиям работы на данной площадке несколько уменьшены против стандартных и составляют около 3х4 м. Почва на площадке песчаная.

В настоящей работе использованы материалы ежечасных наблюдений над температурой поверхности почвы и температурой на глубинах 5.10.15 и 20 см. Наблюдения выполнялись в дневные часы (с 09 до 18 час.) отдельных дней июня 1960 г. Температура поверхнос ти почвы определялась ртутным ("срочным") термометром, температура на глубинах - коленчатыми термометрами С.И.Савинова. По этим наблюдениям удалось рассчитать по формуле (1) за двухчасовые интервалы времени 52 средних значения В , которые изменяются в пределах от -0,109 до 0,190 кал/см²мин. Экстремальные значения (-0,109, 0,190 кал/см²мин.) потока тепла в почве встретились лишь в 6% случаев. В большинстве же (в 75% случаев) этот поток составляет от -0,09 до 0,10 кал/см²мин. , что вполне согласуется с аналогичными величинами в других районах северо-аапада ЕГС [2].

Значение В в один и тот же час разных дней также меняется в довольно широких пределах в зависимости от погодных условий, особенно облачности. Тем не менее во все 7 рассмотренных суток можно обнаружить в основном упорядоченный дневной ход потока тепла в почве, а именно постепенное уменьшение этого потока от первого утреннего срока (10 час) до последнего вечернего (17 час.). В отдельные дни поток уже в 15-16 час. переходил через чуль и становился отрицательным. Максимальное положительное значение нотока достигалось, по-видимому, в более ранние утренние часы (до 10 час.), остававшиеся неосвещенными в настоящей работе.Наглядное представление о характере дневного хода потока тепла в почве дает рис.1, на котором этот ход представлен в осредненном виде за все 7 рассмотренных суток. Важно отметить, что

Рис.1. ОСРЕДНЕННЫЙ ДНЕВНОЙ ХОД ПОТОКА ТЕПЛА В ПОЧВЕ В БАТОВО ЗА 7 СУТОК ИЮНЯ 1960 г.

график среднего дневного хода В получен не путем осреднения вначений В за один и тот же час разных суток, а путем осреднения исходных данных, т.е. температуры почвы для каждого рассмотренного дневного часа всех 7 суток. Осреднение же самих вначений В не привело к столь же определенной картине. Поскольку междусуточная изменчивость этих значений для одного и того же часа довольно велика, то для получения сглаженной картины необходимо осреднение за более продолжительный интервал, чем 7 суток. Из рис.1 видно, что в среднем поток тепла в почве в дневные часы июня на площадке более или менее плавно уменьшается примерно от 0,13 до 0,03 кал/см²мин.

Поскольку поток тепла в почве в рассмотренный период времени на площадке в Батово не обладал какими-либо резкими отличиями от соответствующих потоков на других площадках северо-запада ETC, то данная площадка может быть признана достаточно репрезентативной по потоку тепла.

К несколько более неотиданным выводам привело сравнение значений В, вычисленных по формуле (2), со значениями, найденными по формуле (1). Для краткости назовем первые из них B_2 , а вторые B_1 . Прежде всего обращает на себя внимание тот факт, что все 52 значения B_2 оказались несколько ниже соответствурщих значений B_1 . В работе [1], выполненной по материалам наблюдений в Дубовской, Каменной Степи и Колтушах, также было получено, что число заниженных значений B_2 преобладает над числом

завышенных его значений. Однако иногда там встречались и завышенные, а не одни только заниженные значения, как в Батово. Рассмотрение формулы (1) показывает, что, поскольку величина со всегда существенно положительна, то полученный результат может быть объяснен лишь тем, что во все рассмотренные сроки наблюдений в Батово S_2 было отрицательным. Это характерно для дневных часов при сухой погоде, когда поток тепла от поверхности почвы проникает не только до глубины 20 см, но проходит и в нижелетащие слои. Рассмотренные здесь 7 суток характеризовались в Батово сухой жаркой погодой. По другим же упомянутым выше районам более общирный опытный материал включал в себя и дни с неустойчивой погодой, в том числе дни с осадками, приводящими, как правило, к смене отрицательного знака S_2 на положительный и потому вызывающими завышение B_2 по сравнению с B_1 .

Среднее из всех 52 отклонений B₂ от B₁ составило 0,033 см²мин, что значительно превышает соответствующую величину, найденную в работе [1]. Это может объясняться как меньшим числом рассмотренных здесь случаев, так и особенностями состава, структуры, влажности и других свойств почвы в Батово, приводящими к более высоким, чем в районах, рассмотренных в работе [1], значениям коэффициента температуропроводности верхнего слоя, что может давать сравнительно повышенные значения 2-го члена в скосхах формулы (1). Более детальное выяснение этого вопроса выходит ва рамки настоящей работы и явится предметом отдельной статьи.

Для оценки возможности практического использования формулы (2) вместо формулы (1) имеет значение аналив не столько абсолютных, сколько относительных отклонений В₂ от В₁, т.е. величин

 $f = \frac{B_2 - B_1}{B_1} \% .$ (3)

В 7 из 52 случаев значения составили более 100%. Однако специальное рассмотрение этих случаев показывает, что большинство из них имеет место не при больших значениях B₂-B₁, а при малых значениях B₁, когда погрешность расчета по формуле (3) резко увеличивается. Рассматривать такие случаи, очевидно, нецелесообразно. В остальных же 45 случаях относительные погрешности распределяются по отдельным градациям так, как показано в табл.1.

Таблица 1

Распределение по градациям относительных отклонений В₂ от В₁

£%	0-9	10-19	20-29	30-39	40-49	≥ 50	
Число случаев %	6 13	11 25	11 25	5 11	3 6	9 20	

Сравнение этой таблицы с результатами, полученными в работе [1], свидетельствует о том, что расчеты по формуле (2) на материале наблюдений в п.Батово приводят к величинам B_2 , обладающим более значительными погрешностями, чем величины B_2 , вычислявшиеся для других районов. Этот факт, возможно, так же, как и большее среднее абсолютное отклонение B_2 от B_1 , объясняется более высокими вначениями коэффициента температуропроводности верхнего слоя почвы в Батово.

Представляет интерес вопрос о распределении относительных погрешностей значений В₂ во времени. Как указывалось выше, в настоящей работе эти значения вычислялись только для дневных часов летнего времени года. Если исключить большие относительные погрешности, полученные при малых В₁, то осреднение остальных 45 значений f по часам суток приводит к результатам, представленным в табл.2.

Таблица 2

Средние относительные погрешности (в%) вначений В₂ для разных часов дневного времени

Часы	10	11	12	13	14	15	16	17	
Средняя отно- сительная погрешность, %	18	13	32	22	62	33	43	39	

Из табл.2 видно, что увеличение погрешности расчета В2 имеет место во второй половине дня, когда сам поток тепла в почве уже начинает заметно уменьшаться. Этот результат согласуется с выводами работ [1,4]. Однако и в дневные часы значения † для Батово сравнительно велики – они заметно превышают значения, полученные за эти же часы в районах, рассмотренных в работе [1]. Этот вывод совпадает с результатом, полученным из табл.1.

Проделанная работа позволяет сделать следующие выводы.

1. Абсолютные значения потока тепла в почве и пределы его колебания в дневные часы и общий характер дневного хода этого потока в летнее время года на площадке ЛГМИ в п.Батово типичны для северо-запада Европейской части Союва. Это говорит о репрезентативности данной площадки по потоку тепла в почве.

2. Сравнение результатов расчета потока тепла в почве по сокращенной формуле (2) и по более полной формуле (1) показывает, что при расчетах по формуле (2) для Батово получаются более значительные погрешности, чем для других районов. Отсюда в свою очередь следует, что

а) в данном районе и в рассмотренный период времени, возможно, имели место несколько повышенные значения коэффициента температуропроводности;

б) использование формулы (2) вместо формулы (1)может в отдель-

ных районах (в частности, в Батово) в некоторые периоды приводить к результатам, содержащим погрешности, в 2-3 раза превышающие погрешности, получающиеся в других районах.

Литература

1.	Б	р	0	ä	д	ο Α.Γ.,	Субочь Н.А. О точности приближен-
2.	.0	r	H	e	B	a T.A.	ного метода расчета потока тепла в почве. Труды ГГО, вып.??, 1958. Некоторые особенности теплового ба- ланса деятельной поверхности. Гидро-
3.	P	У	C	М	Ħ	н.л.	метеоиздат, 1955. Методические указания гидрометеороло- гическим станциям, ¥ 5. Гидрометео-
4.	P	У	C	M	Ħ	н.п.	издат, 1934. Об определении теплообмена в почве на гидрометеорологических станциях. Труды 170, вып.52 (114), 1955.
5.	ц	e	Й	T	N	н Г.Х.	К вопросу об определении некоторых тепловых свойств почвы. Труды Г10, вып.39 (101), 1953.

Л. А. ХАНДОЖКО

204

РАСЧЕТ СКОРОСТИ ВЕТРА В ОТКРЫТОЙ ЧАСТИ БАЛТИЙСКОГО МОРЯ

В данном исследовании делается попытка выявить зависимость скорости ветра от величины барического градиента и характера температурной стратификации в открытой части Балтийского моря.

Малочисленность, нерегулярность, а в ряде случаев и ненадеяность судовых наблюдений исключают возможность использовать эти данные для построения карт ветровых полей. Последние могут быть построены, исходя из знания характера связи полей ветра и давления.

Известные закономерности градиентного ветра не могут быть использованы в данном случае, так как скорость ветра в приводном слое определяется не только величиной градиента давления, но и многими другими факторами: характером шероховатости подстилающей поверхности, температурной стратификацией приводного слоя, распределением адвекции в нижнем слое тропосферы и другими.

Исследованию этого вопроса посвящены работы Н.П.Гоптарева [3,4], М.Е.Берлянд [1], А.И.Соркиной [5] и других. Тем не менее расчет скорости ветра над открытыми водными бассейнами в оперативной работе до сего времени представляет известные трудности.

В работе использован материал гидрометеорологических набиюдений, выполненных на исследовательских судах "Океанограф" и "Профессор Рудовиц" и синоптический материал за 1954-1960 гг. В выполнении технических расчетов принимала участие студентка П.А.Астафьева. Расчеты всех параметров, определяющих скорость ветра, производились для района Балтийского моря между 57°20' и 59°30' с.ш. и 19°30' и 20°00' в.д.

Барический градиент определялся по наземным кольцевым картам погоды. Чтобы исключить возможность появления ошибок в определении градиента давления за счет неточного проведения изобар над морем, последний рассчитывался по фактическим значениям давления на островных и береговых станциях (Гогланд, Готска-Санден. Аланцские острова, Хиума, Сарема, Стокгольм, Вентспияс, Овиши) в радиусе 111 км, причем пункты располагались в вершинах квадрата.

При таких условиях представлялось возможным достаточно точно рассчитать градиент давления по формулам

$$\left(\frac{\partial P}{\partial x}\right)_{0} = \frac{P - R}{2z},$$

$$\left(\frac{\partial P}{\partial y}\right)_{0} = \frac{P_{2} - P_{4}}{2z},$$

где P. - значение давления воздуха в вершинах квадрата, вписалного в круг радиусом Z .

Чтобы оценить связь скорости ветра и барического градиента в солее "чистом" виде, все случаи, при которых наблюдались прохождения фронтальных разделов, исключались.

Эффект влияния температурной стратификации приводного слоя воздуха оценивался по разности температур воздух-вода(Δt) разбивкой всех случаев на три типовых состояния стратификации [5]: 1) $\Delta t = 0^{\circ}$ (+ 0.5°) – состояние близкое к равновес-

1) 40 -0 (± 0,0)	- состояние, олизкое к равновес-
2) -5.0 < st < -0.6°	- неустойчивая стратификация,
3) 50 > $t > 0.6^{\circ}$	- УСТОЙЧИВАЯ СТРАТИФИКАЦИЯ.

Ввиду единичных случаев значений at ва пределами ± 5° последние не рассматривались.

Наиболее общим критерием характера стратификации в нижнем слое тропосферы при рассмотрении большой совокупности случаев может быть осредненное направление ветра \mathfrak{D} , в целом определяющее наличие адвекции тепла или холода, в следующих градациях: 1) С - СВ, 2) В - ЮВ, 3) Ю - ЮЗ, 4) З - СЗ.

Поскольку скорость ветра является многосвязным параметром, то она не может быть выражена в линейной зависимости от барического градиента. Поэтому зависимость скорости ветра от градиента давления находилась путем линейного коррелирования логарифмов этих величин. Уравнение регрессии при этом принимает вид линейного логарифмического уравнения

или

$$\int \mathcal{V} = \mathcal{A} \ln \frac{\Delta P}{\Delta n} + \ln K,$$
$$\int = K \left(\frac{\partial P}{\partial n}\right)^{d}.$$

Расчеты покавали, что в полученном степенном выражении d > 1, что обусловлено наличием в приводном слое вначительного внешнего и внутреннего трения. При d = 1 получаем из (1) выражение для скорости геострофического ветра.

(1)

На основании обработанного материала было получено 12 уравнений регрессии для соответствующих градаций Δt и D.

Элементы корреляционной связи, уравнения вида (1) и рассчитанные по ним средние скорости ветра представлены в таблицах 1, 2, где Z - коэффициент корреляции, 5, - средняя квадратическая ошибка коэффициента корреляции, \sum_{g} - средняя квадратическая ошибка уравнения регрессии, n - число случаев, κ и d коэффициенты в уравнении (1).

Рассчитанные по общеизвестным формулам величины элементов корреляционной связи подтверждают достоверность полученных уравнений.

Таблица 1

•	٥t°	C-CB	B-10B	10-103	3-C3	Σn
S	а в с	0,90 0,89 0,80	0,80 0,86 0,88	0,83 0,99 0,81	0,58 0,83 0,88	
6z	a b c	0,040 0,020 0,055	0,087 0,070 0,047	0,045 0,004 0,052	0,156 0,060 0,052	
Σy	0 6 0	0,106 0,056 0,102	0,168 0,133 0,066	0,184 0,036 0,141	0,187 0,218 0,066	
κ	d B C	6,23 5,54 5,10	4,81 5,00 5,16	3,63 4,39 4,26	5,87 5,31 4,90	
d	d B C	0,49 0,46 0,47	0,54 0,58 0,25	0,92 0,92 0,58	0,44 0,70 0,38	
n	0 6 0	23 28 43	17 14 28	42 25 44	18 27 19	100 94 134
5n		94	59	111	64	328

Величины элементов корреляционной связи и коєффициенты К и d при соответствующих градациях At

a, b, c - соответственно пределы градаций Δt : a = 0 (± 0,5°), b = ot = 0, 6 до -5,0°, c = ot 0, 6 до 5,0°.

Из данных таблиц видно, что влияние стратификации (Δt) более заметно с увеличением скорости ветра. Направление переноса воздушных масс сказывается до скоростей ветра порядка 7-8 м/сек.: большие скорости при направлениях северной половины горизонта и меньшие - при южных.

Значительное уменьшение скоростей ветра наблюдается при положительной стратификации приводного слоя 5,0> Δt > 0,6°, что также видно по малым значениям коэффициента d в уравнениях регрессии (табл.2).

Следует заметить, что при расчете скорости ветра по уравнениям вида (1) мы ограничились барическим градиентом, не превышающим 3,5-4,0 мб/111 км, исходя из следующих соображений. Подавляю-

Скорость ветра, вычисленная но уравнениям регрессии (в м/сек.) при соответствующих градациях оt

Δρ		C-C1	B	B-ICB				10-103			3-03			
Δn	a	8	C	a	8	С	a	B	С	a	B	с		
0,5	4,5	3,9	3,7	3,3	3,4	4,3	1,8	2,3	2,9	4,4	3,3	3,8		
1,0	6,2	5,5	5,1	4,8	5,0	5,2	3,6	4,4	4,3	5,9	5,3	4,9		
1,5	7,5	6,7	6,2	6,0	6,3	5,7	5,4	6,4	5,4	7,0	7.0	5,7		
2,0	8,7	7,8	7,0	7,0	7,4	6,1	7,2	8,3	6,4	7,9	8.6	6.4		
2,5	9,7	8,8	7,8	7,9	8,4	6,5	8,9	10,3	7,2	8,8	10.1	7.0		
з,0	10,7	9,6	8,6	8,7	9,5	6,8	10,7	12,1	8,1	9,5	11.5	7.5		
3,5	11,5	10,4	9,2	9,4	10,4	7,0	12,4	13,9	8,8	10,2	12.8	7.9		
4,0	12,3	11,2	9,8	10,2	11,3	7,3	14,2	15,8	9,6	11,0	14,0	8,3		

щее большинство использованных данных является наблюдениями средних значений скоростей ветра. Из 326 наблюдений (случаев) скоростей ветра, рассматриваемых на корреляционных графиках, голько 18 (5,5%) равно и больше 10 м/сек. Скоростей ветра от 10 до 15 м/сек. только 5 (1,5%), а скорость ветра более 20 м/сек.наблюдалась один раз.

Естественно заключить отсюда, что полученые нами уравнения регрессии справедливы только для рассматриваемой совокупности случаев, отвечающих вполне определенным пределам скоростей ветра и градиентов давления. При распространении численных величин полученных уравнений на большие значения градиентов давления неизбежно занижение расчетной скорости ветра по отношению к фактической.

Вероятно, К и d в уравнениях вида (1) для больших значений скоростей будут иные. Скорости ветра в табл. 2 являются некоторыми средними скоростями (\bar{v}). Фактическая скорость ветра (v_{cp}), которая должна лежать в пределах допустимой погрешности (\pm 2 м/сек.) по отношению к \bar{v} , может иметь более значительные отклонения. Е качестве примера приводим рис.1. Анализ отдельных "выскакивающих" точек проводился с учетом адвективных изменений температуры в нижнем пятикилометровом слое тропосферы по термобарической карте (OT_{1000} и AT_{700}).

Результаты анализа представлены в табл.3. Завышенные значения фактической скорости, превосходящие допустимую погрешность по отношению к расчетной, как правило, наблюдаются при адвекции холода на высотах; наоборот, занижение скорости имеет место при адвекции тепла. Неустойчиво стратифицированный воздух при адвекции холода усиливает вертикальный обмен, способствуя выравниванию скоростей по высотам и усилению скорости ветра в приводном слое. Обратная картина наблюдается при адвекции тепла. Термическая устойчивость ослабляет вертикальный обмен воздушных масс: в самом нижнем слое особенно сильно проявляются силы трения, что приводит к

Таблица 2

Рис.1. ПРИМЕР АНАЛИЗА СВЯЗИ СКОРОСТИ ВЕТРА С ГРАДИЕНТОМ ДАВЛЕНИЯ.

1 - фактическая скорость ветра, 2 - область допустимой погрешности, 3 - фактическая скорость ветра с отклонением более 2 м/сек. от \overline{U} .

резкому изменению скоростей ветра с высотой. В этих случаях даже при значительных градиентах давления могут наблюдаться слабые ветры.

Вышесказанное хорошо подтверждается соответствием знака температурной адвекции знаку отклонения скорости ветра от линии регрессии (\tilde{v}) (табл. 3).

Из таблицы видно, что рассматриваемая связь проявляется довольно отчетливо: увеличение скорости ветра при адвекции холода и ослабление - при адвекции тепла.

Чтобы оценить дополнительный эффект обнаруженной зависимости, было проведено количественное сопоставление величин адвективных изменений температуры с величиной отклонения V_Ф от V(±ΔV). Соответствие знака температурной адвекции (Эт)анаку отклонения скорости ветра от \bar{v}

Состояние	Общее	νφ >	· v̄	Общее	Vq	$\mathcal{V}_{\varphi} < \vec{\mathcal{V}}$					
кации в приводном	число случа-	ЧИСЛО С СООТВЕ	случаев гствия,%	число случа-	число случаев						
слое		$\begin{pmatrix} 2T\\ 2t \end{pmatrix} < 0$	$\left(\frac{\partial T}{\partial t}\right)_{a} > 0$	ев	$\left(\frac{\partial \mathbf{I}}{\partial \mathbf{t}}\right)_{a} < 0$	$\left(\frac{\partial T}{\partial t}\right)_{a} > 0$					
st= 0	38	92(35)	8 (3)	38	is (5)	87 (33)					
+ 5,0< \$t<0,6°	35	91(32)	9 (3)	24	17 (4)	83 (20)					
5,0>st>0,6°	52	92(48)	8 (4)	45	18 <u>(</u> 8)	82 (37)					

Если положения линий средних скоростей на корреляционных графиках определялись (помимо влияния барического градиента и других факторов) преобладающим знаком адвекции, то фактическое отклонение скорости ветра от средней будет определяться и знаком и Величиной адвекции. В табл.4 приведены поправки (± ΔU / сек) с учетом адвекции температуры в слое до 5 км, представляющие собой величины средних отклонений фактической скорости ветра от средней скорости (\overline{V}).

Таблица 4

(2)

Поправки (+ Δ) м/сек.) с учетом адвективных изменений температуры (3+) в нижнем пятикилометровом слое

্র্য	Нулевая адвекция	Ацвекция з	солод а	Адвек	ция тепла
M/CeR.	0	$-1^{\circ}, -4^{\circ}$	≽ - 5 ⁰ `	1-40	≥ 5 ⁰
4-7	-0,4	+0,5	+1,0	-1,0	-1,5
8-12 и более	+0,9	+2,2	+2,7	-1,7	-

Адвективные изменения температуры вычислялись по указанным выше термобарическим картам по формуле, предложенной И.П.Ветловым [2]:

 $\left(\frac{2}{3t}\right)_{a} = 6,94 \cdot 10^{-2} \left[\left(OT_{1000}^{500} \right)_{1} - \left(OT_{1000}^{500} \right)_{3} \right] \left[\left(H_{700} \right)_{2} - \left(H_{700} \right)_{4} \right]_{,}$ где $\left(OT_{1000} \right)_{i}$ и $\left(H_{700} \right)_{i}$ - значения относительного и абсолютного гепотенциалов соответственно в точках 1,2,3,4 при переходе к конечным разностям. За единицу длины принято 500 км, t = 24 часа.

Таким образом, в оперативной работе служб погоды расчет скорости ветра над открытой частью Балтийского моря может производиться по формуле

 $\mathcal{V} = \left[\kappa \left(\frac{\Delta P}{\Delta n} \right)^{d} \right]_{i} + \Delta \mathcal{V}_{T},$

где $\left[K \begin{pmatrix} \Delta P \\ \Delta n \end{pmatrix}^d \right]_{i}$ - величина, выражающая скорость ветра, рассчитанную в зависимости от величины барического градиента при соответствующих градациях Δt ; ΔV_{τ} - поправка за счет адвективных изменений температуры.

Найденные зависимости могут быть использованы и в прогностических целях, для чего необходимо:

1) дать прогнов поля давления для соответствующей части моря, используя общеизвестный метод переноса барических тенденций.При определенном навыке метод дает вполне удовлетворительные результаты на срок до 12 час.;

2) дать прогноз температуры воздуха для определения Δt ,учитывая, что температура воды более консервативная характеристика в суточном периоде;

3) дать прогнов знака и величины адвективных измензний температуры.

Выводы

1. Связь скорости ветра и величины барического градиента в рассматриваемых пределах этих параметров вполне удовлетворительно может быть описана уравнением вида (1). Однако весь спектр существующих в наших широтах скоростей ветра, определяющихся основными атмосферными процессами, целесообразно было бы разбивать на отдельные участки и для последних определить свои К и d.

2. Не вызывает сомнения имеющаяся зависимость скорости ветра в приводном слое от характера температурной стратификации этого слоя и интенсивности вертикального обмена скоростей в нижней тропосфере.

3. Не претендуя на полноту рассмотренных связей, результаты проведенного исследования могут быть использованы в оперативной работе морских служб погоды для оценки скоростей ветра в открытой части моря.

Литература

	·	N .								
1.	Б	e	p	л	я	H	д	M	.Е.	Теория изменения ветра с высотой. Труды НИУ ГУГМС, сер.1, вып.26,1947.
2.	В	е	T	л	Ó	в	V	п.п.	r	Анализ условий развития циклонов и ан-
										тициклонов у поверхности земли. Труды
										ЩИПа, вып.61, 1957.
з.	Г	0	π	T	a	р	e	в	Н.П.	Некоторые результаты градиентных иссле-
										дований в районе Нефтяных Камней. Труды
									· .	ГОИНа, вып.36, 1957.
4.	Г	0	π	T	a	q	е	в	н.п.	О влиянии динамических и термических
-					÷.,	-	÷.,	•		факторов на скорость ветра над морем
					•		-			и шероховатость морской поверхности.
					÷				,	Труды ГОИНа, вып.51, 1960.
5.	С	0	p	ĸ	И	H	a	A	.И.	Построение карт ветровых полей для мо- рей и океанов. Труды ГОИНа, вып.44,1958.

Т. Ф. ДЬЯЧЕНКО

О СВЯЗИ СИЛЫ ВЕТРА НА ПОБЕРЕЖЬЕ МУРМАНА С ВЕЛИЧИНОЙ БАРИЧЕСКОГО ГРАДИЕНТА

Изучение условий возникновения штормов и, следовательно, возможность их предсказания представляет большой интерес для практики гидрометеорологического обеспечения морского флота.

Известно, что скорость ветра в приземном слое без учета орографических влияний и суточного хода может быть предсказана по величине барического градиента на приземной прогностической карте.

Теоретическая связь между скоростью ветра и градиентом давления выражается формулой [3]

$$\mathcal{V}=\frac{530}{\sin\varphi}\,\,\Delta\,\mathrm{P}\,\,,$$

где V - скорость ветра, в м/сек.; φ - широта места; $\Delta \rho$ - градиент давления, в мб/км.

Однако практически эта формула мало применима, поскольку скорость ветра в приземном слое обуславливается не только постоянным фактором (градмент давления, сила Кориолиса), но и шероховатостью подстилающей поверхности и стратификацией воздушной массы.

Для района Карского моря Б.Д.Карелин'[1] получил следующую эмпирическую зависимость:

$\gamma = 315 \Delta P$

В работе К.П.Васильева и М.Г.Глаголевой [2] получена иная величина коэффициента пропорциональности

V=280 AP.

Нами проведено исследование синоптических условий, обуславливающих возникновение штормовых ветров в районе побережья Мурмана и зависимости силы ветра от величины барического градиента.

Основным фактором, определяющим усиление ветра до штормового (в нашем случае 6 баллов и более), принимался горизонтальный градиент давления, обусловленный процессами макромасштаба. Для получения эмпирической связи между градиентом давления и силой ветра для побережья Мурмана использовался синоптический материал за период с 1949 по 1958 г. Соответственно рассматривалось 435 случаев штормов на побережье Мурмана, зарегистрированных метеорологически-

211 -

ми станциями: Вайда-Губа, Цып-Наволок, Териберка, Мыс Черный, Харлов, Иоканьга, мыс Святой Нос, мыс Терско-Орловский.

Существенное значение для морского флота имеет направление штормового ветра. В связи с этим исследовалась зависимость силы ветра от величины барического градиента для четырех ссновных направлений ветра: юго-западного, северо-западного, северо-восточного, юго-восточного. Полученные зависимости указанных параметров дают возможность по охидаемой величине барического градиента оценить прогностическую силу ветра.

На графике (рис.1), построенном на основании 180 случаев штормов юго-западного направления, показана зависимость силы ветра от величины барического градиента. Разброс точек относительно кривой объясняется, в частности, влиянием термического контраста суща-море в холодную половину года. В тех случаях, когда тем-

Рис.1. ЗАВИСИМОСТЬ U ОТ $\triangle P$ ПРИ ШТОРМАХ ЮГО-ЗАПАДНОГО НАПРАВЛЕНИЯ НА ПОБЕРЕЖЬЕ МУРМАНА ($\triangle P$ в мб/100 км).

пература воздуха над сушей значительно ниже температуры воздуха над морем, штормовой ветер достигает большей силы, чем тогда, когда температура воздуха над сушей выше или равна температуре воздуха над морем при прочих равных условиях [4]. На рисунках 2,3 и 4 представлены зависимости при штормах северо-западного(111 случазв), северо-восточного (63 случая) и юго-восточного направления (81 случай). В табл.1 представлены осредненные козффициенты пропорциональности К эмпирической зависимости вида V=Кор для определенных пределов силы ветра и рассматриваемых направлений. Градиент дает-

Рис.2. ЗАВИСИМОСТЬ V ОТ A Р ПРИ ШТОРМАХ СЕВЕРО-ЗАПАДНОГО НАПРАВЛЕНИЯ НА ПОБЕРЕЖЬЕ МУРМАНА

ся в мб/100 км, а сила ветра - в баллах.

Таблица 1

Значения коэффициента К в зависимости от направления и силы ветра

Сила ветра,				
в баллах	103	СЭ	CB	IOB
6-8 9 и более	2,8 2,0	3,0 2,0	3,1 1,9	3,0 2,0

Заметим, что погрешности (величина разброса) не превышают 15% (2 балла), погрешность в 1 балл и менее составляет около 70%.

Полученные уточненные коэффициенты К используются нами в оперативной работе Гидрометеорологической обсерватории Северного флота при составлении суточных прогновов ветра и предупреждений об усилении ветра до штормового на побережье Мурмана.

Л	H	T	e	p	8	T	y	p	8
---	---	---	---	---	---	---	---	---	---

1.	K	8	P	e	Л	M	H	Б.Д.	0 связи ветра с градиентом дав- ления в Арктических морях. Сб. Проб-
2.	B	8	c	N	л	Ь	eE	К.П.	и Глаголева М.Г. Освязи
									ветра с градиентом давления. Труды ЦИПа , вып.3 (30), 1948.
з.	3	B	е	p	ė	B	A.	с.	Синоптическая метеорология. Гидро- метеоиздат, 1957.
4.	Д	Ъ	R	ų	e	Ħ	ĸo	T.Q.	Некоторые особенности штормов юго- вападного направления на побережье

ИИДАТОННА

дипломных работ студентов ЛГМИ

Дипломные работы, выполненные студентами метеорологического факультета ЛГМИ, охватывают широкий круг вопросов, связанных с решением теоретических и прикладных задач мете орологии.

Большинство проектов выполнено по заявкам производственных и научно-исследовательских организаций и представляют научный и практический интерес.

Дипломное проектирование проводилось на специальных кафедрах:

1) общей метеорологии и климатологии;

2) аврологии и динамической метеорологии;

3) синоптической метеорологии;

4) методов гидрометеорологических измерений.

Ниже даны краткие аннотации наиболее ценных дипломных работ.

217 -

Кафедра метеорологии и климатологии

Темы дипломных проектов охватывали широкий круг вопросов по радиационному и тепловому балансам, образованию облаков и осадков, проврачности атмосферы, авиационной метеорологии; ветровому режиму, биоклиматологии и другим проблемам метеорологии и климатологии.

· 218 -

Ниже приведены аннотации некоторых дипломных работ.

<u>1960 г.</u>

Михайлова Т.Н. "Исследование влияния стратификации на излучение атмосферы".

Руководитель доц.Гальперин Б.М.

На основании аэростатных данных о структуре пограничного слоя в различные часы суток и аэроклиматических характеристик вертикального распределения температуры и влажности в свободной атмосфере зимой и летом в центре ЕТС вычислены средние величины излучения атмосферы при различных приземных значениях температуры и влажности воздуха. Получена логарифмическая зависимость излучения атмосферы при безоблачном небе от приземной влажности воздуха и даны коэффициенты этой формулы для дневных и ночных условий в оба сезона. Вычислены для этих же условий и значения коэффициентов, характеризующих влияние облачности различного яруса на излучение атмосферы.

Полученные результаты могут быть использованы для уточнения расчетов суточного хода радиационного баланса, особенно при прогнозе ночного понижения температуры.

Н о в о **ж** и л о в а Н.И. "Исследование сложных метеорологи~ ческих условий, влияющих на вэлет и посадку самолетов".

Руководитель проф.Шапаев В.М.

На основании наблюдений аэрометеорологической станции в Ленинградском аэропорту за 1957-1959 гг. рассмотрены комплексы метеорологических элементов, направление и скорость ветра – дальность горизонтальной видимости – высота нижней границы облачности. Обработка материала, выполненная для января, апреля, июля, октября, как характерных месяцев для четырех климатических севонов, повволила выявить годовой ход указанного комплекса метеорологических элементов и установить связь и зависимости его от различной синоптической ситуации. В результате получены данные, позволяющие учесть повторлемость метеорологических условий, влияющих на взлет и посадку современных реактивных пассажирских самолетов.

<u>1961 г.</u>

Бобкина Т.В. "Характеристика облачности тыловых частей циклонов по трассе Ленинград-Москва".

Руководитель доц.Тверская Н.П.

В работе проведен аналиа 186 случаев устойчивых и неустойчивых тыловых частей циклонов, пересекающих авиатрассу Ленинград-Москва.

Установлена количественная свявь между характером облачности в устойчивых и неустойчивых тыловых частях циклонов с суммой дефицита точки росы на основных изобарических поверхностях.

Рассчитаны градиенты температуры точки росы и сопоставлены с расслоенностью облаков. Сопоставление приводит к заключению, что при численном значении точки росы более 0,8⁰/100 м наблюдаются безоблачные прослойки.

К у в м и ч е в а И.М. "Повторяемость комплексов метеорологических условий, влияющих на ввлет и посадку самолетов".

Руководитель проф.Шапаев В.М.

Дипломный проект является развитием и продолжением работы Н.И.Новожиловой. Исследование проведено на материалах наблюдений аэрометеорологической станции Ленинградского аэропорта, обработанных за 1952-1956 гг.

В работе подвергнут анализу комплекс ветер-дальность горизонтальной видимости – высота нижней границы облачности за январь, апрель, июль и октябрь. Изучена также повторяемость метеорологических условий, характеризующих взлет и посадку самолетов.

Автором исследованы непериодические изменения указанного комплекса метеорологических элементов, обусловленные прохождением различных барических систем и атмосферных фронтов для января и влияние на этот комплекс суточной периодичности метеорологических элементов.

1962 г.

Бухвалова В.А. "Особенности радиационных условий в холодный период".

Руководитель доц.Гальперин Б.М.

На материале срочных актинометрических наблюдений на ряде станций СССР в холодное полугодие дана оценка влияния изменений температурных условий и альбедо подстилающей поверхности в отдельности на поток коротковолновой радиации и радиационный баланс при разных высотах солнца при безоблачном небе и облачности 10 баллов разных форм.

Полученные результаты могут быть использованы для определения радиационного баланса поверхности снега при различных условиях, особенно для расчетов снеготаяния.

Виноградова Г.В. "Ветровой режим района переброски северных рек в бассейн р.Волги".

Руководитель канд. геогр. наук Анапольская Л.Е.

В работе рассмотрены особенности ветрового режима бассейна северных рек Европейской территории. На основании данных 10-лет-

них наблюдений исследованы сезонная изменчивость направления и скорости ветра и обусловливающие их синоптические процессы.

Изучена повторяемость штормов в указанном районе и рассчитана вероятность появления сильных ветров за 5,10,20 и 50-летний период.

Сделана попытка установить изменение ветрового режима данного района после заполнения водохранилищ.

Танкевич В. "Ветровой режим Армении и Нажичевани". Руководитель доц. Милевский В.Ю.

В дипломной работе на материале многолетних наблюдений изучен режим направления и скорости ветра в Армянской ССР и Нахичеванской АССР. Указанные характеристики ветра исследовались не только поровнь, но и совместно. При объяснении причин разнообразия ветрового режима в рассмотренном районе учитывался характер распределения по территории атмосферного давления, его годовой ход, влияние горного рельефа на ветер и степень закрытости флюгеров станций по румбам. Исследован суточный ход ветрового режима для теплого полугодия (горно-долинные ветры, бризы на озере Севан).

Токоев О. "Ветровой режим Алтая". Руководитель доц. Милевский В.Ю.

В дипломной работе на основании многолетних данных был исследован режим направления и скорости ветра на Алтае.

Направление и скорость ветра изучались не только порознь, но и совместно. При объяснении причин разнообразия ветрового режима на Алтае учитывался характер распределения по территории атмосферного давления, его годовой ход, влияние горного рельефа на ветер и степень закрытости флюгеров станций по румбам. Исследовался суточный ход ветрового режима для теплого полугодия (горно-долинные ветры, бризы на Телецком озере).

Кафедра аэрологии и динамической метеорологии

В дипломных проектах рассматривались следующие основные Вопросы: турбулентность нижнего слоя атмосферы и диффузия примесей, турбулентность свободной атмосферы, аэрологические характеристики свободной атмосферы в различных районах и особенно в Арктике и Антарк тике, аэросиноптические исследования авиатрасс и различных региональных районов, вопросы энергетики атмосферы, разработка новых методов исследования свободной атмосферы.

Приведем краткие аннотации ряда наиболее ценных дипломных работ 1960-1962 гг.

<u>1960 г.</u>

Зинченко Г.С. "Сравнение некоторых методов определения коэффициента турбулентного обмена в пограничном слое".

Руководитель доц. Рувин М.И.

В работе произведены вычисления вертикального профиля коэффициента турбулентности в пограничном слое по полю ветра различными методами. Получен вывод о том, что ковффициент турбулентности возрастает до некоторой высоты, достигает максимума, затем уменьшается с высотой. Найдена зависимость профиля коэффициента турбулентности от метеорологических условий. Доказано преимущество нового метода вычисления коэффициента турбулентности перед другими.

Ромкина В.П. "Распределение вертикальных движений в области теплого фронта".

Руководитель доц.Рузин М.И.

Автором произведен расчет вертикальных скоростей воздуха для модели теплого фронта и для поверхности раздела, построенной по аэрологическим данным. Получены новые интересные выводы по распределению вертикальных скоростей в области теплого фронта. Подтвержден новый метод вычисления скачка геострофического ветра в области фронта.

Котович А.Ф. "Средний снергетический уровень атмосферы и его основные особенности".

Руководитель доц.Рупперт Л.Л.

На сравнительно большом фактическом материале оценена средняя высота уровня, на котором выполняется условие: $q.Z = KT = \frac{p}{S}$. Дана оценка колебания этих высот, а также выяснена зависимость положения среднего энергетического уровня от географического положения.

В работе достаточно полно рассмотрены и другие вопросы энергетики атмосферы с указанием наиболее перспективных направлений последующих разработок.

<u>1962 г.</u>

Сергенева Э.В. "Влияние граничных условий на результаты вычислений вертикального профиля коэффициента турбулентности графическим методом".

Руководитель доц.Рузин М.И.

Проведено уточнение методики расчета козффициента турбулентности в пограничном слое новым методом на основе более точной постановки граничных условий в задаче изменения ветра с высотой в пограничном слое. Подтвержден вывод о существовании в пограничном слое уровня с максимальным коэффициентом турбулентности. Показано, что введенная поправка существенна при устойчивых условиях в пограничном слое.

Кафедра синоптической метеорологии

Темы дипломных проектов охватывают широкий круг проблем, связанных с тематикой МГГ и метеорологическим обеспечением высот-

- 221 -

но-скоростной авиации.

Большое внимание также было уделено вопросам прогнозирования туманов, низкой облачности, сильных ветров в отдельных районах и по воздушным трассам Советского Серва.

Ниже приведены аннотации некоторых дипломных работ.

222

Шугаева С.Г. "Циклоническая деятельность в районе трассы Ленинград-Москва в холодную половину года".

Руководитель асс.Бауман И.А.

Дипломный проект представляет синоптико-статистическое исследование траекторий циклонов и фронтов, влияющих на погоду в районе авиатрассы Ленинград-Москва.

Получены типовые траектории циклонов и фронтов для разновидностей основных форм атмосферной циркуляции по Г.Я.Вангенгейму в холодную половину года.

Выявлены синоптические условия прохождения циклонов и фронтов.

Показана связь типовых траекторий циклонов и фронтов в районе авиатрассы с основными формами атмосферной циркуляции.

К у р и л о в а Л.К. "Циклоническая деятельность в районе трассы Ленинград-москва в теплую половину года".

Руководитель асс.Бауман И.А.

Автором получены типовые траектории циклонов и фронтов для разновидностей основных форм атмосферной циркуляции по Г.Я.Вангенгейму в теплую половину года.

Выявлены синоптические условия прохождения циклонов и фронтов в районе авиатрассы.

Показана связь типовых траскторий циклонов и фронтов с основными формами атмосферной циркуляции.

Ермакова Л.Г., Найшулер М.Г., Перивердиева Л.М. "Влияние Балтийского моря на перемещение и эволюцию циклонов".

Руководитель проф.Зверев А.С.

На синоптическом материале 1954-1961 гг. рассмотрены особенности перемещения и эволюции циклонов при пересечении ими Балтийского моря. Исследованы все месяцы, за исключением летних.

Наибольший интерес представляют выводы о влиянии Балтийского моря на перемещение и эволюцию циклонов, приведенные в таблице.

Наиболее часто наблюдалось замедление перемещения у тех циклонов, которые над морем углублялись.

Замедление перемещения циклонов над морем не может быть объяс нено их общей вволюцией, так как наблюдались случаи нового уско-

Таблица

Характеристики перемещения и зволюции циклонов над морем (в %)

Характеристики над морем		Весна Ш-У 46 случаев	Осень 1X-X1 55 случаев	Зима ХП-П 47 случаев	Среднее 49 случаев
1.	Перемещение:				
	замедление	50	58	51	53
2	стациониро- вание	26	2	19	16
	бев изменени	k 13	24	17	18
	ускорение	11	16	13	13
	Ито	ro: 100	100	100	100
2.	Эволюция:				
	углубление	39	43	60	47
	без измене- ний	44	33	17	32
	заполнение	17	24	23	21
	Ито	ro: 100	100	100	100

рения после выхода циклона с моря на сушу. Например, 3-4/ХП 1955 г. перед вступлением на море скорость в среднем за 6 час. была 64 км/час, над морем - 40 км/час, по выходе с моря -60 км/час. Аналогично 25-26/1Х 1958 г. перед вступлением на море 60 км/час, над морем 24 км/час, непосредственно по выходе с моря 66 км/час.

Полученные выводы противоречат широко распространенному мненыю, согласно которому при мереходе циклонов с суши на море скорость их перемещения должна возрастать в связи с уменьшением тормозящего влияния трения.

По-видимому, выявленные особенности перемещения и эволюции циклонов над Балтийским морем объясняются преимущественно термическим влиянием. Наибольший эффект получается, когда циклоны пересекают не относительно холодный Ботнический залив, а более теплые центральную и южную части моря..

<u>1962 г.</u>

Вахромеева Р.П. "Вертикальное распределение ветра в области тропопаузы над Ленинградом в зимний период".

Руководитель канд. геогр. наук Бушув О.А.

В работе рассматривается вертикальный профиль скорости ветра в верхней тропосфере и в нижней стратосфере. Устанавливается статистическая связь уровня максимальной скорости вегра с высотой тропопаувы.

Получен ряд количественных характеристик ветра на уровне его максимальной скорости.

Рассчитаны средние вертикальные градиенты скорости ветра в области тропопаузы в зависимости от величины скорости ветра.

Кафедра гидрометизмерений

Дипломные работы по кафедре гидрометизмерений выполняются по двум основным направлениям: автоматизация гидрометеорологических измерений и развитие теории фазовых превращений.

Ниже перечисляются аннотации некоторых дипломных работ последних лет.

<u>1958 r</u>.

Коханович М.М. "Возможности применения радиоактивных изотопов в гидрометеорологии".

Руководитель доктор фив.-мат. наук Качурин Л.Г.

Дан обзор методов метеорологических измерений, в которых используются или могут быть использованы достижения ядерной физики.

<u>1959 г</u>.

Андреев С.И. "Автоматический дифференциальный балансомер".

Руководитель асс. Толстобров Б.Я.

Разработана схема балансографа. Основой конструкции является дифференциальный балансомер с веркальным магнитовлектрическим указателем. С помощью релейно-моторного блока, фотосопротивлений и полупроводниковых термовлементов автоматически производится охлаждение в случае положительного радиационного баланса или нагревание в случае отрицательного радиационного баланса. Регистрация может осуществляться либо на фотобумаге, либо на перфорированной бумаге.

Вольцингер Л.Е. "Анемометр с пересчетной схемой на полупроводниках".

Руководитель доц. Мержеевский А.И.

В работе описывается пересчетная схема, построенная из тригеров на транаисторах. Экспериментально подобраны элементы тригерной ячейки, обеспечивающие наиболее устойчивый режим работы. Пересчетная схема разработана для анемометра с датчиком в виде фотосопротивления для определения средней скорости ветра за определенный интервал времени.

При вращении крыльчатки анемометра выдаются импульсы напряжения, количество которых равно числу оборотов крыльчатки. Эти импульсы поступают на вход формирующего устройства, создающего импульсы стандартной формы, поступающие на вход пересчетной схемы. Пересчетная схема включается на определенный промежуток времени. Средняя скорость ветра будет, очевидно, пропорциональна количеству импульсов, которые "запомнила" пересчетная схема, деленному на величину интервала времени. Величина коэффициента пропорциональности определяется размерами крыльчатки чашечного анемометра, используемого во время измерений.

225

1960 г.

Бекряев В.И. "Экспериментальное исследование электрических явлений, возникающих при фазовых превращениях". Руководитель доктор физ.-мат.наук Качурин Л.Г.

Исследован процесс возникновения электрических зарядов при варыве кристаллизующихся капель воды. Полученный результат дает основание полагать, что механизм разделения зарядов при взрыве замерзыих капель является основным генератором грозового электричества.

Беликова Н.Л. "Определение характеристик атмосферной турбулентности диффузионным методом".

Руководитель и.о.доцента Мушенко П.М.

На основании материалов кинотеодолитных съемок облаков дыма, образущихся от мгновенных источников, исследованы закономерности атмосферной турбулентной диффузии для случаев малых вначений времени дисперсии по сравнению с лагранжевым масштабом турбулентности.

В довин Б.И. "Контроль параметров радиолокацисчной станции метеорологического назначения".

Руководитель асс. Фомиче в И.А.

В работе рассмотрены требования стабильности параметров радиолокационной станции метеорологического назначения. Дан анализ методов калибровки радиолокационных станций.

Для метеорологических локаторов предложена калибровка методом "длинной волновой линии", в котором используется измерение амплитуды затухающего сигнала, многократно отраженного от конца и начала длинной волновой линии.

Ся Юй-жень "Некоторые расчеты, связанные с искусственным разрушением облаков".

Руководитель доктор физ.-мат.наук Качурин Л.Г.

Исследовано уравнение конденсационного роста влажности в водных аэроволях для стационарных и нестационарных случаев.

у шаков В.М. "Исследование и усовершенствование полевого термоградиентографа ЛГМИ".

Руководитель доктор физ.-мат.наук Качурин Л.Г.

Разработана конструкция полевого автоматического термоградиентографа, основанного на принципе неуравновешенного термометра сопротивления с фотогальванометрической индикацией. Изготовлен и испытан опытный образец. Опытная серия приборов была выпущена экспериментальными мастерскими ГГО.

1961 г.

Концевич Г.М. "Временные параметры автоматического термоградиентографа".

Руководитель доктор физ.-мат. наук качурин Л.Г.

Развита теория, позволяющая выбирать постоянные времени аппаратуры, предназначенной для исследования температурного поля атмосферы. Показано, что в опубликованных работах, касающихся этого вопроса, содержится принципиальная ошибка.

Ли Сан Ген "Береговая дистанционная гидрометеорологическая станция".

Руководитель доктор физ.-мат. наук Качурин Л.Г.

Разработана принципиальная схема береговой дистанционной метеорологической станции.

Развита теория теплового электрического анемометра с температурной компенсацией.

На заренко В.Я. "Разработка полевого автоматически уравновешивающегося термоградиентографа".

Руководитель асс. Толстобров Б.Я.

Разработана конструкция полевого автоматически уравновешивающегося термоградиентографа, предназначенного для дистанционной регистрации вертикального распределения температуры. Основан на принципе термометра сопротивления на постоянном токе с веркальным магнитоэлектрическим гальванометром в качестве индикатора разбаланса моста и специальной электромеханической системой в качестве регистратора. Изготовлен и испытан действующий термоградиентограф.

1962 г.

Коновалов Д.А. "Разработка автоматического регистратора вертикального профиля ветра (анемопрофилографа)".

Руководитель асс. Толотобров Б.Я.

Разработана конструкция профилографа, автоматически регистрирующего вертикальное распределение скорости ветра. Скорость ветра с помощью датчиков преобразуется в систему импульсов, которые поступают через релейный блок на реверсивные шаговые искатели, ламели которого соединены с реле-ударниками регистратора, фиксирующими положения щеток искателей на перфорированной бумажной ленте.

О с и п о в Ю.Г. "Экспериментальные исследования кристаливации жидкостей в потоке применительно к расчету обледенения самолетов".

Руководитель доктор физ.-мат.наук Качурин Л.Г.

Экспериментально подтверждена развитая в ЛГМИ теория кристаллизации тонких пленок жидкости.

Содержание	Стр.
В.С. Антонов. Об учете внутриоблачных физи-	
ческих процессов при диагнове и прогнове обложных	
осадков	5- 29
М.А. Герман. Некоторые количественные ха-	
рактеристики турбулентного обмена в облаках . 💉 .	30-68
В.С. Антонов, Л.С. Орлова, В.С.Фио-	
нова. Результаты расчета осадков по упроценной	
схеме ЛГМИ	69-82
Б.М.Гальперин, Л.П.Серякова. Днев-	
ные величины радиационного баланса за бесснежный пе-	
риод при различной облачности	83-97
М.А.Герман.Квопросувычисления энергетичес-1	🖡 se
ких характеристик в облаках по данным акселерографи-	
ческих записей с помощью вычислительной машины "Урал".	98 -115
С.В.Солонин, Г.Г.Тараканов. Методи-	
ка исследования облачности верхнего яруса с самолета	
и некоторые вопросы ее пространственной структуры	110-124
А.М.Баранов. Характеристики пространствен-	105 100
ной структуры облаков холодных фронтов	125-136
С.В.З В е р е В а. Видимость под облаками при вы-	100 140
падении осадков в раионе ленинграда	137-143
Б.м. I а л ь п е р и н. сравнение и оценка некото-	
рых климатологических методов расчета суммарном сол-	144-152
П И И и и о и п о Опровологии изранители описа	111-102
п.м.м у ш е н к о. определение характеристик атмос~	•
ферноя туроулентности по конденсационным следам (диф-	153-164
си в атмосфере	165-171
Я.С.Рабинович Решение шикла краевых задач	
о лиффузии примеси в приземном слое атмосферы	172-192
Н.П.Т в е р с к а я. Слияние капель водных растворов	3. 193-197
А.Г.Бройдо, И.А.И вис. Особенности потока	
тепла в почве на площадке ЛГМИ в Батово	198-203
Л.А.Хандодко. Расчет скорости ветра в откры-	
той части Балтийского моря	204-210
Т.Ф.Дьяченко. О связи силы ветра на побе-	
режье Мурмана с величиной барического градиента 2	211-215
Аннотации дипломных работ студентов ЛГМИ 2	217-226

١

БИБЛИОТЕКА ленинградского мдрометеорологического института

.

Труды

Ленинградского гидрометеорологического института Выпуск 14

Типография Государственной Публичной библиотеки, г.Ленинград, наб. р.Фонтанки, 36. Подписано к печати 18.02.1963 г. №-17085. Тираж 600 экз. Печ.л.16,4 Ваказ № 11-71

Цена 92 кол.

